NOTE

Novel arginine-containing peptides MBJ-0173 and MBJ-0174 from *Mortierella alpina* f28740

Teppei Kawahara¹, Masashi Itoh², Miho Izumikawa¹, Noriaki Sakata², Toshio Tsuchida² and Kazuo Shin-ya³

The Journal of Antibiotics (2017) 70, 226–229; doi:10.1038/ja.2016.116; published online 14 September 2016

We have constructed a library of isolated natural products obtained from microbial sources in order to perform efficient screenings.¹ During the investigation of rare microbial products with promising biological and pharmacological properties, we have developed an advanced system for compound identification based on accumulated HPLC-MS profiling data and strain information designated as 'MBJ's special selection'. Using this screening method, we have already succeeded in discovering novel eremophilane derivatives MBJ-0009 and MBJ-0010 from Nectria sp. f26111,2 MBJ-0011, MBJ-0012 and MBJ-0013 from Apiognomonia sp. f24023,3 cytotoxic chaetoglobosin derivatives MBJ-0038, MBJ-0039 and MBJ-0040 from Chaetomium sp. f24230,4 and a cytotoxic hydroxamate MBJ-0003 from Micromonospora sp. 29867.5 During our continuous search for new substances, two metabolites named MBJ-0173 (1) and MBJ-0174 (2) were isolated together with plactin B_{1}^{6} from the culture broth of Mortierella alpina f28740 (Figure 1a). In this paper, the fermentation, isolation, structure elucidation and preliminarily biological activities of 1 and 2 are described.

The producing fungus *Mortierella alpina* f28740 was isolated from a soil sample collected in Ise, Japan. The strain was cultivated in 250-ml Erlenmeyer flasks, each containing 25 ml of a seed medium consisting of 2% potato starch (Tobu Tokachi Nosan Kako Agricultural Cooperative Assoc., Hokkaido, Japan), 1% glucose (Junsei Chemical, Tokyo, Japan), 2% soybean powder (SoyPro, J-Oil Mills, Tokyo, Japan), 0.1% KH₂PO₄ and 0.05% MgSO₄·7H₂O (pH 7.4 before sterilization). The flasks were shaken on a rotary shaker (220 r.p.m.) at 25 °C for 3 days. Aliquots (0.5 ml) of the broth were transferred to 500-ml Erlenmeyer flasks containing 50 ml of a production medium of the same composition and cultured on a rotary shaker (220 r.p.m.) at 25 °C for 4 days.

The whole culture broth (2 l) was extracted with an equal volume of *n*-BuOH. After the *n*-BuOH layer was evaporated *in vacuo*, the resulting residue was suspended in brine (350 ml) and then extracted with EtOAc (350 ml \times 3) and *n*-BuOH (300 ml \times 2), successively. The *n*-BuOH extract (3.4 g) was subjected to reversed-phase medium-pressure liquid chromatography (Purif-Pack ODS-100, size: 60 (39 g), Shoko Scientific Co., Ltd., Yokohama, Japan) by using an

H₂O-MeOH stepwise solvent system (20%, 40%, 60%, 80% and 100% MeOH). The 40% and 60% MeOH fractions were combined (1.5 g) and chromatographed by preparative HPLC on an XSelect CSH C18 column (20 i.d. ×150 mm; Waters, Milford, MA, USA) with a linear gradient from 20 to 60% aqueous CH₃CN containing 0.1% formic acid over 20 min (flow rate: 10 ml min^{-1}) to afford crude 2 (59.3 mg). Further purification was achieved by preparative HPLC on the CSH column with an aqueous CH₃CN containing 0.1% formic acid linear gradient system (20–30% CH₃CN, 20 min; flow rate: 10 ml min⁻¹) to give 2 (4.0 mg, retention time 14.7 min). On the other hand, the 80% and 100% MeOH fractions were combined (0.54 g) and subjected to preparative HPLC on the CSH column eluted with a 20-min linear gradient from 20% to 60% aqueous CH3CN containing 0.1% formic acid (flow rate: 10 ml min^{-1}) to obtain semi-purified 1 (41.2 mg, retention time: 12.3 min). Final purification was performed using HPLC (linear gradient, 20-50% aqueous CH₃CN containing 0.1% formic acid, 20 min, flow rate: 10 ml min⁻¹) to afford pure 1 (23.5 mg, retention time: 12.9 min).

MBJ-0173 (1) was isolated as a colorless amorphous solid: $[\alpha]^{23}_{D}$ – 32 (*c* 0.04, MeOH); UV λ_{max} nm (log ε): 274 (4.5), 281 (4.5) and 289 (4.4) in MeOH; IR (ATR) $\nu_{\rm max}$ 1635 cm⁻¹ (carbonyl). The molecular formula of 1 was established as C44H62N10O8 by HR-ESIMS (m/z 859.4852 [M+H]⁺, calcd for C₄₄H₆₃N₁₀O₈: 859.4830). The planar structure of 1 was determined by a series of 2D NMR analyses, including double quantum filtered COSY (DQF-COSY), heteronuclear single quantum coherence (HSQC) and constant-time heteronuclear multiple bond correlation7 (CT-HMBC). The ¹³C and ¹H NMR data of 1 is listed in Table 1. The ¹H and ¹³C NMR data suggested that 1 was a peptidic compound, with five deshielded α -methine protons ($\delta_{\rm H} \approx 4$), seven NH protons ($\delta_{\rm H}$ 9–7) and seven carbonyl carbons ($\delta_{\rm C}$ 175–162). Further analyses of 2D NMR data revealed that 1 was composed of an N-terminal acetic acid endcapped peptides consinting of 5 amino acid residues: arginine, phenylalanine, tryptophan and two leucine residues (Figure 1b). Additionally, the presence of a dehydrobutyrine (DHB) moiety was revealed by HMBC correlations from an olefinic methine proton H-DHB- β ($\delta_{\rm H}$ 6.52), which was also ¹H spin coupled to a doublet methyl proton H₃-DHB-

Correspondence: Dr K Shin-ya, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan. E-mail: k-shinya@aist.go.jp

¹Japan Biological Informatics Consortium (JBIC), Tokyo, Japan; ²Research & Development Division, MicroBiopharm Japan Co., Ltd. (MBJ), Shizuoka, Japan and ³National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan

Received 2 May 2016; revised 2 August 2016; accepted 19 August 2016; published online 14 September 2016

Figure 1 (a) Structures of 1 and 2. (b, left) Structure determination of 1. COSY, HMBC (¹H to ¹³C) and ROESY correlations are shown as bold lines, arrows and dashed arrows, respectively. (b, right) Structure determination of 2. COSY and HMBC (¹H to ¹³C) correlations are shown as bold lines and arrows, respectively.

 γ ($\delta_{\rm H}$ 1.53), to an olefinic quaternary carbon C-DHB- α ($\delta_{\rm C}$ 130.7) and an amide carbonyl carbon of DHB ($\delta_{\rm C}$ 162.8). The connectivity among the amino acid units was determined by ¹H-¹³C long-range couplings from NH-Arg ($\delta_{\rm H}$ 7.95), NH-Leu2 ($\delta_{\rm H}$ 8.04), NH-Phe ($\delta_{\rm H}$ 8.51), NH-DHB ($\delta_{\rm H}$ 9.13) and NH-Trp ($\delta_{\rm H}$ 7.10) to carbonyl carbons of Leu1 ($\delta_{\rm C}$ 172.13), Arg ($\delta_{\rm C}$ 171.5), Leu2 ($\delta_{\rm C}$ 172.09), Phe ($\delta_{\rm C}$ 170.5) and DHB, respectively. Furthermore, HMBC correlations from an amide proton of Leu1 ($\delta_{\rm H}$ 8.00) to an acetic carbonyl carbon ($\delta_{\rm C}$ 169.3) indicated that N-terminus of 1 was acetylated. Thus, the planar structure of 1 was established as shown in Figure 1b. The stereochemistry of the trisubstituted double bond was established as Z by means of a J-resolved HMBC-2 spectrum.⁸ The smaller ¹H-¹³C long-range coupling value of 4.8 Hz between H-DHB-β and the carbonyl carbon of DHB indicated that these two nuclei were cis to each other, thus concluding the Z geometry for the double bond.9-11

The absolute configurations of the amino acid residues in 1 were determined using Marfey's method.¹² A portion of 1 (0.2 mg) was hydrolyzed in 6 N HCl (0.5 ml) at 110 °C for 12 h. After drying the reaction solution under an air flow, 0.1 M NaHCO₃ (0.2 ml) and 10 mM N-(5-fluoro-2,4-dinitrophenyl)-L-alaninamide (FDAA) in Me₂CO (0.1 ml) were added. The mixture was then reacted at 40 °C for 30 min. The resultant products were analyzed by HPLC-MS (Capcell Pak C₁₈ MGII column (4.6 i.d. × 150 mm; Shiseido, Tokyo, Japan)) developed with aqueous CH₃CN containing 0.1% formic acid linear gradient systems (A: 10–30% CH₃CN in 15 min; B: 30–60% CH₃CN in 15 min, flow rate 1.0 ml min⁻¹). FDAA derivatives of target amino acids were detected by absorption at 340 nm and MS

analyses Retention times of authentic FDAA-amino acids (min, solvent system): L-Arg (12.1, A), D-Arg (11.7, A), L-Trp (9.8, B), D-Trp (10.6, B), L-Phe (10.2, B), D-Phe (11.6, B), L-Leu (10.3, B) and D-Leu (12.1, B). The hydrolysate of 1 contained D-Arg (11.7, A), D-Trp (10.6, B), L-Phe (10.2, B) and D-Leu (12.1, B). Hence, the structure of 1 including the absolute configuration was determined as shown in Figure 1a.

MBJ-0174 (2) was obtained as a colorless amorphous powder: $[\alpha]_2^{24}+32$ (*c* 0.04, MeOH); UV λ_{max} nm (log ε): 277 (3.9) in MeOH; IR (ATR) ν_{max} 3300 and 1633 cm⁻¹ (hydroxy and carbonyl, respectively). The molecular formula of **2** was determined to be C₃₁H₅₀N₈O₆ on the basis of the HR-ESIMS data (*m*/*z* 631.3959 [M+H]⁺, calcd for C₃₁H₅₁N₈O₆: 631.3932) in conjunction with the HSQC data. Analyses of a series of 2D NMR spectra revealed the presence of arginine, leucine, tyrosine and two valine moieties in **2** (Figure 1b). The amino acid sequence of **2** was determined by HMBC correlations from α-methine protons of Leu ($\delta_{\rm H}$ 4.69), Val1 ($\delta_{\rm H}$ 4.52), Arg ($\delta_{\rm H}$ 4.30), Tyr ($\delta_{\rm H}$ 4.99) and Val2 ($\delta_{\rm H}$ 4.38) to carbonyl carbons of Val1 ($\delta_{\rm C}$ 171.1), Arg ($\delta_{\rm C}$ 172.6), Tyr ($\delta_{\rm C}$ 172.4), Val2 ($\delta_{\rm C}$ 171.5) and Leu ($\delta_{\rm C}$ 172.1), respectively. Therefore, **2** is a cyclic pentapeptide as shown in Figure 1b.

The absolute configuration of **2** was determined using the Marfey's method by the same procedure as that of **1**. The obtained FDAA derivatives of **2** were analyzed using the same column and HPLC system as above with following aqueous CH₃CN (0.1% formic acid) linear gradient systems: (A) 10–30% CH₃CN in 15 min, (B) 30–60% CH₃CN in 15 min and (C) 20–50% CH₃CN in 15 min, flow rate 1.0 ml min⁻¹. Retention times of the standard FDAA derivatives were

	1	Position	2	
Position δ_C	δ _H , mult (J in Hz)		δ_C	δ _H , mult (J in Hz)
$δ_c$ 172.13 51.2 41.0 24.3 23.3 21.6 171.5 52.0 29.1 25.0 40.5 157.4 172.09 51.6 40.7 24.0 22.9 22.2 170.5 54.3 37.8 138.0 129.5 128.2 126.4 162.8 130.7 129.8 13.2 175.8 55.2 28.2 123.5 111.5 128.1 18.7 120.6 111.2 136.1	$\frac{1}{8}$ $\frac{4.21, \text{ ovl}^{a}}{1.36, \text{ ovl}^{a}; 1.36, \text{ m}}$ $\frac{1.54, \text{ ovl}^{a}}{0.83, \text{ d} (6.5)}$ $0.78, \text{ d} (6.5)$ $8.00, \text{ d} (8.0)$ $\frac{4.22, \text{ ovl}^{a}}{1.66, \text{ ovl}^{a}; 1.49, \text{ ovl}^{a}}$ $\frac{1.66, \text{ ovl}^{a}; 1.49, \text{ ovl}^{a}}{1.35, \text{ ovl}^{a}; 1.35, \text{ ovl}^{a}}$ $\frac{2.99, \text{ ovl}^{a}; 2.90, \text{ m}}{7.95, \text{ d} (7.5)}$ $9.79, \text{ br s}$ $\frac{4.15, \text{ m}}{1.16, \text{ m}; 1.08, \text{ m}}$ $\frac{1.17, \text{ ovl}^{a}}{0.73, \text{ d} (5.5)}$ $0.70, \text{ d} (5.5)$ $8.04, \text{ d} (6.0)$ $\frac{4.66, \text{ m}}{3.16, \text{ ovl}^{a}; 2.77, \text{ dd} (12.0, 12.0)}$ $\frac{7.25, \text{ ovl}^{a}}{7.23, \text{ ovl}^{a}}$ $7.17, \text{ dd} (7.0, 7.0)$ $8.51, \text{ d} (8.0)$ $\frac{6.52, \text{ q} (7.0)}{1.53, \text{ d} (7.0)}$ $9.13, \text{ s}$ $\frac{4.23, \text{ ovl}^{a}}{3.20, \text{ ovl}^{a}; 3.01, \text{ ovl}^{a}}$ $10.66, \text{ s}$ $7.07, \text{ s}$ $7.51, \text{ d} (8.0)$ $6.90, \text{ dd} (8.0, 8.0)$ $7.27, \text{ ovl}^{a}$ $7.10, \text{ d} (8.0)$	Val1 Carbonyl α β γ δ Arg Carbonyl α β γ δ δ 1 2/6 3/5 4 Val2 Carbonyl α β γ δ Leu Carbonyl α β γ δ ε	$δ_C$ 171.1 57.6 29.9 18.12 17.4 172.6 54.7 27.4 24.3 39.6 156.2 172.4 54.5 35.8 126.6 129.8 114.8 155.4 171.5 58.8 28.4 18.07 17.7 172.1 51.0 36.7 23.7 21.3 20.9	$\frac{1}{8}$ $\frac{1}$
169.3 22.6	1.79, s			
	$δ_C$ 172.1351.241.024.323.321.6171.552.029.125.040.5157.4172.0951.640.724.022.922.2170.554.337.8138.0129.5128.2126.4162.8130.7129.813.2175.855.228.2123.5111.5128.1118.718.0120.6111.2136.1169.322.6	$\begin{array}{ $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

Table 1 The ¹³C (125 MHz) and ¹H (500 MHz) NMR spectroscopic data for MBJ-0173 (1) and MBJ-0174 (2)

Abbreviation: DHB, dehydrobutyrine. NMR spectra were obtained using a Varian NMR System 500 NB CL (Palo Alto, CA, USA) in DMSO-d₆ (1) and pyridine-d₅: deuterium oxide = 5:1 (2) with the residual solvent peak as an internal standard (1: δ_C 39.7, δ_H 2.49 p.p.m., 2: δ_C 135.5, δ_H 7.55 p.p.m.). ^aOverlapped with other signals.

^bExchangeable.

as follows (min, solvent system): L-Val (12.9, C), D-Val (14.8, C), L-Tyr (11.3, C) and D-Tyr (12.0, C). The hydrolysate of 2 contained D-Arg (11.7, A), D-Val (14.8, C), L-Tyr (11.3, C) and L-Leu (10.3, B). Therefore, the absolute configurations of 2 were established as shown in Figure 1a.

The obtained structure of MBJ-0173 (1) shows significant similarity to EM-f2368 isolated as a fungal opportunistic pathogen inhibitor.¹³ MBJ-0174 (2) is structurally related to plactins, isolated as stimulators of cellular fibrinolytic activity.⁶ The cytotoxic activity and antibacterial activity of 1 and 2 were tested. Compounds 1 and 2 did not display any significant cytotoxicity against human ovarian adenocarcinoma SKOV-3 cells, human malignant pleural mesothelioma ACC-MESO-1 cells and T-lymphoma Jurkat cells up to a compound concentration of 100 $\mu\text{M},$ respectively. Compounds 1 and 2 did not exhibit antibacterial activity against Micrococcus luteus $(IC_{50} > 100 \ \mu\text{M})$ and *Escherichia coli* (10 μ g per disk), respectively.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

This work was supported in part by a grant 'Project focused on developing key technologies for discovering and manufacturing drugs for next-generation treatment and diagnosis' from the Ministry of Economy, Trade and Industry (METI), and a Grant-in-Aid for Scientific Research (26221204) from the Japan Society for the Promotion of Science (JSPS).

- Kawahara, T., Nagai, A., Takagi, M. & Shin-ya, K. JBIR-137 and JBIR-138, new secondary metabolites from Aspergillus sp. fA75. J. Antibiot. (Tokyo) 65, 535–538 (2012).
- 2 Kawahara, T. *et al.* Cytotoxic sesquiterpenoids MBJ-0009 and MBJ-0010 from a saprobic fungus Nectria sp. f26111. *J. Antibiot. (Tokyo)* 66, 567–569 (2013).
- 3 Kawahara, T. *et al.* Three eremophilane derivatives, MBJ-0011, MBJ-0012 and MBJ-0013, from an endophytic fungus Apiognomonia sp. f24023. *J. Antibiot. (Tokyo)* 66, 299–302 (2013).

- 4 Kawahara, T. et al. New chaetoglobosin derivatives, MBJ-0038, MBJ-0039 and MBJ-0040, isolated from the fungus Chaetomium sp. f24230. J. Antibiot. (Tokyo) 66, 727–730 (2013).
- 5 Kawahara, T. et al. New hydroxamate metabolite, MBJ-0003, from Micromonospora sp. 29867. J. Antibiot. (Tokyo) 67, 261–263 (2014).
- 6 Inoue, T., Hasumi, K., Kuniyasu, T. & Endo, A. Isolation of plactins A, B, C and D, novel cyclic pentapeptides that stimulate cellular fibrinolytic activity. *J. Antibiot. (Tokyo)* 49, 45–49 (1996).
- 7 Furihata, K. & Seto, H. Constant time HMBC (CT-HMBC), a new HMBC technique useful for improving separation of cross peaks. *Tetrahedron Lett.* 39, 7337–7340 (1998).
- 8 Furihata, K. & Seto, H. J-Resolved HMBC, a new NMR technique for measuring heteronuclear long-range coupling constants. *Tetrahedron Lett.* 40, 6271–6275 (1999).
- 9 Kawahara, T. et al. MBJ-0086 and MBJ-0087, new bicyclic depsipeptides, from Sphaerisporangium sp. 33226. J. Antibiot. (Tokyo) 68, 67–70 (2015).
- 10 Palermo, J. A., Rodríguez Brasco, M. F., Cabezas, E., Balzaretti, V. & Seldes, A. M. Celenamide E, a tripeptide alkaloid from the patagonian sponge Cliona chilensis. *J. Nat. Prod.* **61**, 488–490 (1998).
- 11 Shigematsu, N. *et al.* Structure of WS9326A, a novel tachykinin antagonist from a Streptomyces. *J. Org. Chem.* 58, 170–175 (1993).
- 12 Marfey, P. Determination of D-amino acids. II. Use of a bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene. *Carlsberg Res. Commun* **49**, 591–596 (1984).
- 13 Hata, K., Fujita, M., Sakata, N. & Dobashi, K. EM-f2368 manufacture with Mortierella alpina. Jpn Kokai Tokkyo Koho JP 2001–354695 (2001).