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Using experimental evolution to identify druggable
targets that could inhibit the evolution of antimicrobial
resistance

Heer H Mehta1, Amy G Prater1 and Yousif Shamoo

With multi-drug and pan-drug-resistant bacteria becoming increasingly common in hospitals, antibiotic resistance has threatened

to return us to a pre-antibiotic era that would completely undermine modern medicine. There is an urgent need to develop new

antibiotics and strategies to combat resistance that are substantially different from earlier drug discovery efforts. One such

strategy that would complement current and future antibiotics would be a class of co-drugs that target the evolution of

resistance and thereby extend the efficacy of specific classes of antibiotics. A critical step in the development of such strategies

lies in understanding the critical evolutionary trajectories responsible for resistance and which proteins or biochemical pathways

within those trajectories would be good candidates for co-drug discovery. We identify the most important steps in the evolution

of resistance for a specific pathogen and antibiotic combination by evolving highly polymorphic populations of pathogens to

resistance in a novel bioreactor that favors biofilm development. As the populations evolve to increasing drug concentrations, we

use deep sequencing to elucidate the network of genetic changes responsible for resistance and subsequent in vitro biochemistry

and often structure determination to determine how the adaptive mutations produce resistance. Importantly, the identification of

the molecular steps, their frequency within the populations and their chronology within the evolutionary trajectory toward

resistance is critical to assessing their relative importance. In this work, we discuss findings from the evolution of the ESKAPE
pathogen, Pseudomonas aeruginosa to the drug of last resort, colistin to illustrate the power of this approach.
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INTRODUCTION

Owing to the misuse and overuse of antibiotics alongside the innate
ability of bacteria to evolve, antibiotic resistance is on the rise and
threatens to return us to a pre-antibiotic period. In September of 2016,
the World Health Organization held a high global summit dedicated
to addressing the need for novel antimicrobial development. Nearly
every aspect of modern medicine relies on the availability of effective
antibiotics to treat common infections. It is an unfortunate but well-
established fact that hospital-associated infections are common
complications of hospitalization. In 2013, the Centers for Disease
Control and Prevention estimated that hospital-associated infections
were the cause of over two million cases, resulting in at least 23 000
deaths in the United States.1 The organisms most strongly associated
with US hospital infections and to which new antibiotics are urgently
needed are frequently referred to as the no ‘ESKAPE’ pathogens
(Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae,
Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter
spp.).2,3 For these organisms, important therapeutic obstacles—
resistance, toxicities and bacteriostatic effects—limit treatment
options. Most importantly, these strains and others will continue to
become increasingly resistant. As we more broadly employ drugs of

‘last resort’, such as colistin for P. aeruginosa, the number of resistant
strains will only increase. As multi-drug resistance spreads, the drugs
of ‘last resort’ will join the list of marginally effective antibiotics,
making it more difficult to ensure patient health. New drugs with
novel mechanisms of action and staying power in the clinic will be
essential to ensure patient health. An approach to solving this crisis is
to increase the longevity of antibiotics currently in use by developing
co-drugs that could be employed with antibiotics to inhibit the
development of resistance and thereby increase the efficacy of current
antibiotics while simultaneously reducing the spread of resistance. The
development of such a co-drug strategy relies upon a clear molecular
understanding of how specific pathogens evolve resistance during
exposure to antibiotics.
Antibiotic resistance mechanisms are typically identified in clinical

settings when an antibiotic treatment plan was unsuccessful, often
leading to terrible consequences for the patient.4 Even when genomic
data are available from patient infections, there is little understanding
of which genetic changes are the most critical to resistance since the
original organism or ‘ancestor’ was not sequenced and thus there are
only related genomes for comparative genomics. Even when such
comparative genomics are successful and produce a list of mutations
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associated with resistance, there is often no clear way to classify which
mutations are the most important for driving the overall evolutionary
trajectory towards resistance. We set out to design an experimental
approach that mimics clinical adaptation and can be used to delineate
the importance of each acquired mutation in response to antibiotic
therapy with the specific goal of identifying and ranking the molecular
pathways and proteins responsible for resistance. Our work has
benefited greatly from earlier experimental evolution studies and
theory in model systems.5 The most common method traditionally
uses serial flask transfers to evolve populations to resistance, but these
works often focus on the final end-point strains rather than taking a
metagenomic approach to elucidate and evaluate various evolutionary
trajectories. Also, serial transfers select against the formation of
complex biofilms, as the populations are transferred to new flasks
each day, and while other approaches to study adaptation to antibiotic
resistance have been used6–8 they typically do not take into account all
aspects of a growing bacterial community which includes biofilms and
selection conditions that favor highly polymorphic populations.
To better understand the development of antibiotic resistance, we

have designed a quantitative experimental evolution pipeline revolving
around the evolution of an organism to resistance in a modified
bioreactor. During adaptation to increasing antibiotic concentrations,
samples of the entire heterogenous population are collected each day
for metagenomic deep sequencing to quantitate the frequency of each
mutation over time. At the end of the experiment, genetically diverse
end-point isolates are sequenced to determine the genetic linkages
between the acquired mutations. By combining the time-dependent
accumulation of mutations from deep metagenomic sequencing with
the genotypes identified from resistant end-point isolates, we create a
detailed timeline outlining how and when resistance is acquired within
a given population. Using this timeline, we identify potential drug
targets for the development of co-drugs that can be administered to
increase the longevity of current antibiotics.
The strength of our pipeline lies in the detailed genomic analysis of

our polymorphic populations. These populations give rise to multiple
adaptive trajectories within a single experiment and our genomic
analysis allows us to tease apart the sequence of events that result in
the success of each trajectory.9,10 Mutations which occur early in
adaptation are likely to provide the organism with the highest fitness
advantage; similarly, mutations that occur at a high frequency and are
more successful across the population are most likely to contribute to
resistance. Using our pipeline, we have successfully identified a variety
of resistance mechanisms that recapitulate and predict resistance
mechanisms found in the clinic.9–14 While resistance is more
commonly conceived as a series of steps, our experiments have shown
additional approaches that promote resistance: the emergence of
hyperconjugation of transposable elements carrying genes needed for
resistance,10 or, early deletions in mutS that result in the development
of a hypermutator phenotype which rapidly mutates thousands of
alleles.9

Pseudomonas aeruginosa, classified by CDC as a serious threat,1 is an
opportunistic pathogen that can cause serious infections in immuno-
compromised individuals. The high level of intrinsic resistance to
various antibiotics possessed by this organism15 makes it very difficult
to treat infections. In this study, we describe the evolution of
P. aeruginosa to colistin, a drug of last resort for Gram-negative
organisms. We show that in a hypermutator background, multiple
mutations within the same operon lead to resistance. Furthermore, we
identify mutant alleles that aid in the development of resistance but do
not necessarily survive in the final resistant population.

MATERIALS AND METHODS

Bioreactor set up
A modified Sartorius Stedim Biostat Bplus bioreactor was used for evolution
experiments. Long-term experimental evolution studies are critically dependent
on absolute sterility. A single cell contaminant introduced at any point in an
experiment can easily ruin the entire study and thus the utmost care must be
taken in both establishing the initial population and the subsequent introduc-
tion of reagents, air and media. The empty glass vessel (1 l volume) was sealed
with all tubing and connections in place; aluminum foil was used to cover any
open ends. All components were sterilized in an autoclave using a 45 min
sterilization time. The lid of the vessel has four inlet ports, of which two were
used as media inlet ports, one as an inoculation port and one port was reserved
for backup. After sterilization, the sparger delivering air to the vessel was
connected to the air source via a sterile 0.2 μm air filter (Acro 50 Vent Filters,
Pall Laboratory, Port Washington, NY, USA). Spent air flowed through the
condenser and was passed through a sterile 0.2 μm air filter before passing
through a desiccating agent (WA Hammond Drierite Co Ltd, OH, USA) and
entering a Tandem Pro Gas Analyzer (Magellan Biotech, Hertforshire, UK) that
detected the exhaust CO2 concentration as percentage total air. The analyzer
was pre-calibrated using gas tanks with known CO2 concentration. The empty
media tanks that would serve as media reservoirs were pre-sterilized in an
autoclave before the addition of media. The media was prepared and sterilized
in an Integra Mediaclave 10 Media Sterilizer using the standard cycle. The
choice of media depends on the organism under study. In general, it is a rich
medium providing all the necessary resources for the bacteria to grow under
conditions with no limiting resources. For P. aeruginosa, a mixture of 80%
Luria Bertani broth (Becton Dickinson, NJ, USA, B214906) and 20% Brain
Heart Infusion (Becton Dickinson, B11060) supplemented with 2 mM magne-
sium sulfate was used. Antibiotics and supplements were added to the media
through the addition port upon completion of the sterilization cycle. Media was
then aseptically dispensed into the pre-sterilized tank. Filled tanks were set at
room temperature for 16–24 h prior to use to ensure sterility. The tubing from
the media tank feeding the vessel was split into two arms. Each arm passed
through a separate pump head on the Sartorius bioreactor control unit, was
connected to a sterile media filter (Opticap XL2 Durapore, Millipore Sigma,
Burlington, MA, USA) and was then connected to one of the media inlet ports
on the vessel. The vessel lid had two outlet ports, one dedicated for sampling
and the other dedicated to continuous waste removal. A pictorial representation
of the set-up is shown in Figure 1.
The bioreactor was controlled using the Sartorius MFCSPID controller

program. The controller was modified to use CO2 output from the gas analyzer
as a signal to regulate pumps. One pump maintained a constant flow of media
to the culture. The second pump was designated to respond to CO2

concentration and maintain mid-logarithmic growth. Turbidity measurements
were made arbitrarily during the experiment using a sample of the effluent
waste. As the effluent waste typically contains multi-drug resistant pathogens,
the waste was collected and properly sterilized.

Experimental evolution in a bioreactor
The bioreactor was assembled as described above. The air inflow was set
between 0.16 to 0.2 lpm and the water jacketed vessel was set to 37 °C.
Antibiotic-free, sterile media was pumped through the media filters and into the
vessel to a predetermined volume based upon the organism being studied. This
volume can be varied from 0.2 to 0.6 l. The rotor speed was set between 50 and
300 r.p.m. (depending on the organism). P. aeruginosa was adapted as a 0.3 l
culture with a rotor speed of 300 r.p.m.. All pumps were turned off and this
system was maintained for 24–48 h prior to inoculation to ensure sterility. Care
was taken to prevent the system from having any unnecessary openings. All inlet
and outlet lines were pinched off with metal clamps when not in use. The
positive pressure inside the vessel established by the sterile air flow prevented
contaminants from seeping into the system. The entire system was kept in a
biosafety cabinet to further maintain sterility.
The inoculum was prepared using a single colony from a freshly streaked

plate of non-selective media. The single colony was suspended in 1 ml of the
growth medium and added to the vessel through the inoculation port.
For some fastidious organisms, 1 ml of an overnight culture started from
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a single colony was used as inoculum. Post inoculation, the cells grew to

mid-exponential phase before pumps were turned on. Once the desired cell

density was reached, the pump feeding media at a steady rate was turned on to

a speed which was sufficient for maintaining culture density. As the population

density rises, the CO2 produced by cellular metabolism also rises. If the CO2

rose above the set point established for mid-log, a second pump was activated

at a set speed, diluting the culture to maintain it at the set point. Once the

appropriate dilution was achieved, the CO2 concentration dropped, turning off

the second pump.
As the culture grew for longer periods of time in the vessel, biofilms started

forming. The presence of the biofilms made it difficult to determine absolute

cell density in the vessel. Since biofilms did not contribute to planktonic

culture, the turbidity sample did not reflect the actual number of cells in the

vessel. However, the biofilms contributed to the CO2 generated in the vessel.

Therefore, the CO2 set point had to be re-set several times during the

experiment based on the amount of accumulated biofilm. The culture was

maintained in such a way that the planktonic population was always in mid-

exponential phase. In some of the earlier experiments, samples of the culture

were collected every 12 h and frozen as 20% glycerol stocks. The sample was
also streaked on the appropriate solid medium to observe colony morphology

and check for contaminants. In later experiments, the sampling interval was

changed to 24 h. Fifteen milliliters of the sample was frozen as a glycerol stock

and ~45 ml was pelleted down and divided into three tubes that were stored at

− 80 °C. The supernatant was also frozen.

Selection conditions for the establishment of polymorphic
populations
The goal of the experiment is to identify mutations linked to antibiotic
resistance and to minimize adaptation conditions that might be the result of
growth within the bioreactor environment. To avoid adaptive mutations
unrelated to antibiotic selection, we use non-limiting growth conditions such
that the population is always experiencing excess nutrient and highly favorable
growth conditions. Thus the bioreactors are not chemostats but instead allow
for maximal exponential growth at all times during the experiment. After the
culture established itself in the vessel, the first drug concentration was
introduced in the vessel. This concentration was typically 0.25–0.5× MIC of
the inoculated ancestor. After the cells were exposed to this drug concentration
for 24 h, a sample was taken and a broth MIC test was performed using the
same growth medium present in the vessel. Throughout the experiment the
drug concentration is maintained well below the MIC of the population and it
is this sub-MIC selection that favors the evolution of multiple simultaneous
evolutionary trajectories, resulting in a complex polymorphic population within
each vessel. The highest drug concentration at which the cells grew to an
equivalent density after 18 h as the current drug concentration was chosen as
the next increment. If there was no increase, cells in the vessel were maintained
at the same concentration for an additional 24 h before repeating the MIC test.
At the end of the experiment, the sampling process was performed as

described above. The remainder of the liquid contents of the vessel was
collected through the sampling port. Saving 1 ml for serial dilution, the rest was
frozen away as 20% glycerol stocks in individual 50 ml tubes. The vessel

Figure 1 Evolution in a bioreactor. This illustration represents the workflow of an evolution experiment in a bioreactor. The culture in the vessel is maintained
at exponential growth phase with fresh media and appropriate concentration of antibiotic being fed into it. The flow of media is regulated by peristaltic
pumps that are programmed to be controlled by the carbon dioxide output from the vessel, which is used as a proxy for turbidity of the culture. With an
increase in drug concentration, the rapidly dividing bacteria acquire mutations and form a polymorphic population of resistant bacteria.
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was then opened and the biofilm was collected from the vessel walls and the

metal portions of the lid using a sterile spatula and collected in separate tubes.

The biofilm was then suspended in a small volume of growth media and used

for serial dilution. The rest was frozen as a glycerol stock.
Serial dilutions of the planktonic and biofilm samples from the final day of

the experiment were plated on appropriate non-selective, solid growth media.

After incubation, 50-90 single colonies (end-point isolates) were picked from

the plates for phenotypic analysis. If obvious differences in morphology were

observed, a few representative colonies from each morphology were picked. If

not, colonies were picked randomly. The colonies were either suspended in

20% glycerol or were used to inoculate non-selective liquid media before

making 20% glycerol stocks. Various phenotypic screens were performed to

characterize the end-point isolates which included but were not limited to MIC

testing, testing for cross-sensitivity or cross-resistance to other antibiotics,

growth rate studies, biochemical tests and biofilm assays. Based on the diversity

observed in these assays, 10-20 end-point isolates were selected for whole

genome sequencing.

Whole genome sequencing and analysis
The ancestor strain for each experiment, samples collected from each day of the

experiment, as well as end-point isolates were sequenced. Genomic DNA was

isolated using the MO BIO Ultraclean Microbial DNA Isolation Kit following

the manufacturer’s instructions. End-point isolates were grown overnight and

pelleted before DNA extraction. The frozen pellets from daily samples were

thawed on ice and immediately extracted. These samples were not outgrown to

prevent loss of diversity due to freeze/thaw. Genomic DNA obtained was used

to make paired-end sequencing libraries using Illumina’s Nextera XT DNA

library preparation kit. The Illumina HiSeq platform was used for whole

genome deep sequencing of the daily population samples to obtain at least

300× coverage. The end-point isolates and ancestors were sequenced to obtain

at least 100× coverage.
Comparison of the raw sequencing reads to the reference genome of the

ancestor was done using Breseq.13 The consensus mode was used for identifying

mutations in end-point isolates and the polymorphism mode (-p) was used for

the daily populations. In cases where a closed reference genome was not

available, the Pacific BioSciences sequencing platform was used to sequence the

ancestor and assemble a closed reference. The pile-ups for called mutations

were manually examined to verify their accuracy.

RESULTS

The quantitative experimental evolution pipeline is composed of five
key components: (1) Evolve resistant populations in a bioreactor
under polymorphic selection conditions; (2) Identify the frequency
and order of mutations correlated with antibiotic resistance as a
function of time; (3) Identify the genotypes of end-point isolates to
establish genetic linkages; (4) Validate the effect of mutations by
physicochemical characterization; (5) Rank candidates for potential
drug development (Figure 2).

Identifying an adaptive trajectory to colistin resistance in P.
aeruginosa
P. aeruginosa, PAO1 was evolved to colistin resistance using
our quantitative experimental evolution approach in our modified
bioreactor. After 26 days, we obtained a final population that was
resistant to 16 mg l− 1 colistin, twofold higher than the clinical
breakpoint of colistin for P. aeruginosa as determined by 2014 MIC
Interpretive standards set by the Clinical and Laboratory Standards
Institute (CLSI). In our experiment, we observed a single point
mutation in the gene encoding the DNA mismatch repair enzyme,
MutS (L142P), which arose and rapidly swept through the population,
eventually comprising 78% of the population on the last day. The
mutation in MutS resulted in a strong hypermutator phenotype.
Hypermutator phenotypes in P. aeruginosa have been observed at high
frequency in clinical isolates of sputum from cystic fibrosis
patients.16,17 Hypermutators facilitate rapid adaptation albeit at the
expense of the accumulation of many non-adaptive mutations that
hitchhike together with adaptive mutations. In the presence of this
rapid mutation rate, mutations specific to resistance were seen to
accumulate in the two-component system, pmrAB, which has been
clinically linked to colistin resistance.18–20 As a hypermutator, several
hundred additional mutations accumulated in the resistant popula-
tion. The deconvolution of all the mutations within this hypermutator
will be discussed in later work.
PmrAB is a two-component regulatory system that activates down-

stream lipopolysaccharide modification systems in response to cationic
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Figure 2 Pipeline of quantitative experimental evolution to predict antibiotic resistance and identify targets for drug discovery. Each stage produces essential
data and approaches that when taken together predict resistance, identify the most important targets, suggests potential biochemical mechanisms and leads
to assay development. The stages are: (1) Evolve resistant populations in a bioreactor under polymorphic selection conditions; (2) Identify the frequency and
order of mutations correlated with antibiotic resistance as a function of time; (3) Identify the genotypes of end-point isolates to establish genetic linkages;
(4) Validate the effect of mutations by physicochemical characterization; (5) Rank candidates for potential drug development.
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antimicrobial peptides.21 Belonging to the polymyxin class of anti-
biotics, colistin is a cationic antimicrobial peptide that is believed to
cause membrane damage in Gram-negative bacteria.22,23 Modification
of the negative charges on the bacterial outer membrane by PmrAB
regulated genes is postulated to allow the bacteria to protect
themselves from colistin, which can bind negatively charged phosphate
groups on outer membrane lipopolysaccharides.24

Quantitative analysis of the metagenomic deep sequencing data for
each daily, heterogenous sample using Breseq25 allowed us to identify
the frequency at which mutations in pmrAB rose and spread
throughout the population (Figure 3). Based on the predicted domain
structure of the membrane bound sensor kinase PmrB,18 single
nucleotide polymorphisms leading to amino acid substitutions in
the transmembrane domains (L17P, L18P, L167P, L170P), in the
periplasmic domain (D47G, V136M), in the HAMP linker domain
(present in Histidine kinases, Adenyl cyclases, Methyl-accepting
proteins and Phosphatases) (V185A) and in the C-terminal ATP
binding domain (A330P, F408L) were observed in our evolved
population. Mutations in these domains have also been observed
in colistin-resistant clinical isolates18,26,27 as well as lab-adapted
colistin-resistant strains of P. aeruginosa.18,19,28 A single nucleotide
polymorphism leading to a substitution G15S was observed in pmrA.
Figure 3 traces the frequencies of these mutations and the point at
which they arose during the experiment. We observe that all these
mutations start appearing only after the organism is exposed to a
colistin concentration 42.25 mg l− 1. This suggests that there may be
other mutations that occur prior to the pmrAB mutations which
predispose PAO1 to colistin resistance. One unintentional benefit of
hypermutators is that they can provide a very extensive survey of the
entire adaptive landscape and thus provide a comprehensive catalog of
mutations that may facilitate resistance.9

Although there are several positions on the pmrB gene that
developed single nucleotide polymorphisms during the course of

adaptation, not all of them persisted till the end. The final end-point
isolates we sequenced had only one (L18P) out of the nine mutations
observed in the daily populations. Our results suggest that our
approach provides a fairly comprehensive survey of all the mutations
appearing throughout the course of adaptation and limits the role
of population bottlenecks in limiting the accessible evolutionary
trajectories. We are currently working on deconvoluting the complex
hypermutator genomic data which will not only help in identifying the
weaker trajectories (o1% frequency within the population), but will
also identify early mutations that will provide useful basis for
providing data needed for early stage molecular diagnostics.

DISCUSSION

The modified bioreactor we use for adaptation provides several
advantages over traditional serial transfer evolution experiments. Many
clinically significant bacteria form thick biofilms and bioreactor
culturing can select for this formation. This long-term establishment
of biofilm more accurately mimics the natural ecology that many
of these organisms create. The organism studied in this work,
P. aeruginosa, has a strong propensity to form biofilms, especially in
the lungs of cystic fibrosis patients, where 65–80% of all infections
can be attributed to biofilms.29,30 Figure 4 shows the biofilm
that developed in the bioreactor vessel during the evolution of
P. aeruginosa to colistin. Additionally, it is clear that the evolutionary
trajectories obtained from these studies do not address the molecular
mechanisms of pathogenesis. Pathogenesis requires an appropriate
host or host cell line. In vitro experimental evolution is very
informative, however, in determining the molecular basis for antibiotic
resistance. Adaptive mutations conferring antibiotic resistance have
very strong effects on the fitness of the organism that typically far out-
weigh those of adapting to the bioreactor growth conditions since we
do not limit critical resources such as carbon and nitrogen.

Figure 3 Frequencies of mutant alleles associated with colistin resistance in P. aeruginosa PAO1. Mutations in the pmrAB operon were identified by analysis
of whole genome sequencing data obtained from each daily population collected from the bioreactor. The frequency of each mutation is on y axis and each
interval on the axis represents a frequency of 25%. The corresponding day on which the mutation is observed is on the x axis. The gray dashed lines
represent the distinct colistin concentrations the culture was exposed to during evolution. The mutations on the right are the amino acid changes in the
protein caused by single nucleotide polymorphisms (SNPs) in the corresponding gene (pmrA or pmrB). Note that some mutations such as pmrB A330P have
early success but then become extinct as other more successful pmrA alleles confer greater success to drug selection.
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The bioreactor also maintains a continuous culture at its fastest
growth rate while slowly increasing the antibiotic concentration in an
empirically designed, stepwise manner. One of the major advantages
of evolving resistance in a bioreactor is the evolution of a highly
polymorphic population to study the subtle nuances of antibiotic
resistance. This polymorphism arises from the large culture volume,
continuous logarithmic growth, reduced bottleneck and growth in
sub-inhibitory concentrations of antibiotic. Bioreactor experiments are
carried out with culture volumes ranging from 0.2 to 0.6 l, over 20
times larger than a typical flask transfer experiment, and are not
passaged in 100-fold dilutions that can bottleneck populations. Flask
transfer experiments also enter stationary phase each day, reducing the
number of doublings. While P. aeruginosa can only achieve 6–8
generations before reaching stationary phase in batch culture when
growing in a rich medium, it experiences roughly 20 generations every
day in the bioreactor. This increase in replication allows for a more
thorough survey of possible mutations across the genome.12

Quantitative analysis of the deep sequencing data obtained from the
daily populations provides us with a comprehensive list of all
mutations occurring in the population during the process of evolution
and their relative frequencies in the population. It also allows us to
look at the rise and fall of genotypes that help in the early adaptation
of the population but may not persist at higher antibiotic concentra-
tions due to a more favorable mutation arising and taking over the
population. This is clear in Figure 3 where early mutations like A330P
and L167P within PmrB are seen at high frequencies during early
adaptation but are replaced by other mutations at higher drug
concentration. The appearance and persistence of a mutation relies
on the fine balance between the resistance conferred by that mutation
and the fitness cost associated with it. From our analysis, we can
capture these unsuccessful mutations, which serve as progenitors for
the more successful lineages. Having knowledge of these early
mutations is useful in the clinic. With the decreasing cost of whole
genome sequencing, clinicians are moving towards the sequencing
approach to characterize pathogenic isolates from patients. Knowing
which mutations predispose cells to becoming resistant to a particular

drug is important information when deciding what antibiotics to
administer as treatment.
An essential component of our analysis is the establishment of the

order of mutations as well as their frequency (Figure 3). Targets for
potential drug development are those identified in these critical first
steps towards resistance. Work performed by C. Miller et al.12 on
daptomycin resistance in E. faecalis shows that mutations specific to
the liaFSR operon serve as an essential opening step to all the
successful evolutionary trajectories leading to resistance. In another
study by K. Beabout et al. showing the evolution of tigecycline (TGC)
resistance in E. faecalis, metagenomic deep sequencing helped identify
an increase in transconjugation that lead to the widespread presence
of transposon Tn916, containing the TGC resistance gene, tetM.10

Another example is the evolution of the ESKAPE pathogen
A. baumannii to TGC resistance.9 Several organisms have been
observed to evolve a hypermutator phenotype in the clinic which
suggests that their adaptive strategy involves increasing their mutation
rate.31 Hypermutator phenotypes are frequently seen in TGC resistant
strains of A. baumannii in the clinic, as well as in our bioreactor
evolved populations of P. aeruginosa. The sheer number of mutations
acquired in hypermutator populations poses a serious challenge for
analysis. Thousands of non-adaptive ‘hitchhiker’ mutations were
acquired across the genome yet only a few, key mutations were
responsible for the increase in TGC resistance. Metagenomic data
from the daily populations as well as frequency data and statistical
analysis were essential to identifying the key mutations associated with
resistance in this complex genomic background.
A holistic approach that uses experimental evolution, metagenomic

deep sequencing and in vitro biochemistry is also very useful for
deconstructing complex strategies of antibiotic resistance. The next
step in the quantitative experimental evolution pipeline is the
validation of targets identified from genome sequence analysis. Ideally,
gene deletions and allelic replacement are used to validate the
mutations’ ability to confer antibiotic resistance. However, many
bacteria do not possess the genetic tools necessary for gene validation.
Also, the epistatic relations between multiple adaptive alleles can prove
to be nearly impossible as even five mutations will generate 120

Figure 4 Biofilm build up in the bioreactor vessel during evolution of P. aeruginosa to colistin. The bioreactor design favors the development of strong
biofilms. Since the evolution of the populations takes place over weeks in a single vessel, those adaptive alleles that favor biofilm formation have a selective
advantage as they can adhere to surfaces and not be removed as new media is added to maintain a constant exponentially growing planktonic phase.
Acinetobacter, enterococci and Pseudomonas have all exhibited strong biofilm formation in this experimental system.
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combinations of potential pair-wise interactions. The order of muta-
tions from our time frequency metagenomics can help to establish the
epistatic relationship of complex evolutionary trajectories. However,
a combination of in vitro biochemistry, biophysics and modeling can
be used to link physicochemical measurements to predictions of
phenotypes such as drug resistance.32 An important goal of our work
is to move beyond qualitative explanations for antibiotic resistance and
towards predictive modeling to determine how specific mutations
associated with resistance change protein function or amount to
predict changes in drug sensitivity. Measured physicochemical data
also provide vital information for the drug design process. From
previous studies in our lab on daptomycin resistance in E. faecalis,12

we showed that the LiaFSR three component system was crucial in
conferring resistance. By studying the LiaR protein, we determined
that the adaptive mutation in LiaR causing resistance (D191N),
constitutively activated the protein and hence, its regulon.33 We also
identified a downstream target of LiaR, a previously unidentified
protein, LiaX, whose upregulation was also necessary for loss of
susceptibility. These two proteins form putative targets for drug
design.34

Whenever a mutation confers antibiotic resistance, this gene and the
protein it encodes for can serve as a potential target for adjuvant
co-drug development to limit resistance. For example, after identifying
the upregulation of the liaFSR system as a major player in daptomycin
resistance in E. faecalis,12 we adapted strains of E. faecium with liaR
deletions to daptomycin resistance. These strains evolve resistance two
times slower than the original, susceptible ancestor (unpublished),
suggesting that administering a drug to inhibit liaR during daptomycin
treatment would increase the likelihood of successful treatment. While
bacteria will continue to evolve resistance mechanisms, even to this
two-pronged attack, the efficacy of current antibiotics would be
extended while novel antimicrobials are developed. Additionally, the
physicochemical assays that are used to assess how a protein promotes
resistance can often be used as high-throughput assays for drug
discovery. Quantitative experimental evolution also determines impor-
tant adaptive mutations that arise early in treatment. With the push
for personalized medicine, identifying these mutations in a patient’s
bacterial infection may help clinicians administer more effective
treatment plans. By a more strategic administration of antibacterials,
we can slow the emergence and subsequent spread of resistance in
pathogens. The wealth of data derived from our adaptive pipeline
provides multiple approaches to extending the efficacy of current
antibiotics and potentially slowing the rate at which resistance is
observed in the clinic.

CONCLUSIONS

Using quantitative experimental evolution as a drug development
pipeline, we are able to successfully recapitulate resistance mutations
observed in the clinic as well as predict resistance mutations before
they are observed. The CDC has classified pathogens based on their
threat level and some of the pathogens categorized as serious threats
include Acinetobacter, enterococci and Pseudomonas.1 We have used our
quantitative evolution pipeline on these organisms and have shown
that mutations observed in the clinic in drug-resistant isolates of these
pathogens are also observed in our bioreactor adapted strains.9,12

Moving forward, we are using quantitative experimental evolution to
predict how emerging pathogens will acquire resistance to antibiotics
currently in use and move us away from a reactive understanding of
resistance towards a predictive one, where new drugs can be developed
in anticipation of resistance rather than in response. This method also
allows us to identify how likely a therapy will fail, which in turn, will

lead to the design of new treatment strategies, such as adjuvant
molecules that may prevent or postpone development of resistance, or
combination therapies that can restore susceptibility to current drugs.
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