Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Microbacterium lacusdiani sp. nov., a phosphate-solubilizing novel actinobacterium isolated from mucilaginous sheath of Microcystis

Abstract

A novel actinobacterium, designated strain JXJ CY 01T, was isolated from a mucilaginous sheath of Microcystis aeruginosa FACHB-905 collected from Lake Dianchi, south-west China. Taxonomic position of the isolate was determined by polyphasic approaches. Strain JXJ CY 01T shared 16S rRNA sequence similarities of 98.9 and 98.0% with Microbacterium marinilacus YM11-607T and Microbacterium paludicola US15T, and less than 98% with other members of the genus Microbacterium. The DNA–DNA relatedness values between strains JXJ CY 01T and M. marinilacus JCM 16546T and M. paludicola JCM 14308T were 53.5±1.4 and 53.8±2.1%, respectively. l-Ornithine was detected in the cell wall, and rhamnose, galactose, glucose, arabinose, fucose and mannose as signature sugars in the whole-cell hydrolysates. Other chemotaxonomic characteristics determined were MK-12 and MK-11 as predominant menaquinones, anteiso-C15:0, iso-C16:0, anteiso-C17:0 and iso-C17:0 as major cellular fatty acids (>10%), and diphosphatidylglycerol, phosphatidylglycerol, an unidentified glycolipid and two unidentified phospholipids as the polar lipids. The DNA G+C content was 70.4 mol%. On the basis of the above taxonomic data, strain JXJ CY 01T is determined to represent a novel species of the genus Microbacterium, for which the name Microbacterium lacusdiani sp. nov. is proposed. The type strain is JXJ CY 01T (= KCTC 29655T=DSM 29188T). The type strain JXJ CY 01T can solubilize both insoluble inorganic (calcium phosphate) and organic phosphate (l-α-phosphatidylcholine) and is possibly one of the mechanism for enhancement of growth of M. aeruginosa FACHB-905.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1
Figure 2
Figure 3

References

  1. 1

    Pan, G., Zhang, M. M., Chen, H., Zou, H. & Yan, H. Removal of cyanobacterial blooms in Taihu Lake using local soils. I. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals. Environ. Pollut. 141, 195–200 (2006).

    CAS  Article  Google Scholar 

  2. 2

    Liu, Y. M. et al. Analysis of paralytic shellfish toxins in Aphanizomenon DC-1 from Lake Dianchi, China. Environ. Toxicol. 21, 289–295 (2006).

    CAS  Article  Google Scholar 

  3. 3

    Liu, L. P. Characteristics of blue algal bloom in Dianchi Lake and analysis on its cause. Res. Environ. Sci. 12, 36–37 (1999).

    Google Scholar 

  4. 4

    Dziallas, C. & Grossart, H. P. Temperature and biotic factors influence bacterial communities associated with the cyanobacterium Microcystis sp. Environ. Microbiol. 13, 1632–1641 (2011).

    Article  Google Scholar 

  5. 5

    Parveen, B. et al. Bacterial communities associated with Microcystis colonies differ from free-living communities living in the same ecosystem. Environ. Microbiol. Rep. 5, 716–724 (2013).

    CAS  PubMed  Google Scholar 

  6. 6

    Shi, L. M., Cai, Y. F., Kong, F. X. & Yu, Y. Specific association between bacteria and buoyant Microcystis colonies compared with other bulk bacterial communities in the eutrophic Lake Taihu, China. Environ. Microbiol. Rep. 4, 669–678 (2012).

    CAS  PubMed  Google Scholar 

  7. 7

    Casamatta, D. & Wickstrom, C. Sensitivity of two distinct bacterioplankton communities to exudates from the cyanobacterium Microcystis aeruginosa. Microb. Ecol. 41, 64–73 (2000).

    Article  Google Scholar 

  8. 8

    Deng, J. et al. Effect of attached bacteria of carbonic anhydrase on the growth of Microcystis aeruginosa. J. Lake Sci 24, 429–435 (2012).

    CAS  Article  Google Scholar 

  9. 9

    Jürgens, K. & Güde, H. The potential importance of grazing-resistant bacteria in planktonic systems. Mar. Ecol. Prog. Ser. 112, 169–188 (1994).

    Article  Google Scholar 

  10. 10

    Niu, Y. et al. Phytoplankton community succession shaping bacterioplankton community composition in Lake Taihu, China. Water Res. 45, 4169–4182 (2011).

    CAS  Article  Google Scholar 

  11. 11

    Shi, L. M. et al. Phylogenetic diversity and specificity of bacteria associated with Microcystis aeruginosa and other cyanobacteria. J. Environ. Sci. 21, 1581–1590 (2009).

    Article  Google Scholar 

  12. 12

    Yang, L. Y. & Xiao, L. Outbrust, Jeopardize and Control of Cyanobacterial Bloom in Lakes 212 (Science Press, Beijing, (2010).

    Google Scholar 

  13. 13

    Zhang, B. H. et al. An antialgal compound produced by Streptomyces jiujiangensis JXJ 0074T. Appl. Microbiol. Biotechnol. 99, 7673–7683 (2015).

    CAS  Article  Google Scholar 

  14. 14

    Shirling, E. B. & Gottlieb, D. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16, 313–340 (1966).

    Article  Google Scholar 

  15. 15

    Xu, P. et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family Oxalobacteraceae isolated from China. Int. J. Syst. Evol. Microbiol. 55, 1149–1153 (2005).

    CAS  Article  Google Scholar 

  16. 16

    Kovacs, N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178, 703–704 (1956).

    CAS  Article  Google Scholar 

  17. 17

    Goodfellow, M. Numerical taxonomy of some nocardioform bacteria. J. Gen. Microbiol. 69, 33–80 (1971).

    CAS  Article  Google Scholar 

  18. 18

    Williams, S. T. et al. Numerical classification of Streptomyces and related genera. J. Gen. Microbiol. 129, 1743–1813 (1983).

    CAS  PubMed  Google Scholar 

  19. 19

    Hasegawa, T., Takizaea, M. & Tanida, S. A rapid analysis for chemical grouping aerobic actinomycetes. J. Gen. Appl. Microbiol 29, 319–322 (1983).

    CAS  Article  Google Scholar 

  20. 20

    Tang, S. K. et al. Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. Int. J. Syst. Evol. Microbiol. 59, 2025–2032 (2009).

    CAS  Article  Google Scholar 

  21. 21

    Minnikin, D. E., Collins, M. D. & Goodfellow, M. Fatty acid and polar lipid composition in the classification of Cellulomonas Oerskovia and related taxa. J. Appl. Bacteriol. 47, 87–95 (1979).

    CAS  Article  Google Scholar 

  22. 22

    Collins, M. D. & Jones, D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycan based on 2,4-diaminobutyric acid. J. Appl. Bacteriol. 48, 459–470 (1980).

    CAS  Article  Google Scholar 

  23. 23

    Collins, M. D., Pirouz, T., Goodfellow, M. & Minnikin, D. E. Distribution of menaquinones in actinomycetes and corynebacteria. J. Gen. Microbiol. 100, 221–230 (1977).

    CAS  Article  Google Scholar 

  24. 24

    Kroppenstedt, R. M. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J. Liq. Chromatogr. 5, 2359–2387 (1982).

    CAS  Article  Google Scholar 

  25. 25

    Sasser, M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101 (MIDI, Newark, DE, 2001).

  26. 26

    Mesbah, M., Premachandran, U. & Whitman, W. B. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39, 159–167 (1989).

    CAS  Article  Google Scholar 

  27. 27

    Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882 (1997).

    CAS  Article  Google Scholar 

  28. 28

    Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).

    CAS  Google Scholar 

  29. 29

    Felsenstein, J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376 (1981).

    CAS  Article  Google Scholar 

  30. 30

    Fitch, W. M. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406–416 (1971).

    Article  Google Scholar 

  31. 31

    Tamura, K. et al. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739 (2011).

    CAS  Article  Google Scholar 

  32. 32

    Felsenstein, J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791 (1985).

    Article  Google Scholar 

  33. 33

    Ezaki, T., Hashimoto, Y. & Yabuuchi, E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol. 39, 224–229 (1989).

    Article  Google Scholar 

  34. 34

    Wayne, L. G. et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematic. Int. J. Syst. Bacteriol. 37, 463–464 (1987).

    Article  Google Scholar 

  35. 35

    Zhao, G. Y. et al. The importance of bacteria in promoting algal growth in eutrophic lakes with limited available phosphorus. Ecol. Eng. 42, 107–111 (2012).

    CAS  Article  Google Scholar 

  36. 36

    de-Bashan, L. E., Antoun, H. & Bashan, Y. Involvement of indole-3-acetic-acid produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris. J. Phycol. 44, 938–947 (2008).

    CAS  Article  Google Scholar 

  37. 37

    Madhaiyan, M. et al. Microbacterium azadirachtae sp. nov., a plant growth-promoting actinobacterium isolated from the rhizoplane of neem seedlings. Int. J. Syst. Evol. Microbiol. 60, 1687–1692 (2010).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by funds from Natural Science Foundation of China (No 31060010), Environmental Conservation Department of Jiangxi Province of China (No. JXHBKJ2013-14) and Program of Jiujiang University (No 201511). W-JL was also supported by Guangdong Province Higher Vocational Colleges & Schools Pearl River Scholar Funded Scheme (2014).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wen-Jun Li.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on The Journal of Antibiotics website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, BH., Salam, N., Cheng, J. et al. Microbacterium lacusdiani sp. nov., a phosphate-solubilizing novel actinobacterium isolated from mucilaginous sheath of Microcystis. J Antibiot 70, 147–151 (2017). https://doi.org/10.1038/ja.2016.125

Download citation

Further reading

Search

Quick links