Antibiotic resistance determinants of a group of multidrug-resistant *Acinetobacter baumannii* in China

Xu Xiao-min¹, Fan You-fen², Feng Wei-yun¹, Mi Zu-huang³ and Weng Xing-bei⁴

A group of *Acinetobacter baumannii* confers multidrug resistance, but the molecular epidemiology and multidrug resistance mechanisms are poorly understood. Nineteen isolates were identified, and the antimicrobial susceptibility profile was determined using the disc diffusion method. Then, PCR of 78 kinds of resistance-associated genes were performed. A novel variant of *bla*_{ADC} gene: *bla*_{ADC-67} gene (Genbank accession No. JX169789) was prevalent in all 19 isolates. Moreover, ISAba1 could also provide strong promoter to upregulate the expression of *bla*_{ADC67} to confer resistance to beta-lactam. This is the first report of emergence of *bla*_{ADC-67} in *A. baumannii* worldwide, which might confer resistance to beta-lactam. *The Journal of Antibiotics* (2014) **67**, 439–444; doi:10.1038/ja.2014.18; published online 12 March 2014

Keywords: Acinetobacter baumannii; bla_{ADC}; multidrug resistance; novel variant; resistance determinant

INTRODUCTION

Acinetobacter baumannii (A. baumannii) is important opportunistic pathogen responsible for a variety of nosocomial infections, including ventilator-associated pneumonia, bacteremia, surgical-site infections, secondary meningitis and urinary tract infections. Treatment of *A. baumannii* infections is often complicated by multidrug-resistant phenotypes, including resistance to broad-spectrum beta-lactams, aminoglycosides and quinolones.

From February 2011 to October 2011, multidrug-resistant (MDR) A. baumannii were continuously isolated from Ningbo No. 2 Hospital in China. Hence, we chose 19 isolates (no. 5: from throat swab, no. 6: from catheter, no. 12: from urine, no. 17 and no. 18: from wound, others: from sputums) and analyzed the antimicrobial susceptibility profile and genetic determinants of antimicrobial resistance in this group of MDR A. baumannii. These isolates were multidrug resistant to beta-lactams, aminoglycosides, quinolones; hence, we attempted to detect 15 kinds of class A beta-lactamase genes, 10 kinds of class B beta-lactamase genes, 3 kinds of class C beta-lactamase genes, 10 kinds of class D beta-lactamase genes, 2 kinds of genes for outer membrane porin protein, 9 kinds of aminoglycoside-modifying enzyme genes, 6 kinds of 16SrRNA methylase genes, 7 kinds of quinolone resistance genes. Furthermore, taking into account of roles of mobile genetic elements, drug efflux genes and resistant island genes in resistance, we also detected two kinds of genetic markers of plasmids, three kinds of genetic markers of transposons, five kinds of genetic markers of insertion sequences, four kinds of genetic markers of integrons, two kinds of drug efflux genes and resistant island genes. The objectives of the present study were to investigate the molecular epidemiology and multidrug resistance mechanisms of this group of isolates. Understanding the genetic background of antimicrobial resistance is an important step in defining the impact of MDR *A. baumannii*.

MATERIALS AND METHODS

The isolates were identified by Vitek Gram-negative identification cards (bioMérieux-Vitek, Inc., Hazelwood, MO, USA), and the antimicrobial susceptibility profile was determined using the disc diffusion method according to the CLSI and interpreted with criteria published in 2011.¹ Whole-cell DNA from the isolates of *A. baumannii*, prepared by proteinase K digestion, was used as a template in PCR assays. PCR was performed using the primers (Wuxi Clone Gen-Tech Institute, Wuxi, Jiangsu, China) for 78 kinds of resistance-associated genes mentioned above, which were designed based on genotypes published in GenBank (Table 1). PCR conditions were 2 min at 93 °C; 35 cycles of 30 s at 93 °C, 30 s at 55 °C and 1 min at 72 °C; and, finally, 5 min at 72 °C. Positive and negative controls were performed in every PCR assays. The amplicons were purified with PCR Kits (Wuxi Clone Gen-Tech Institute, Wuxi, Jiangsu, China) and were subsequently sequenced on an ABI PRISM377 sequencer analyzer (Applied Biosystems, FosterCity, CA, USA). Sequences of primers and length of aimed product were shown in Table 2.

RESULTS AND DISCUSSION

According to antimicrobial susceptibility testing by the disc diffusion method, all isolates of *A. baumannii* were defined as MDR strains as they were resistant to three or more unique antimicrobial classes: including aminoglycosides, quinolones, extended-spectrum cephalosporins, beta-lactam/beta-lactamase inhibitor combination (Table 3).

By sequencing and BLASTn analysis, bla_{ADC-67} (Genbank accession No. JX169789) was identified as a novel variant of the ADC

¹Department of Medical Laboratory, Ningbo No. 2 Hospital, Ningbo, China; ²Department of Burn, Ningbo No. 2 Hospital, Ningbo, China; ³Department of Bioinformatics, Wuxi Clone Gen-Tech Institute, Wuxi, China and ⁴Department of Medical Laboratory, Ningbo First Hospital, Ningbo, China Correspondence: Dr W Xing-bei, Department of Medical Laboratory, Ningbo First Hospital, No. 59, Liuting Street, Ningbo, Zhejiang 315010, China.

E-mail: wxb6006@hotmail.com

Received 6 December 2012; revised 26 December 2013; accepted 30 January 2014; published online 12 March 2014

Acinetobacter baumannii confers multidrug resistance X Xiao-min *et al*

npg 440

Table 1 Resistance-associated genes detected in 19 isolates of MDR A. baumannii

Beta-lactam	Class A beta-lactamase gene	TEM, SHV, CTX-M-1 cluster, CTX-M-2 cluster, CTX-M-8 cluster, CTX-M-9 cluster, CTX-M-25 cluster, PER, GES, VEB, CARB, KPC, RTG, SCO, promoter-TEM
	Class B beta-lactamase gene	IMP, VIM, SIM, GIM, NDM, AIM, SPM, KHM, DIM, TMB
	Class C beta-lactamase gene	DHA, ADC, ISaba1-ADC
	Class D beta-lactamase gene	0XA-1 cluster, 0XA-2 cluster, 0XA-10 cluster, 0XA-20 cluster, 0XA-23 cluster, 0XA-24 cluster, 0XA-51 cluster, 0XA-58 cluster, ISaba1-0XA23, ISaba1-0XA66
	Gene for outer membrane porin protein	carO, oprD
Aminoglycoside	Aminoglycoside-modifying enzyme gene 16SrRNA methylase gene	aac(3)-I, aac(3)-II, aac(6')-Iad, aac(6')-Ib, aac(6')-II, ant(2'')-I, ant(3'')-I, ant(4')-I, aph(3')-I armA, rmtA, rmtB, rmtC, rmtD, npmA
Quinolone	Quinolone resistance gene	gyrA, parC, qnrA, qnrB, qnrS, aac(6')-Ib-Cr, qepA
Mobile genetic element	Genetic marker of plasmid	traA, trbC
	Genetic marker of transposon	merA, tnpU, tnp513
	Genetic marker of insertion sequence	ISaba1, ISaba4, ISaba9, IS26, IS903
	Genetic marker of integron	intl1, intl2,intl3, $qacE\Delta1$
Drug efflux pump	Drug efflux gene	adeB, qacE Δ 1
Resistance island		Aba-RI

		_			
Table 2	Primer seque	ences of targe	t genes and	lengths of	aimed products

Gene	Primer sequences of target genes (5' \rightarrow 3') and lengths of aimed products
Beta-lactam	
Gene for outer membrane porin protein	
carO	P1:ATGAAAGTATTACGTGTTTTAGTGACAAC; P2:TTACCAGTAGAATTCNACACCAACT(729 bp)
oprD	P1:ATGCTAAAAGCACAAAAACTTACATTAGCA; P2:TTAGAATAATTTCACAGGAATATCTAAGAA(1320 bp)
Class A beta-lactamase gene	
TEM	P1:AGGAAGAGTATGATTCAACA; P2:CTCGTCGTTTGGTATGGC(535 bp)
SHV	P1:TGCGCAAGCTGCTGACCAGC; P2:TTAGCGYTGCCAGTGCTCGA(305 bp)
CTX-M-1 cluster	P1:ATGGTTAAAAAATCACTGCGYCAGTTC; P2:TCACAAACCGTYGGTGACGATTTTAGCCGC(876 bp)
CTX-M-2 cluster	P1:ATGATGACGCAGAGCATTCGCCGCTCA; P2:TCAGAAACCGTGGGTTACGATTTTCGC(876 bp)
CTX-M-8 cluster	P1:ATGATGAGACATCGCGTTAAGCGG; P2:TTAATAACCGTCGGTGACGATTTTCGCG(876 bp)
CTX-M-9 cluster	P1:ATGGTGACAAAGAGAGTGCAACGG; P2:TTACAGCCCTTCGGCGATGATTCTCGC(876 bp)
CTX-M-25 cluster	P1:ATGATGAGAAAAAGCGTAAGGCGGGCG; P2:TTAATAACCGTCGGTGACAATTCTGGC(876 bp)
PER	P1:AGTCAGCGGCTTAGATA; P2:CGTATGAAAAGGACAATC(978 bp))
GES	P1:ATGCGCTTCATTCACGCAC; P2:CTATTTGTCCGTGCTCAGG(846 bp))
VEB	P1:GCGGTAATTTAACCAGA; P2:GCCTATGAGCCAGTGTT(961 bp))
CARB	P1:AAAGCAGATCTTGTGACCTATTC; P2:TCAGCGCGACTGTGATGTATAAAC(588 bp))
RTG	P1:TATGTCTCACGCTATCATTAAATGC; P2:ATAATGTGGCCTGACACAGCTCT(338 bp))
SCO	P1: ATGACAAGATCTGCCCTTTTGAT; P2:TTATTCCAGAACTTCGGCAGCA(867 bp)
promoter-TEM	P1:ATAAAATTCTTGAAGACGAAA; P2:CTCGTCGTTTGGTATGGC(735 bp)
KPC	P1:ATGTCACTGTATCGCCGTCTA; P2:TTACTGCCCGTTGACGCCCAA(882 bp)
Class B beta-lactamase gene	
IMP	P1:CGGCCKCAGGAGMGKCTTT; P2:AACCAGTTTTGCYTTACYAT(587 bp)
VIM	P1:ATTCCGGTCGGMGAGGTCCG; P2:GAGCAAGTCTAGACCGCCCG(633 bp)
SPM	P1:CTGCTTGGATTCATGGGCGCG; P2:CCTTTTCCGCGACCTTGATCG(786 bp)
GIM	P1:CCTGTAGCGTTGCCAGCTTTA; P2:CAGCCCAAGAGCTAATTGAGG(562 bp)
SIM	P1:ACAAGGGATTCGGCATCGTT; P2:TTATCTTGAGTGTGTCCTGG(355 bp)
AIM	P1:CGTCGCTTCACCCTGCTGGGCAGC; P2:AGGCGAGGCGACCGCCGTCAGGCC(535 bp)
NDM	P1:ATGGAATTGCCCAATATTATGCACCCG; P2:TCAGCGCAGCTTGTCGGCCATGCG(813 bp)
КНМ	P1:ATGAAAATAGCTCTTGTTATATCG; P2:TCACTTTTTAGCTGCAAGCGCTTC(726 bp)
DIM	P1:ATGAGAACACATTTTACAGCGTTA; P2:TCAATCAGCCGACGCGTTAGCGTT(756 bp)
ТМВ	P1:TATGCCTCAGCGCTGACTAAT; P2:TCAGCGGTCGCCGTGATTGGC(400 bp)
Class C beta-lactamase gene	
DHA cluster	P1:AACTTTCACAGGTGTGCTGGGT; P2:CCGTACGCATACTGGCTTTGC(405 bp)
ADC	P1:GGTATGGCYGTGGGBGTYATTC; P2:CTAAGASTTGGTCRAARGGT(739 bp)
ISaba1-ADC	P1:GATGTGTCATAGTATTCGTCG; P2:CTAAGASTTGGTCRAARGGT(variable length)
Class D beta-lactamase gene	
OXA-1 cluster	P1:CTGTTGTTTGGGTTTCGCAAG; P2:CTTGGCTTTTATGCTTGATG(440 bp)
OXA-2 cluster	P1:CAGGCGCYGTTCGYGATGAGTT; P2:GCCYTCTATCCAGTAATCGCC(233 bp)
OXA-10 cluster	P1:GTCTTTCRAGTACGGCATTA; P2:GATTTTCTTAGCGGCAACTTA(822 bp)

Table 2 (Continued)

Gene	Primer sequences of target genes (5' \rightarrow 3') and lengths of aimed products								
OXA-20 cluster	P1:TTGATAATCCGATTTCTAGCAC; P2:CTAGTTGGGTGGCAAAGCAT(801 bp)								
OXA-23 cluster	P1:ATGAATAAATATTTTACTTGCTATGTG: P2:TTAAATAATATTCAGCTGTTTTAATGA(822 bp)								
OXA-24 cluster	P1:CAAGAGCTTGCAAGACGGACT; P2:TCCAAGATTTTCTAGCRACTTATA(420 bp)								
OXA-51 cluster	P1:ATGAACATTAAAGCACTCTTACTT; P2:CTATAAAATACCTAATTGTTCTAA(825 bp)								
OXA-58 cluster	P1:TCGATCAGAATGTTCAAGCGC; P2:ACGATTCTCCCCTCTGCGC(530 bp)								
ISaba1-OXA23	P1:GATGTGTCATAGTATTCGTCG; P2:TCACAACAACTAAAAGCACTG(variable length)								
ISaba1-OXA66	P1:GATGTGTCATAGTATTCGTCG; P2:CTATAAAATACCTAATTGTTCTAA(variable length)								
Aminoglycoside									
Aminoglycoside-modifying enzyme gene									
aac(3)-I	P1-ACCTACTCCCAACATCAGCC+ P2-ATATAGATCTCACTACGCGC(169 bp)								
aac(3)-11	P1:ACTGTGATGGGATACGCGTC: P2:CTCCGTCAGCGTTTCAGCTA(237 bp)								
aac(G)-lad	P1:ATGATTAGAAAAGCAACTGTCCAAG: P2:TTAAAGTTGCTTTGTAAAACAAATC(435 bp)								
aac(6')-lb	P1:ATGACTGAGCATGACCTTGC: P2:TTAGGCATCACTGCGTGTTC(519 bb)								
aac(6')-11									
ant(2)-1	P1:GAGCGAAATCTGCCGCTCTGG: P2:CTGTTACAACGGACTGGCCGC(320 hp)								
ant(3')-1	P1.TGATTTGCTGGTTACGGTGAC, P2.CGCTATGTTCTCTTGCTTTG(284 bp)								
ant(3) /	P1:CGTGGAGCGATATCGATTTCG; P2:TCTGGTTCGGCGGCCGGATGC(266 bp)								
anh(3')-1									
16SrRNA methylase gene									
armA	P1-ATGGATAAGAATGATGTTGTTAAG- P2-TTATTTCTGAAATCCACTAGTAATTA(774 hp)								
rmtA									
rmtB									
rmtC	P1.aTGAAAAACCAACGATAATTATC. P2.TTACAATCTCGATACGATAAAAATAC(846 hp)								
rmtD	P1.aTGAGGGAACTGAAGGAAAAACTGGT. P2.TCATTTTCGTTTCAGCACGTAAAACAG(744 bp)								
nnmA	P1.TTGGGT4CTGG4GACGGT4G, P2.CAGCTTTGT4TTGTCGCTC(421 bp)								
nprint									
Quinolone									
Quinolone resistance gene									
gyrA	P1:AAATCTGCCCGTGTCGTTGGT; P2:GCCATACCTACGGCGATACC(344 bp)								
parC	P1:AAACCTGTTCAGCGCCGCATT; P2:AAAGTTGTCTTGCCATTCACT(327 bp)								
qnrA	P1:CAAGAGGATTTCTCACGCCAG; P2:GAACTCTATGCCAAAGCAGTTGG(240 bp)								
qnrB	P1:ATGRCTCTGGCAMTMGTTGGCGA; P2:CTARCCAATMAMCGCGATGCCAAG(645 bp)								
qnrS	P1:ATGGAAACCTACMRTCAYACATAT; P2:TTAGTCAGGAWAAACAACAATACCC(657 bp)								
aac(6')-Ib-Cr	P1:ATGACTGAGCATGACCTTGC; P2:TTAGGCATCACTGCGTGTTC(519 bp)								
qepA	P1:GCCGAACGCCGCTGCCGACAG; P2:TGCTGCTGACGCTGGCGCTC(501 bp)								
Mobile genetic element									
Genetic marker of plasmid									
traA	P1:AAGTGTTCAGGGTGCTTCTGCGC; P2:GTCATGTACATGATGACCATTT(272 bp)								
trbC	P1:CGGYATWCCGSCSACRCTGCG; P2:GCCACCTGYSBGCAGTCMCC(255 bp)								
Genetic marker of transposon									
merA	P1:GACCAGCCGCAGTTCGTCTA; P2:GCAGCASGAAAGCTGCTTCA(462 bp)								
tnpU	P1:CCAACTGATGGCGGTGCCTT; P2:CGGTATGGTGGCTTTCGC(403 bp)								
tnp513	P1:ATGTCGCTGGCAAGGAACGC; P2:GGGTTCGCTGCGAGGATTGT(240 bp)								
Genetic marker of insertion sequence									
ISaba1	P1:AATGATTGGTGACAATGAAG; P2:ATGCAGCGCTTCTTTGCAGG(372 bp)								
ISaba4	P1:TTACGGATAAGCCAAAGATTTAATC; P2:AGAGGCTACATTAGCCAACCATTA(303 bp)								
ISaba9	P1:GTTGTTACTCAGCCCCTGAGA; P2:ACGCTGAATGAGCTGTGCCAT(240 bp)								
IS26	P1:CACATGAACCCATTCAAAGGCC; P2:TCTTTGCCCGTGGCACATGGATGAA(240 bp)								
IS903	P1:GCAATACGCACGCTTTCAGGC; P2:ACTGCACGGTTACGGTCTGCA(240 bp)								
Genetic marker of integron									
intl1	P1:CCGAGGATGCGAACCACTTC; P2:CCGCCACTGCGCCGTTACCA(373 bp)								
intl2	P1:CACGGATATGCGACAAAAAGGT; P2:GTAGCAAACGAGTGACGAAATG(789 bp)								
intl3	P1:GCCTCCGGCAGCGACTTTCAG; P2:GATGCTGCCCAGGGCGCTCG(433 bp)								
qacE∆1	P1:TAGCGAGGGCTTTACTAAGC; P2:ATTCAGAATGCCGAACACCG(300 bp)								
Drug efflux pump									
Drug efflux gene									
adeB	P1:TACCGGTATTACCTTTGCCGGA; P2:GTCTTTAAGTGTCGTAAAAGCCAC(250 bp)								
qacE∆1	P1:TAGCGAGGGCTTTACTAAGC; P2:ATTCAGAATGCCGAACACCG(300 bp)								
Resistance island									
Aba-RI	P1:TCCATTTTACCGCCACTTTC; P2:AATCGATGCGGTCGAGTAAC (variable length)								

Table 3 Antimicrobial susceptibility profiles of 19 isolates of multidrug-resistant *A. baumannii*

Antimicrobial agent	Resistance (R%)	Intermediate (1%)	Susceptibility (S%)					
Cefazolin	19 (100.0)	0 (0)	0 (0)					
Ampicillin	19 (100.0)	0 (0)	0 (0)					
Cefuroxime	19 (100.0)	0 (0)	0 (0)					
Cefotaxime	19 (100.0)	0 (0)	0 (0)					
Ceftazidime	17 (89.5)	2 (10.5)	0 (0.0)					
Cefepime	19 (94.7)	0 (0.0)	1 (5.3)					
Cefoxitin	19 (100.0)	0 (0.0)	0 (0.0)					
Imipenem	18 (94.7)	0 (0.0)	1 (5.3)					
Meropenem	19 (94.7)	0 (0.0)	1 (5.3)					
Piperacillin/tazobactam	16 (84.2)	3 (15.8)	0 (0.0)					
Cefoperazone/sulbactam	4 (21.1)	11 (57.8)	4 (21.1)					
Gentamicin	6 (31.6)	0 (0.0)	13 (68.4)					
Amikacin	2 (10.5)	0 (0.0)	17 (89.5)					
Levofloxacin	17 (89.5)	2 (10.5)	0 (0.0)					

chromosomal cephalosporinase from *A. baumannii*. However, its biochemical characteristics, biological activity, new host were still unknown, which need further study.

As shown in Table 4, linkage detection of ISaba1-bla_{OXA-23} was positive, which suggested that bla_{OXA-23} cluster was confirmed as bla_{OXA-23} . In addition, promoter was found upstream of bla_{TEM} in isolate no.10 and no.13 to result in high-level expression of bla_{TEM} , and ISAba1 could also provide strong promoter to upregulate the expression of bla_{ADC-67} and bla_{OXA-23} to confer resistance to betalactam in positive isolates.² Moreover, the epidemic isolates of *A. baumannii* in Korea,³ Thailand,⁴ Australia⁵ all carried bla_{OXA-23} , whereas isolates in Italy carried either bla_{OXA-58} -like (22.8%) or bla_{OXA-23} -like (71.1%). However, *A baumannii* isolates in Australia had higher positive rate of bla_{TEM} (88%), and ISaba1 were also found upstream of *amp*C beta-lactamase gene and attributed to increased *amp*C expression.⁵

In Gram-negative bacteria, the outer membrane limits the rate of antimicrobials entering the cell, and variations in porin's structure are survival strategies to escape from antibacterial pressure. Resistance to both imipenem and meropenem in MDR *A. baumannii* is associated with the loss of a 29-kDa outer membrane protein, called CarO,⁶ and a 43-kDa protein, which shows significant peptide homology with OprD from *P. aeruginosa.*⁷ CarO may function as a carbapenem-unspecific channel, and the OprD-like protein may function as a carbapenem-specific channel. In this investigation, full length of CarO and OprD were sequenced and confirmed as mutations in their structure. Moreover, it's the first report that *oprD* was positive in *A. baumannii* in China.

Four kinds of aminoglycoside-modifying enzyme genes: aac(3)-I (10.7%), aac(6')-Ib (17.9%), ant(2'')-I(14.3%), aph(3')-I(17.9%), and a kind of 16SrRNA methylase gene: armA(17.9%), were positive in PCR assays and involved in aminoglycoside resistance. However, *A.baumannii* isolates in Algeria had higher positive rate of aminoglycoside-modifying enzyme genes: aph(3')-VI (50.7%), aadA (63.4%), aac(3)-Ia (91.1%).⁸

Futhermore, mutations in the QRDR of gyrA(Ser83Leu), and mutations in the QRDR of parC (Ser80Leu), would help explain the clinical observation of quinolones resistance. Moreover, *A.baumannii* isolates in Algeria also had double mutations Ser83Leu and Ser80Leu (or Ser84Leu) in gyrA and parC (69.0%),⁸ while isolates in Australia only had Ser80Leu mutation in gyrA.⁵

Figure 1 Cluster analysis of 19 isolates of multidrug-resistant Acinetobacter baumannii (by MEGA5.0).

In addition, previous studies have demonstrated the importance of efflux pumps in removing antimicrobials from the cell and conferring the MDR phenotype. All 19 isolates contained highly conserved *ade*B gene from the AdeABC efflux pump complex, and 5 isolates contained *qac*E Δ 1 to confer resistance to antiseptics and disinfectants.

Resistance islands are common in *A. baumannii* as genomic locations for the acquisition and accumulation of genes required for antibiotic resistance.⁹ The most well studied of these RIs is AbaR1, but AbaR1 was negative in all 19 isolates.

Futhermore, mobile genetic elements are major forms of horizontal gene transfer. Five kinds of genetic markers of mobile genetic elements were positive to spread resistance among isolates: tnpU, tnp513, *int*I were positive in five isolates, IS*aba*1 and IS26 were positive in all isolates.

From Figure 1, the 19 isolates could be divided into clusters A and B, with three isolates demonstrating unique profiles depending on Cluster analysis¹⁰ by MEGA5.0. Cluster A included 14 isolates: no. 1, $3 \sim 9$, 11, 12, $14 \sim 17$, and their positive models were: $bla_{ADC-67} + bla_{OXA-2}$ cluster + bla_{OXA-23} cluster + bla_{OXA-51} cluster + adeB + IS26 + mutation of (carO + oprD + gyrA (Ser83Ler) + parC (Ser80Ler)). While cluster B included two isolates: no. 10 and 13. Hence, it suggested that clonal spread emerged among these isolates. In fact, patient transfer and hospital staff contact may have enhanced clonal spread among different wards. Early recognition of the presence of carbapenem-resistant*A. baumannii*clones is necessary in order to prevent their spread within the hospital environment.

Sequencing of the whole genome of these isolates is needed to better understand how they have accumulated these resistanceencoding genes.

	~ .																						
	Integror		intl 1	I	+	1	I	I	I	I	I	Ι	+	I	Ι	+	Ι	I	I	I	+	+	Ð
ion	nce		IS26	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	19
Insert	sedue		Sabal	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	19
	nos		p513	1	+	1	Ι	I	I	Ι	I	Ι	+	I	Ι	+	Ι	Ι	I	I	+	+	Ð
	Transpo		npU tn	1	+	- 1	I	I	I	Ι	I	I	+	T	I	+	I	T	I	T	+	+	5
	I		cEAl t	1	+	- 1	I	I	I	Ι	I	Ι	+	T	Ι	+	Ι	I	I	T	+	+	5
			leB qa	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	6]
		14th	iAA au	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	19
	parC	30th 8	TCG (ПG	D D L	D D L	5 5 1 1 0	БП	D D L C	5 5 1 1 0	БП	5 5 1 1 0	БП	5 5 1 1 0	5 5 1 1 0	БП	5 5 1 1 0	ЭЦ	D D L C	5 5 1 1 1 1 1	ЦG	ЭЦ	19
	_	87th 8	GAA	GAA -	GAA	GAA	GAA	GAA	GAA	GAA	GAA	GAA	GAA	GAA	GAA	GAA	GAA	GAA	GAA	GAA	GAA	GAA	19
	gyrf	83rd	TCA	ATT	ATT	ATT	ATT	ATT	ATT	ΑΠ	ATT	ATT	ATT	ATT	ATT	ATT	ATT	ATT	ATT	ΑΠ	ATT	ATT	19
SrRNA thylase	gene		ırmA	I	+	- 1	Ι	I	I	Ι	I	Ι	+	Ι	Ι	+	Ι	I	I	Ι	+	+	5
16 me	~		.0																				
enzyme		aph(3')-	-	T	+	1	I	I	I	I	I	Ι	+	I	Ι	+	Ι	I	I	I	+	+	ŋ
odifying	es	ant(2")-	1	T	+	1	I	I	I	I	I	Ι	+	I	Ι	+	Ι	I	I	I	+	Ι	4
ycoside-m	gen	aac(6")-	q_l	I	+	1	I	I	I	I	I	I	+	I	I	+	I	I	I	I	+	+	ъ
Aminogl		ac(3)-	-	ī	+	- 1	I	I	I	I	I	I	+	I	I	+	I	I	I	I	I	I	с
	in	10	oprD	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	19
	Po		carO	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	19
		ISabal -	0XA23	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	19
	ss D	0XA-51	cluster	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	19
	Cla	0ХА-23	cluster	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	19
		0ХА-2	cluster	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	19
	С	ISaba 1	ADC	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	19
	Class	-	ADC	ADC 67	ADC 67	ADC 67	ADC 67	ADC 67	ADC 67	ADC 67	ADC 67	ADC 67	ADC 67	ADC 67	ADC 67	ADC 67	ADC 67	ADC 67	ADC 67	ADC 67	ADC67	ADC 67	19
	s A	omoter-	TEM	I	Ι	I	I	I	I	I	I	I	+	I	I	+	I	I	I	T	I	Ι	2
	Clas	Pr	TEM	Т	I	I	I	I	I	I	I	Ι	+	I	Ι	+	Ι	I	I	I	I	Ι	2
	I		No.	1	2	e	4	Ð	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	SUM

Table 4 Positive resistance-associated genes in 19 isolates of multidrug-resistant A. baumannii

Beta-lactam

Mobile genetic element

Drug efflux

Quinolone

Aminoglycoside

Note. M:mutation.

444

CONFLICT OF INTEREST

The authors declare no conflict of interest.

- Wayne, P. A. Clinical and Laboratory Standards Institute: Performance Standards for Antimicrobial Susceptibility Testing; 21th Information Supplement. M100-S21, (Clinical and Laboratory Standards Institute, Wayne, PA, USA, 2011).
- 2 Mugnier, P. D., Poirel, L. & Nordmann, P. Functional analysis of insertion sequence ISAba1, responsible for genomic plasticity of *Acinetobacter baumannii*. J. Bacteriol. 191, 2414–2418 (2009).
- 3 Jeon, B. C. et al. Investigation of a nosocomial outbreak of imipenem-resistant Acinetobacter baumannii producing the OXA-23 beta-lactamase in korea. J. Clin. Microbiol. 43, 2241–2245 (2005).
- 4 Niumsup, P. R., Boonkerd, N., Tansawai, U. & Tiloklurs, M. Carbapenem-resistant Acinetobacter baumannii producing OXA-23 in Thailand. Jpn J. Infect. Dis. 62, 152–154 (2009).

- 5 Mak, J. K., Kim, M. J., Pham, J., Tapsall, J. & White, P. A. Antibiotic resistance determinants in nosocomial strains of multidrug-resistant *Acinetobacter baumannii*. *J. Antimicrob. Chemother.* **63**, 47–54 (2009).
- 6 Siroy, A. et al. Channel formation by CarO, the carbapenem resistance-associated outer membrane protein of Acinetobacter baumannii. Antimicrob. Agents Chemother. 49, 4876–4883 (2005).
- 7 Dupont, M., Pages, J. M., Lafitte, D., Siroy, A. & Bollet, C. Identification of an OprD homologue in Acinetobacter baumannii. J. Proteome Res. 4, 2386–2690 (2005).
- 8 Bakour, S. et al. Antibiotic resistance determinants of multidrug-resistant Acinetobacter baumannii clinical isolates in Algeria. Diagn. Microbiol. Infect. Dis. 76, 529–531 (2013).
- 9 Gombac, F. et al. Molecular characterization of integrons in epidemiologically unrelated clinical isolates of Acinetobacter baumannii from Italian hospitals reveals a limited diversity of gene cassette arrays. Antimicrob. Agents Chemother. 46, 3665–3668 (2002).
- 10 Lindsay, J. A., Knight, G. M., Budd, E. L. & McCarthy, A. J. Shuffling of mobile genetic elements (MGEs) in successful healthcare-associated MRSA (HA-MRSA). *Mob. Genet. Elements* 1 2, 239–243 (2012).