An overproduction of astellolides induced by genetic disruption of chromatin-remodeling factors in Aspergillus oryzae

Article metrics

Abstract

The filamentous fungus Aspergillus oryzae is an important industrial mold. Recent genomic analysis indicated that A. oryzae has a large number of biosynthetic genes for secondary metabolites (SMs), but many of the SMs they produce have not been identified. For better understanding of SMs production by A. oryzae, we screened a gene-disruption library of transcription factors including chromatin-remodeling factors and found two gene disruptions that show similarly altered SM production profiles. One is a homolog of Aspergillus nidulans cclA, a component of the histone 3 lysine 4 (H3K4) methyltransferase complex of proteins associated with Set1 complex, and the other, sppA, is an ortholog of Saccharomyces cerevisiae SPP1, another component of a complex of proteins associated with Set1 complex. The cclA and sppA disruptions in A. oryzae are deficient in trimethylation of H3K4. Furthermore, one of the SMs that increased in the cclA disruptant was identified as astellolide F (14-deacetyl astellolide B). These data indicate that both cclA and sppA affect production of SMs including astellolides by affecting the methylation status of H3K4 in A. oryzae.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1
Figure 2

References

  1. 1

    Sanchez, J. F., Somoza, A. D., Keller, N. P. & Wang, C. C. Advances in Aspergillus secondary metabolite research in the post-genomic era. Nat. Prod. Rep. 29, 351–371 (2012).

  2. 2

    Khaldi, N. et al. SMURF: Genomic mapping of fungal secondary metabolite clusters. Fungal Genet. Biol. 47, 736–741 (2010).

  3. 3

    Medema, M. H. et al. antiSMASH: rapid identification, annotation, and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 39, W339–W346 (2011).

  4. 4

    Palmer, J. M. & Keller, N. P. Secondary metabolism in fungi: does chromosomal location matter? Curr. Opin. Microbiol. 13, 431–436 (2010).

  5. 5

    Brakhage, A. A. & Schroeckh, V. Fungal secondary metabolites – strategies to activate silent gene clusters. Fungal Genet. Biol. 48, 15–22 (2011).

  6. 6

    Strauss, J. & Reyes-Dominguez, Y. Regulation of secondary metabolism by chromatin structure and epigenetic codes. Fungal Genet. Biol. 48, 62–69 (2011).

  7. 7

    Henrikson, J. C., Hoover, A. R., Joyner, P. M. & Cichewicz, R. H. A chemical epigenetics approach for engineering the in situ biosynthesis of a cryptic natural product from Aspergillus niger. Org. Biomol. Chem. 7, 435–438 (2009).

  8. 8

    Bok, J. W. et al. Chromatin-level regulation of biosynthetic gene clusters. Nat. Chem. Biol. 5, 462–464 (2009).

  9. 9

    Palmer, J. M. et al. Loss of CclA, required for histone 3 lysine 4 methylation, decreases growth but increases secondary metabolite production in Aspergillus fumigates. Peer J. 1, e4 (2013).

  10. 10

    Soukup, A. A. et al. Overexpression of the Aspergillus nidulans histone 4 acetyltransferase EsaA increases activation of secondary metabolite production. Mol. Microbiol. 86, 314–330 (2012).

  11. 11

    Kawauchi, M., Nishiura, M. & Iwashita, K. Fungus-specific sirtuin HstD coordinates secondary metabolism and development through control of LaeA. Eukaryot. Cell 12, 1087–1096 (2013).

  12. 12

    Machida, M. et al. Genome sequencing and analysis of Aspergillus oryzae. Nature 438, 1157–1161 (2005).

  13. 13

    Machida, M., Yamada, O. & Gomi, K. Genomics of Aspergillus oryzae: learning from the history of Koji mold and exploration of its future. DNA Res. 15, 173–183 (2008).

  14. 14

    Olempska-Beer, Z. S., Merker, R. I., Ditto, M. D. & DiNovi, M. J. Food-processing enzymes from recombinant microorganisms—a review. Regul. Toxicol. Pharmacol. 45, 144–158 (2006).

  15. 15

    Watson, A. J., Fuller, L. J., Jeenes, D. J. & Archer, D. B. Homologs of aflatoxin biosynthesis genes and sequence of aflR in Aspergillus oryzae and Aspergillus sojae. Appl. Environ. Microbiol. 65, 307–310 (1999).

  16. 16

    Tominaga, M. et al. Molecular analysis of an inactive aflatoxin biosynthesis gene cluster in Aspergillus oryzae RIB strains. Appl. Environ. Microbiol. 72, 484–490 (2006).

  17. 17

    Nicholson, M. J. et al. Identification of two aflatrem biosynthesis gene loci in Aspergillus flavus and metabolic engineering of Penicillium paxilli to elucidate their function. Appl. Environ. Microbiol. 75, 7469–7481 (2009).

  18. 18

    Tokuoka, M. et al. Identification of a novel polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) gene required for the biosynthesis of cyclopiazonic acid in Aspergillus oryzae. Fungal Genet. Biol. 45, 1608–1615 (2008).

  19. 19

    Kato, N. et al. Genetic safeguard against mycotoxin cyclopiazonic acid production in Aspergillus oryzae. Chembiochem 12, 1376–1382 (2011).

  20. 20

    Ogawa, M., Kobayashi, T. & Koyama, Y. ManR, a novel Zn(II)2Cys6 transcriptional activator, controls the β-mannan utilization system in Aspergillus oryzae. Fungal Genet. Biol. 49, 987–995 (2012).

  21. 21

    Mueller, J. E., Canze, M. & Bryk, M. The requirements for COMPASS and Paf1 in transcriptional silencing and methylation of histone H3 in Saccharomyces cerevisiae. Genetics 173, 557–567 (2006).

  22. 22

    Osada, H., Magae, J., Watanabe, C. & Isono, K. Rapid screening method for inhibitors of protein kinase C. J. Antibiot. 41, 925–931 (1988).

  23. 23

    Osada, H., Cui, C. B., Onose, R. & Hanaoka, F. Screening of cell cycle inhibitors from microbial metabolites by a bioassay using a mouse cdc2 mutant cell line, tsFT210. Bioorg. Med. Chem. 5, 193–203 (1997).

  24. 24

    Osada, H., Koshino, H., Isono, K., Takahashi, H. & Kawanishi, G. Reveromycin A, a new antibiotic which inhibits the mitogenic activity of epidermal growth factor. J. Antibiot. 44, 259–261 (1991).

  25. 25

    Rank, C. et al. Comparative chemistry of Aspergillus oryzae (RIB40) and A. flavus (NRRL 3357). Metabolites 2, 39–56 (2012).

  26. 26

    Ren, R. et al. Drimane sesquiterpenoids from the Aspergillus oryzae QXPC-4. Chem. Biodivers. 12, 371–379 (2015).

  27. 27

    Krogan, N. J. et al. COMPASS, a histone H3 (Lysine 4) methyltransferase required for telomeric silencing of gene expression. J. Biol. Chem. 277, 10753–10755 (2002).

  28. 28

    Hamasaki, T. et al. A new metabolite, parasiticolide A, from Aspergillus parasiticus Agric. Biol. Chem. 39, 749–751 (1975).

  29. 29

    Gould, R. O., Simpson, T. J. & Walkinshaw, M. D. Isolation and X-ray crystal structures of astellolides A and B, sesquiterpenoid metabolites of Aspergillus variecolor. Tetrahedron Lett. 22, 1047–1050 (1981).

  30. 30

    Amorim, M. H., Gil-da-Costa, R. M., Lopes, C. & Bastos, M. M. Sesquiterpene lactones: adverse health effects and toxicity mechanisms. Crit. Rev. Toxicol. 43, 559–579 (2013).

Download references

Acknowledgements

We wish to thank H Aono (RIKEN) for her help with the experiments. We also thank T Nogawa (RIKEN) and A Okano (RIKEN) for IR spectra and optical rotation measurements.

Author information

Correspondence to Yasutomo Shinohara.

Additional information

Supplementary Information accompanies the paper on The Journal of Antibiotics website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading