Penicillin-binding proteins in Actinobacteria

Hiroshi Ogawara^{1,2}

Because some Actinobacteria, especially Streptomyces species, are β -lactam-producing bacteria, they have to have some self-resistant mechanism. The β -lactam biosynthetic gene clusters include genes for β -lactamases and penicillin-binding proteins (PBPs), suggesting that these are involved in self-resistance. However, direct evidence for the involvement of β -lactamases does not exist at the present time. Instead, phylogenetic analysis revealed that PBPs in Streptomyces are distinct in that Streptomyces species have much more PBPs than other Actinobacteria, and that two to three pairs of similar PBPs are present in most Streptomyces species examined. Some of these PBPs bind benzylpenicillin with very low affinity and are highly similar in their amino-acid sequences. Furthermore, other low-affinity PBPs such as SCLAV_4179 in Streptomyces clavuligerus, a β -lactam-producing Actinobacterium, may strengthen further the self-resistance against β -lactams. This review discusses the role of PBPs in resistance to benzylpenicillin in Streptomyces belonging to Actinobacteria.

The Journal of Antibiotics (2015) 68, 223-245; doi:10.1038/ja.2014.148; published online 29 October 2014

INTRODUCTION

Drug resistance is a major problem in almost all the drug-related fields. Among bacterial resistance, β -lactam-antibiotic resistance is the most prevailing and threatening area in public health, because β -lactam antibiotics have been most widely used for chemotherapy of infectious diseases even in 80 years since penicillin's discovery.¹ β -Lactam antibiotic resistance is caused mainly by two mechanisms: antibiotic-degrading enzymes, β -lactamases² and modification of target sites, penicillin-binding proteins (PBPs).³

The phylum Actinobacteria constitute one of the largest phyla within the Bacteria.^{4,5} Streptomyces species, which belong to Actinobacteria, are filamentous, soil-dwelling, high guanine+cytosine (G+C)-content Gram-positive bacteria and are characterized by their ability to undergo complex cellular differentiation like filamentous fungi.⁶ In addition, Streptomyces species produce a wide variety of secondary metabolites including β -lactam antibiotics.^{7–9} However, Streptomyces species are prokaryotic microorganisms and unlike penicillin- and cephalosporin-producing fungi they must protect themselves from the attack of antibiotics, thus they have to have self-resistant mechanisms.^{10–13} In addition, Streptomyces species are known to be highly resistant to benzylpenicillin, although they are Gram-positive bacteria. This review discusses the role of PBPs in resistance to benzylpenicillin in Streptomyces belonging to Actinobacteria.

PBPS

The bacterial cell wall peptidoglycan is a three-dimensional, net-like mesh called sacculus in which glycan strands are cross-linked by peptide chains. It maintains cell shape and provides mechanical strength to resist osmotic pressure.^{14,15} The peptidoglycan biosynthesis is catalyzed by glycosyltransferases to polymerize the glycan chains and by transpeptidases to catalyze peptide crosslinking between two

adjacent glycan chains. The transpeptidases, also called PBPs, were initially identified as their ability to bind penicillins.^{16,17} Depending on the structure and the catalytic activity of their N-terminal domain, they are classified into class A, B and C PBPs.^{14,18–20} The C-terminal domains of both class A and class B PBPs have the transpeptidase activity. In class A PBPs, the N-terminal domain is responsible for their glycosyltransferase activity, whereas in class B PBPs, the glycosyltransferase domain is lacking. Class C PBPs are also called low-MW PBPs, having the carboxypeptidase activity, and are responsible for the maturation and recycling of the peptidoglycan.¹⁹ They are not essential and are excluded from further study.

Table 1 summarizes the genome sizes, G+C contents, numbers of PBPs, types of PBPs, class A and class B PBPs and some characters of 113 Actinobacterial species including 30 *Streptomyces* species. Most species have both class A and class B PBPs. However, the phylogenetic distribution of PBPs among taxa is uneven; *Actinomyces odontolyticus* ATCC 17982 encodes two PBPs per genome, whereas *S. avermitilis* MA-4680 and *S. coelicolor* A3(2) have 13 PBPs. In general, *Streptomyces* species possess >10 PBPs including class A and class B PBPs.²¹

CLASS B PBPS

A phylogenetic tree constructed on the basis of their amino-acid sequences of 446 class B PBPs from 113 Actinobacterial species is classified into 10 clusters and is shown in Figure 1. In general, the PBPs from taxonomically related species go into the same clusters. PBPs of suborder *Propionibacterineae* belong to subcluster I. PBPs of the members of order *Actinomycetales*, such as *Thermobispora*, *Streptosporangium*, *Actinomyces* and *Mobiluncus*, form cluster II. PBPs of other members of *Actinomycetales*, such as *Kytococcus*, *Kineococcus*, *Isoptericola*, *Cellulomonas*, *Sanguibacter*, *Beutenbergia*, *Janibacter*,

Correspondence: Professor H Ogawara, HO Bio Institute, 33-9, Yushima-2, Bunkyo-ku, Tokyo 113-0034, Japan.

E-mail: hogawara@sc5.so-net.ne.jp

¹HO Bio Institute, Tokyo, Japan and ²Meiji Pharmaceutical University, Tokyo, Japan

Received 22 July 2014; revised 24 September 2014; accepted 30 September 2014; published online 29 October 2014

Table 1 The numbers and types of putative PBP genes

		Genome						
		size	G+C	No. of	Type of			
Bacteria	Prefix	(Mb)	%	PBP	PBP	Class A PBP	Class B PBP	Comment
Acidimicrobium ferrooxidans DSM 10331	AFER	2.16	68.3	3	В3		0089, 0769, 1250	Ferrous-iron-oxidizing, moderately ther- mophilic, acidophilic bacteria, isolated from hot spring in Iceland, thermophile, nonsporulating
Acidothermus cell- ulolyticus 11B	ACEL	2.44	66.9	5	A2; B3	2004, 2135	0020, 0751, 1004	A moderately thermophilic, aerobic, cel- lulolytic bacterium originally recovered from the acidic hot springs
<i>A. odontolyticus</i> ATCC 17982	ACTODO	2.39	65.4	2	B2		00847, 01564	Isolated from human dental cavity, non- motile, nonsporulating, mesophile, septi- cemia, oral abscesses, lung infection, eye infection
<i>A. urogenitalis</i> DORA_12	Q605	2.6	68.4	5	A3, B2	AUC00015G0001, AUC00927G0001, AUC01040G0002	AUC00266G0006 AUC00451G0003	Isolated from human urogenital tract
Actinoplanes mis- souriensis 431	AMIS	8.77	70.8	8	A5; B3	10850, 39800, 60090, 78300, 80960	00450, 15180, 71610	Aerobic, motile, filamentous, sporulating bacterium; produces actaplanin, azacyti- dine, D-xylose isomerase; degrades flavo- noids and natural rubber:
Actinosynnema mirum DSM 43827	AMIR	8.25	73.7	6	A3; B3	0235, 5121, 7034	0023, 5772, 5886	A producer of nocardicin; Pseudonocar- dineae, isolated from blade of grass from Raritan River, aerobic, nonmotile, sporu- lating mesophile, chemooreanotroph
<i>Amycolicicoccus subflavus</i> DQS3– 9A1	AS9A	4.74	62.2	5	A2; B3	0253, 2577	0033, 4146, 4510	Isolated from a saline soil contaminated with crude oil; no mycolic acids and MK-8 was the major menaquinone
Arthrobacter aur- escens TC1	AAUR	4.60	62.3	6	A2; B4	3369, 3416	0030, 1704, 3184, 4181	Reduce hexavalent chromium; found in extreme environments such as deep sub- surface soils, arctic sea and radioactive waste tanks; catabolize a variety of xeno- biotic compounds; used in the bioremediation
Atopobium parvu- lum DSM 20469	Apar	1.54	45.7	4	A1; B3	1010	0480, 0673, 1344	Isolated from gingival crevices of the human oral cavity, obligate anaerobic, coccus-shaped, nonmotile, nonsporulat-
Beutenbergia cavernae DSM 12333	BCAV	4.67	73.1	5	A2; B3	0604, 4182	0028, 0389, 2416	Ing, hee hving, hesophile, 37–45 C Isolated from cave soil; no mycolic acid; not acid-fast, nonmotile, non-spore- forming and a rod-coccus growth cycle; peptidoglycan contains lysine in position 3 of the peptide subunit and an inter- peptide bridge of L-LYS+ L-Glu.
<i>Bifidobacterium adolescentis</i> ATCC 15703	BAD	2.09	59.2	4	A2; B2	0157, 1336	0040, 1107	Normal inhabitants of healthy human and animal intestinal tracts, anaerobic, rod- shaped, nonsporulating, nonmotile, intestinal microflora
<i>Bifidobacterium animalis</i> subsp. <i>lactis</i> AD011	BLA	1.93	60.5	3	A1; B2	0208	0077, 0782	An anaerobic Gram-positive lactic acid bacterium commonly found in the guts of healthy humans; utilize nondigestible oli- gosaccharides, nonsporulating
<i>Bifidobacterium animalis</i> subsp. <i>lactis</i> BLC1	BLC1	1.94	60.5	4	A2; B2	0209, 1314	0079, 1166	C
Bifidobacterium bifidum PRL2010	BBPR	2.21	62.7	4	A2; B2	0401, 1743	0104, 0550	Anaerobic, rod-shaped, nonmotile, nonsporulating, mesophile
Bifidobacterium bifidum \$17	BBIF	2.19	62.8	4	A2; B2	0427, 1684	0137, 0574	
Sindani OTI		2.33	58.7	4	A2; B2	0187, 1410	0067, 0606	

		Genome						
		size	G+C	No. of	Type of			
Bacteria	Prefix	(Mb)	%	PBP	PBP	Class A PBP	Class B PBP	Comment
Bifidobacterium breve ACS-071-V-	HMPRE- F9228							Anaerobic, rod-haped, nonmotile, non- sporulating, mesophile, human vaginal microflora
Bifidobacterium breve UCC2003	BBR	2.42	58.7	4	A2; B2	0176, 0487	0069, 1263	Isolated from infant nursing stool, anae- robic,rod-shaped, nonsporulating, non- motile, intestinal microflora, probiotic,
<i>Bifidobacterium</i> <i>dentium</i> Bd1	BDP	2.64	58.5	4	A2; B2	0244, 1801	0040, 1548	Isolated from dental caries, anaerobic, nonmotile, nonsporulating, mesophilic,
Bifidobacterium longum subsp. infantis 157F	BLIF	2.40	60.1	4	A2; B2	0139, 0411	0048, 1329	providite, nonpatriogenite
Bifidobacterium longum subsp. infantis ATCC 15697	BLIJ	2.83	59.9	4	A2; B2	0174, 2144	0078, 0867	Uses milk oligosaccharides, produces fucosidases; anaerobic, non-halophilic, Gram-positive bacterium; hexose meta- bolism: phosphoketolase pathway (bifid shunt), probiotic, nonpathogenic
Bifidobacterium longum subsp.	BIL	2.38	59.9	2	A1; B1	14530	18970	Anaerobic, nonsporulating, mesophilic, human fecal, gastrointestinal tract, 37 °C
Bifidobacterium longum subsp. longum JCM 1217	BLLJ	2.39	60.3	4	A2; B2	0150, 0394	0060, 1278	Anaerobic, rod-shaped, nonsporulating, mesophile, commensal
Brevibacterium casei S18	C272	3.66	68.1	4	A3; B1	05329, 06024, 15065	05334	Isolated from human skin, aerobe, meso- phile, symbiotic, commensal
<i>Catenulispora acidiphila</i> DSM 44928	CACI	10.47	69.8	8	A1; B7	1390	0037, 1307, 1448, 1656, 5826, 6659, 7282	Aerobic, free-living, nonmotile, acidophi- lic Gram-positive bacterium; resistant to lysozyme; peptidoglycan type is A3gamma II-Dpm-Gly, filament shaped, sporulating
<i>Cellulomonas flavi- gena</i> DSM 20109	Cfla	4.12	74.3	3	В3		0027, 1590, 3460	Nod-shaped, nonsporulating, nonmotile, biomass degrader, cellulose degrader, nitrate reducer, xvlan degrader
Clavibacter michi- ganensis subsp. michiganensis NCPPB 382	СММ	3.3	72.7	4	A2; B2	0915, 0919	0017, 1865	Aerobic, rod-shaped, nonmotile, nonspor- ulating, mesophile, plant pathogen, isolated from Lycopersicon esculentum
Conexibacter woe- sei DSM 14684	Cwoe	6.36	72.7	7	A1; B6	3542	0016, 1104, 1801, 2661, 3775, 5329	Isolated from forest soil, obligate aerobic, rod-shaped, motile, nonsporulating, mesophile, free living
<i>C. diphtheriae</i> NCTC 13129	DIP	2.49	53.5	5	A2; B3	0298, 2294	0055, 1497, 1604,	Gram-positive, nonmotile rods; produces the diphtheria toxin; isolated from soil, plant material, waste water and dairy products, diphtheria, respiratory infec- tion, chemoorganotroph
<i>C. glutamicum</i> ATCC 13032	NCGL	3.31	53.8	5	A2; B3	0274, 2884	0042, 1933, 2084	Unusual outer membrane ~8 nm thick; mycolic acid-arabinoglactan- peptidoglycan polymer form the cell wall
C. pseudotubercu- losis 1/06-A	CP106	2.28	52.2	5	A2; B3	0194, 1992	0032, 1278, 1380	A facultative intracellular pathogen; causes caseous lymphadenitis in animals; pleomorphic forms: coccoids and fila- mentous rods; nonsporulating, non-cap- sulated, nonmotile bacterium; it has fimbriae
C. pseudotubercu- losis 1002	CP1002	2.34	52.2	5	A2; B3	0200, 2034	0035, 1298, 1397	

npg 225

		Genome						
Bacteria	Prefix	size (Mb)	G +C %	No. of PBP	Type of PBP	Class A PBP	Class B PBP	Comment
C. pseudotubercu- losis 42/02-A	CP4202	2.34	52.2	5	A2; B3	0198, 2027	0034, 1288, 1387	
<i>C. resistens</i> DSM 45100	CRES	2.6	57.1	6	A2; B4	2033, 2137	0042, 0263, 0788, 1250	Highly resistant to antimicrobial agents; anaerobic, rod-shaped, nonomitile, non- sporulating mesophile
<i>Cryptobacterium curtum</i> DSM 15641	Ccur	1.62	50.9	3	A1; B2	02290	06100, 09550	Isolated from periodontal pocket, period- ontal infection, caries, obligate anaerobic, rod-shaped, nonmotile, nonsporulating, mesophile, free living
Frankia alni ACN14a	FRAAL	7.50	72.8	7	A3; B4	1281, 6546, 6857	1919, 2190, 5852, 6753	Aerobic, filament-shpaed, nonmitile, sporulating, nitrogen-fixing; differentiate into sporangium and vesicles (specialized cell for nitrogen fixation), contain lipid components called hopanoids. Hopanoids
<i>Frankia</i> sp. CcI3	FRANC- CI3	5.43	70.1	7	A3; B4	0754, 4277, 4526	1214, 1409, 3641, 4434	Isolated from root nodules of Casuarina cunninghamiana, aeroobic, filament shaped, sporulating, nonmotile,symbiotic, mutualistic, plant symbiont, soil, nitrogen fixation, nonpathogenic, chemoorganotroph
<i>Frankia</i> sp. Eullc	FraEul1- c	8.82	72.3	8	A3; B5	0346, 6058, 7178	0085, 1014, 1303, 1960, 2368	Aerobic, sporulating, mesophile, filament shaped, symbiotic, mutualistic, nitrogen fixation, nonpathogenic, chemoorganotroph
Gardnerella vagi- nalis 409-05	HMPRE- F0424	1.62	42.0	4	A2; B2	0304, 1277	0032, 1107	Obligate anaerobic, rod-shaped, free- living Gram-variable bacterium; a risk factor for the acquisition of HIV, bacterial vaginosis, vagina microflora
<i>G. vaginalis</i> HMP9231	HMPRE- F9231	1.73	41.2	4	A2; B2	1162, 1288	0015, 1089	Anaerobic, rod-shaped, mesophile, human oral microflora, vagina microflora
<i>Gordonia alkani- vorans</i> NBRC 16433	GOALK	5.07	67.4	7	A2; B5	00350, 01250	00210, 00240, 00270, 01580, 01900	Isolated from tar-contaminated soil/mar- ine sediment; use alkanes as a carbon source
Gordonia polyiso- prenivorans VH2	GPOL	5.67	67.0	6	A2; B4	07230, 49200	00240, 05610, 20210, 27800	Isolated from soil of a rubber tree plan- tation and from fouled water inside a decayed automobile tire; degrade natural and synthetic poly(cis-1,4-isoprene) rubber;
Isoptericola varia- bilis 225	ISOVA	3.31	73.9	5	A2; B3	2701, 3000	0021, 1284, 2892	A cellulolytic bacterium isolated from the termite hindgut; biofuels, biomass con- version; rod-shaped, motile
<i>Janibacter</i> sp. HTCC2649	JNB	4.23	68.4	4	A1; B3	13593	00615, 05649, 12079	Aquatic, marine, free living, mesophile, isolated from Sargasso Sea
<i>Kineococcus radiotolerans</i> SRS30216	KRAD	4.76	74.4	5	A2; B3	0429, 4341	0073, 0475, 3205	An aerobic, coccoid bacterium isolated from a high-level radioactive waste cell; resitant to ionizing γ-radiation and desic- cation; marked change in colony mor- phology over prolonged incubation
<i>Kitasatospora setae</i> KM-6054	KSE	8.78	74.2	8	A4; B4	27750, 36430, 38960, 59840	26130, 39410, 46160, 46190,	An aerobic, soil-habiting mycelial Gram- positive bacterium isolated from oil; pro- duce bafilomycin B1 and bafilomycin A1, 2, specific inhibitors of vacuolar ATPase; LL- and meso-DAP
<i>Kocuria rhizophila</i> DC2201	KRH	2.7	71.2	3	A1; B2	04490	14880, 20650	A coccoid, halotolerant, phenol-degrading Gram-positive bacterium isolated from the rhizosphere of narrowleaf cattail; amino- acid transporters and drug efflux pumps

		Genome						
		size	G+C	No. of	Type of			
Bacteria	Prefix	(Mb)	%	PBP	PBP	Class A PBP	Class B PBP	Comment
<i>Kribbella flavida</i> DSM 17836	Kfla	7.58	70.6	4	B4		0061, 2302, 2880, 6892	Obligate aerobe, nonmotile, sporulating, mesophile, free living
Kytococcus seden- tarius DSM 20547	KSED	2.79	71.6	3	B3		00200, 09230, 16620	A free-living, nonmotile, human opportu- nistic pathogen; grows as spherical/coc- coid; produces monesin A and B; isolated from varing environments such as human skin and groundwater
<i>Leifsonia xyli</i> subsp. <i>xyli</i> str. CTCB07	LXX	2.58	67.7	6	A4; B2	02090 03600, 05450, 23190	00230, 15320	An aerobic, rod-shaped, Gram-positive bacterium, causes ratoon stunting disease and affects sugarcane; a plant pathogen; no endospore or motility; an unusual cell wall peptidoglycan with 2,4-diaminobu- tyric acid
<i>Micrococcus</i> <i>Juteus</i> NCTC 2665	Mlut	2.5	73.0	3	A1; B2	18460	00770, 13660	Aerobe, motile, nonsporulating,meso- phile, metal resistant, free living, soil
<i>Micromonospora aurantiaca</i> ATCC 27029	MICAU	7.03	72.8	9	A6; B3	3350, 4230, 4961, 5144, 5927, 6271	0098, 4478, 5070	Metabolic versatility like nitrogen fixation, exhibit saphrophytic (living off dead tis- sues) and symbiotic lifestyles, ubiquitous in the environment, degrade plant cell walls and fibers; spore formation; bioremediation
<i>Mobiluncus curtisii</i> ATCC 43063	HMPRE- F0573	2.15	55.4	4	A2; B2	10708, 10751	10644, 11576	An anaerobic, rod shaped Gram-positive bacterium found in the human vagina
<i>M. avium</i> 104	MAV	5.48	69.0	5	A2; B3	0071, 0446	0020, 2330, 3723	<i>M. avium</i> complex causes a serious infection in people with advanced AIDS; mycolic acid-arabinoglactan- pentidgelycan polymer form the cell wall
<i>M. bovis</i> BCG str. Tokyo 172	JTY	4.37	65.6	5	A2; B3	0051, 3742	0016, 2174, 2881	A major cause of tuberculosis in animal species and man; an unusual outer membrane ~ 8 nm thick, the outer mem- brane and the mycolic acid- arabinoglactan-peptidoglycan polymer form the cell wall
<i>M. leprae</i> TN	ML	3.27	57.8	5	A2; B3	2308, 2688	0018, 0908, 1577	An unculturable very slow-growing, acid- fast, obligate intracellular bacterium; nonmotile and rod-shaped; responsible for leprosy.
<i>M. tuberculosis</i> H37Rv	RV	4.41	65.6	5	A2; B3	0050, 3682	0016c, 2163c, 2864c	Acid-fast, obligate aerobic, nonmotile, rod-shaped bacterium; the causative agent of tuberculosis; persists in a dor- mant or latent form for years
<i>Nakamurella mul- tipartita</i> DSM 44233	NAMU	6.06	70.9	4	A1; B3	0707	0079, 2190, 3930	An obligately aerobic chemoorgano- trophic, polysaccharide-accumulating Gram-positive bacterium isolated from active sludge
<i>Nocardia farcinica</i> IFM 10152	NFA	6.02	70.8	8	A3; B5	03390, 55490, 55570	820, 17600, 18430, 41160, 54970	A Gram-positive, filamentous-growing soil saprophyte, nocardiosis, mastitis, aerobic, filament shaped, sporulating
<i>Nocardioides</i> sp. JS614	NOCA	4.99	71.7	6	A2; B4	0326, 4676	0024, 3069, 3462, 4600	An aerobic mesophillic Gram-positive bacterium; grows on media containing vinyl chloride and ethane; monooxygenase system has a major role in the VC starva- tion response
Nocardiopsis das- sonvillei subsp. dassonvillei DSM 43111	Ndas	5.77	72.8	5	B5		0890, 2552, 3385, 3720, 5248	Aerobic, mesophile, free living, pulmonary infection, actinomycetoma, lacks mycolic acid

npg 227

		Genome						
		size	G+C	No. of	Type of			
Bacteria	Prefix	(Mb)	%	PBP	PBP	Class A PBP	Class B PBP	Comment
Propionibacterium acnes 266	PAZ	2.49	60.0	4	A2; B2	01380, 22310	01980, 08010	Anaerobic, rod-shaped, nonmotile, non- sporulating, mesophile, pathogen, human
<i>P. acnes</i> KPA171202	PPA	2.56	60.0	4	A2; B2	0126, 2149	0185, 0752	Anaerobic, rod-shaped, nonmotile, non- sporulating, mesophile, pathogen, human skin, acne
P. acnes SK137	HMPRE- F0675	2.5	60.1	4	A2; B2	3139, 5213	3226, 3820	Anaerobic, nonspore forming, Gram- positive bacterium; produces propionic acid; non-toxigenic; a common resident of the pilosebaceous (hair follicle) glands of the human skin_acne vulcaris
<i>Renibacterium sal- moninarum</i> ATCC 33209	RSA- L33209	3.16	56.3	4	A1; B3	2795	2241, 2500, 2891	A Gram-positive, rod-shaped bacterium that causes the bacterial kidney disease in salmonids
Rhodococcus ery- thropolis PR4	RER	6.52	62.3	8	A3; B5	04630, 58380, 58990	00300, 10660, 10670, 25560, 35580	Aerobic, Gram positive, capable of mor- phological differentiation; broard meta- bolic diversity; desulphurization of fossil fuels, production of acrylamide and extracellular polysaccarides; bioremediation
Rothia dentocar- iosa ATCC 17931	HMRE- F0733	2.51	53.7	3	A1; B2	10478	10948, 11665	Aerobic, pleomorphic, coccoid- to rod- shaped bacterium frequently isolated from the human oral cavity, periodontitis, opportunistic infection, meningitis, endocarditis
Rubrobacter xyla- nophilus DSM 9941	Rxyl	3.23	70.5	5	A2; B3	1310, 2308	0022, 1138, 1498	Isolated from thermally polluted industrial runoff from a carpet factory, aerobic, rod- shaped, nonmotile, nonsporulating, ther- mophile, free living, radiation resistant, nonpathogen, heterotroph, soil
<i>Saccharomonos- pora azurea</i> NA-128	SACAZ	4.76	70.0	4	A2; B2	02388, 02721	01210, 02813	Aerobic, Gram-negative bacterium; aerial mycelium and single spores; degrades hemicellulose
Saccharomonos- pora viridis DSM 43017	SVIR	4.31	67.3	4	A2; B2	36250, 39340	24950, 33330	Aerobic, Gram-negative bacterium; typical mycelium morpphology of <i>Saccharomo-</i> <i>nospora</i> ; found in hot compost and hay, its spores cause farmer's lung disease, bagassosis and humidifier fever; metabo- lize pentachlorophenol
Saccharomonos- pora marina XMU15	SACMA	5.97	68.9	5	A2; B3	5053, 5737	0205, 1393, 2176	Aerobic, Gram-positive bsacterium; forms substrate and aerial mycelia, nonmotile; isolated from ocean sediment; degrades hemicellulose; contains an unusually large number of glycosyltransferases
<i>Saccharopolyspora erythraea</i> NRRL 2338	SACE	8.21	71.1	7	A4; B3	0314, 0385, 6352, 7356	0046, 5864, 5990	Aerobic, filament-shpaed, nonmotile, sporulating, free-living, Gram-positive bacterium; produces erythromycin
Salinispora areni- cola CNS-205	SARE	5.79	69.5	7	A5; B2	3240, 3923, 4021, 4796, 5078	0051, 3444	Isolated from tropical marine sediment; produces staurosporine and nifamycin; requires seawater for growth
<i>Salinispora tropica</i> CNB-440	STROP	5.18	69.5	7	A5; B2	3015, 3548, 3639, 4354, 4560	0046, 3218	Resides in ocean sediments; requires seawater for growth; produces salinospor- amide A, a potent inhibitor of the 20S proteasome;
Sanguibacter ked- dieii DSM 10542	Sked	4.25	71.9	3	B3		00200, 22860, 36830	Isolated from blood of dairy cows, rod- shaped, nonsporulating, mesophile, free living

		Genome						
		size	G+C	No. of	Type of			
Bacteria	Prefix	(Mb)	%	PBP	PBP	Class A PBP	Class B PBP	Comment
Slackia heliotrinir- educens DSM 20476	SHEL	3.17	60.2	3	A1; B2	08350	08800, 14210	A nonmotile, obligate anaerobe, pyrrolizi- dine alkaloids metabolizer Gram-positive bacterium, isolated from the rumen of a sheep
<i>Stackebrandtia nassauensis</i> DSM 44728	Snas	6.84	68.1	4	A2; B2	1056, 5713	2665, 6473	An aerobic, nonmotile, degrade or hydro- lyze allantoin, casein, aesculin, gelatin, hypoxanthine, starch and tyrosine
<i>S. albulus</i> CCRC11814	K530	9.3	72.2	6	A1; B5	08126	01507, 21226, 23516, 34418, 52485	Production of poly-L-lysine
S. albus J1074	SSHG	6.84	73.3	10	A4; B6	01811, 02961, 03197, 04158	01149, 01599, 02906, 03834, 03835, 04427	Nonmotile, aerobic, sporulating, Gram- positive bacterium
<i>S. avermitilis</i> MA-4680	SAV	9.03	70.7	13	A6; B7	3225, 4294, 4423, 4583, 5179, 7219	2952, 3603, 3604, 4339, 5458, 6116, 6387	Soil and water Gram-positive filamentous bacteria, produces avermectin, a human and veterinary medicine
S. bingchenggen- sis BCW-1	SBI	11.94	70.8	12	A6; B6	03076, 04174, 05361, 05810, 06697, 09068	02283, 04376, 05407, 06233, 07119, 07873	A soil bacterium; the largest bacterial genome that has been sequenced to date; produces milbemycin, an anthelmintic macrolide
<i>S.cattleya</i> <i>N</i> RRL8057	SCAT	6.28	72.9	11	A4; B7	1929, 2889, 3140, 3906	0768, 1207, 1730, 1901, 3088, 4153, 5676	Produces thienamyci, cephamycin C, penicillin N and fluorinated metabolites
<i>S. cattleya</i> DSM46488	SCATT	6.28	72.9	11	A4; B7	19200, 28790, 31330, 38910	07700, 12070, 17240, 18950, 30790, 41420, 56770	
S. clavuligerus ATCC27064	SCLAV	6.76	72.5	12	A3; B9	2006, 2887, 3942	1087, 1301, 1774, 2276, 2947, 4154, 4179, 4180.	Clavulanic acid, cephamycin C, deace- toxycephalosporin C and penicillin N; cannot use glucose as a carbon source, because it lacks a glucose transport sys-
<i>S. coelicoflavus</i> ZG0656	SMCF	8.48	71.8	11	A3; B8	1708, 4389, 7595	4198 3764, 4686, 7469, 7795, 7796, 8190,	tem, has all the enzymes of the urea cycle Produces novel acarviostatin family α-amylase inhibitors
S. coelicolor A3(2)	SCO	8.67	72.1	13	A4; B9	2897, 3580, 3901, 5039	8286, 8884 1875, 2090, 2608, 3156, 3157, 3771, 3847, 4013, 5301	A filamentous, high G+C Gram-positive bacterium; degrades chitin, takes part in the nitrogen cycle
S. collinus Tu365	B446	8.27	72.6	9	A3; B6	15140, 19060, 23580	09755, 10960, 13820, 16355, 19320, 24955	Producer of kirromycin
<i>S. davawensis</i> JCM4913	BN159	9.47	70.6	11	A4; B7	3357, 4150, 4546, 5391	3075, 4478, 5121, 5122, 5684, 6352, 6632	Producer of roseoflavin
<i>S. flavogriseus</i> ATCC33331	SFLA	7.34	71.1	12	A4; B8	2228, 3158, 3398, 4003	0559, 1988, 3202, 3620, 3741, 4275, 4730, 4938	An aerobic, Gram-positive bacterium iso- lated from soil; produces cellulases and xyanases
<i>S. ghanaensis</i> ATCC 14672	SSFG	8.22	72.2	10	A4; B6	02387, 02608, 03635, 04479	02394, 03587, 04216, 04217, 04765, 05266	Aerobic, filamentous, nonmotile, high G +C Gram-positive bacterium, which pro- duces moenomycin

npg

		Genome						
		size	G + C	No. of	Type of			
Bacteria	Prefix	(Mb)	%	PBP	PBP	Class A PBP	Class B PBP	Comment
<i>S. griseoaurantia- cus</i> M045	SGM	7.71	72.7	10	A5; B5	0550 1814, 3549, 4216, 6740	0325, 3502, 4547, 5988, 5989	Isolated from marine sediment, produces manumycin and chinikomycin
<i>S. griseoflavus</i> Tu4000	SSRG	7.36	71.7	12	A4; B8	02182, 02879, 03203, 03961	01957, 03076, 03158, 03705, 03706, 04177, 04634, 04850	Anaerobic, filamentous, nonmotile, free- living, gram-positive bacterium
<i>S. griseus</i> subsp. <i>griseus</i> NBRC 13350	SGR	8.55	72.2	10	A4; B6	2494, 3341, 3679, 4647	2203, 3726, 4232, 4340, 4934, 5621	Anaerobic, filamentous, nonmotile, free- living, Gram-positive bacterium; produces streptomycin
S. hygroscopicus subsp. jinggangen- sis 5008	SHJG	10.15	71.9	11	A5; B6	3853, 4373, 5171, 5432, 6136	3336, 4100, 4627, 4628, 5219, 6411	Produces validamycin;
S. lividans TK24	SSPG	8.19	72.2	11	A3; B8	02649, 03751, 04641	02381, 03670, 03808, 03892, 04382, 04383, 04919, 05673	A Gram-positive, filamentous, soil bacterium
<i>S. pristinaespiralis</i> ATCC 25486	SSDG	8.13	68.7	11	A3; B8	00591, 04208, 06322,	02572, 02766, 03053, 06246, 06247, 07051, 07138, 07139	Aerobic, filamentous, nonmotile, Gram- negative, sporulating bacterium; produces pristinamycin
<i>S. rimosus</i> subsp. <i>rimosus</i> ATCC10970	SRIM	9.5	71.9	11	A4; B7	00295, 08328, 13873, 22689	00065, 04191, 06646, 15770, 26297, 31850, 31885	Bioconversion of quercetin into a novel glycoside
<i>S. roseosporus</i> NRRL 11379	SROS- N1_01- 01000	7.76	71	10	A4; B6	12023, 17747, 19666, 23998	05995, 09849, 13775, 14509, 17500, 25622	Aerobic, filamentous, nonmotile, Gram- positive bacterium
S. scabiei 87.22	SCAB	10.15	71.5	11	A4; B7	33601, 41401, 56801, 64431	10101, 29591, 45551, 53611, 53621, 60051, 70631	Aerobic, filamentous, nonmotile, sporu- lating bacterium; an important plant pathogen; produces phytotoxins called thaxtomins: pathogenicity island
<i>Streptomyces</i> sp. PAMC26508	F750	7.53	71.1	10	A4; B6	2719, 3337, 3596, 4580	1743, 2434, 2998, 3546, 4834, 6320	Production of clavaminate synthase 2
<i>Streptomyces</i> sp. SirexAA-E	SACTE	7.41	71.7	11	A4; B7	2371, 3027, 3329, 4291	1307, 1519, 2029, 2618, 2701, 3283, 4532	Aerobic, filamentous, nonmotile, sporu- lating free-living bacterium
<i>S. sviceus</i> ATCC 29083	SSEG	9.31	69.8	10	A4; B6	01073, 07525, 03439, 04164	00010, 00011, 00733, 01896, 09019, 09517,	Aerobic, filamentous, nonmotile, sporu- lating, free-living bacterium
<i>S. tsukubaensis</i> NRRL18488	STSU	7.67	71.5	10	A4; B6	11540, 15659, 19470, 23388	10421, 17409, 21621, 24378, 26744, 27686	Producer of tacrolimus (FK506)
<i>S. venezuelae</i> ATCC 10712	SVEN	8.23	72.4	10	A4; B6	2646, 3350, 3677, 4705	1522, 1745, 2386, 2985, 3631, 4995	Aerobic, filamentous, nonmotile, sporu- lating free-living bacterium; produces chloramphenicol,
<i>S. violaceusniger</i> Tu4113	STRVI	10.66	71.0	11	A5; B6	1350, 2314, 3845, 8252, 9005	0275, 1135, 3190, 7171, 7897, 7904	Aerobic, filamentous, motile, sporulating, mesophilic, bacterium; produces spiro- fungin, antifungal agent
S. viridochromo- genes DSM 40736	SSQG	8.55	71.1	11	A5; B6	02328, 02941, 03901, 04279, 05113	01781, 02628, 03242, 03243, 03958, 05348	Aerobic, filamentous, nonmotile, sporu- lating bacterium
S. zinciresistens K42	SZN	8.22	72.5	10	A4; B6	06389, 16730, 18682, 28493	02952, 10458, 13352, 17932, 18819, 22026	Aerobic, filamentous, nonmotile, non- sporulating, halophilic bacterium; iso- lated from soil from a zinc and copper mine

ра DSM 20162

		Genome						
		size	G+C	No. of	Type of			
Bacteria	Prefix	(Mb)	%	PBP	PBP	Class A PBP	Class B PBP	Comment
Streptosporangium	SROS	10.34	70.9	11	A4; B7	2902, 3010,	0113, 1441,	Aerobic, filamentous, nonmotile, sporu-
roseum DSM						8177, 9363	1456, 2864,	lating, mesophilic bacterium; produces
43021							3583, 4062,	angucycline, an inhibitor of the
							7683,	endothelin-converting enzyme
Thermobifida fusca YX	TFU	3.64	67.5	4	A2; B2	0570, 3097	1416, 2475	Aerobic, rod-shaped, nonmotile, sporulat- ing, moderate thermophilic soil bacter- ium; degrades organic material and dcllulose; farmer's lung, mushroom work- er's disease. respiratory infection
Thermobispora	TBIS	4.19	72.4	10	A4: B6	0195, 1426,	0053, 0796,	Aerobic, filamentous, nonmotile, sporu-
hispora DSM					, = =	3106.3566	1401, 1685	lating thermophilic beterium
43833						,	1727, 2465	
T. curvata DSM	TCUR	5.64	71.6	8	A4: B4	1026, 1268,	0065, 1542,	An aerobic, cellulolytic, thermophilic
43183					,	4921, 4955	2932, 4002	Gram-positive bacterium; produces a number of industrially important com- pounds like cellulase, alpha-amylase and polygalacturonate lyase
<i>Tropheryma whip- plei str.</i> Twist	TWT	0.93	46.3	3	A1; B2	0705	0222, 0776	Aerobic, rod-shaped, nonmotile, nonspor- ulating, mesophilic bacterium; deficient in amino acid metabolisms, the lack of clear thioredoxin and thioredoxin reduc- tas; causes Whipple's disease
Tropheryma whip- plei TW08/27	TW	0.93	46.3	3	A1; B2	0722	0548, 0787	A Gram-positive, filamentous, aerobic, soil-dwelling actinomycete. It is the cau- sative agent of the Whipple's disease
Tsukamurella	TPAU	4.38	68.4	7	A2; B5	3939, 4192	0029, 0349,	Obligate aerobic, rod-shaped, nonomotile,
paurometabola							1690, 2652,	nonsporulating, mesophilic bacterium;

Abbreviations: G+C, guanine+cytosine; PBP, penicillin-binding protein.

Catenulispora, Renibacterium, Arthrobacter, Saccharomonospora and Micromonospora, constitute cluster IV. Some PBPs of Actinomyces and Mobiluncus fall into subcluster IV-2. PBP members that from suborder Micrococcineae are partly overlapped and distributed in the clusters IV and V. Kytococcus, Isoptericola, Cellulomonas, Sanguibacter, Beutenbergia, Janibacter, Renibacterium and Arthrobacter are members of suborder Micrococcineae. PBPs of order Bifidobacteriales form subcluster III. The cluster V includes PBPs of suborder Micrococcineae members such as Clavibacter, Leifsonia, Tropheryma, Micrococcus, Rothia, Kocuria, Renibacterium and Arthorobacter. However, PBPs of suborder Micrococcineae are also distributed in the cluster IV, as described above. No PBPs of Micrococcineae make a phylogenetically distinct, coherent cluster and are dispersed in clusters IV and V.⁴ The subclusters VI-1, VI-2 and VI-3 consist of PBPs of suborder Corynebacterineae (Corynebacterium, Tsukamurella, Gordonia, Mycobacterium, Rhodococcus, Nocardia and Amycolicicoccus), suborder Pseudonocardineae (Saccharopolyspora, Saccharomonospora and Actinosynnema) and suborder Frankineae (Nakamurella). However, PBPs of Corynebacterineae and Pseudonocardineae compose different branches in the subclusters. The suborders Corynebacterineae and Pseudonocardineae are closely related taxonomically^{4,22} and, in addition, Nakamurella multipartite, which is currently a member of suborder Frankineae, is proposed to be closely related to Pseudonocardineae.⁴

The PBPs of most Frankia species belong to subclusters VII-1, VII-2, VII-4 and VII-5 which contain also PBPs of suborder Frankineae (Frankia and Acidothermus), suborder Micromonosporineae (Salinispora, Micromonospora and Actinoplanes) and suborder Glycomycineae (Stackebrandtia).

isolated from ovaries of Cimex lectularius; a human opportunistic pathogen

3973

As described above, Streptomyces species carry more PBPs than other species. Reflecting this fact, PBPs of Streptomyces species form seven large subclusters of VIII-1, VIII-2, VIII-3, VIII-4, VIII-5, VIII-6 and VIII-7. SCAB_10101 possesses neither essential serine nor lysine residues which are involved in the enzymatic catalysis (the amino-acid sequence in this region is Thr-Thr-Phe-Ser), so that it is excluded from further analysis.

Intriguingly, more than half of Streptomyces species hold two successive class B PBPs (Figure 1 and Table 1). For example, SSHG_03834 and SSHG_03835 (a similarity value E is 1.2e-62, the same hereafter), SAV_3603 and SAV_3604 (3e-68), SCLAV_4179 SCLAV_4180 (1.5e-11), SMCF_7795 and SMCF_7796 and (1.1e-48), SCO3156 and SCO3157 (2.8e-47), BN159_5121 and BN159_5122 (3.4e-65), SSFG_04216 and SSFG_04217 (1.3e-56), SGM_5988 and SGM_5989 (1.3e-58), SSRG_03705 and SSRG_03706 (3.2e-62), SHJG_4627 and SHJG_4628 (8.6e-62), SSPG_04382 and SSPG_04383 (2.7e-59), SSDG_07138 (125aa) and SSDG_07139 (too short to compare), SCAB_53611 and SCAB_53621

Figure 1 Phylogenetic tree of 446 class B PBPs listed in Table 1 from *Actinobacteria*. The tree was constructed by using ClustalX 2⁴⁰ as SCO4049 (penicillin acylase) as outgroup. A full color version of this figure is available at *The Journal of Antibiotics* journal online.

Figure 1 Continued.

Streptomy ghanaensis 05266 Streptomy collinus 10960 Streptomy avermitilis 6116 Streptomy albus_01149 Thermomospora_curvata 2932 Thermobispora_bispora_1401 Streptosporangium_roseum_2864 Acido cellulolyticus_1004 —Rubro_xyl_1498 —Conex_woe_3775 —Stack_nass_2665 —Salini_tropica_3218 —Salini_arenicola_3444 —Micromo_aurantiaca_4478 ₩-5 $\Pi - 2$ -Salini_arenicola_3444 -Micromo_aurantiaca_4478 -Actino_missouriensis_15180 -Acido fer_1250 -Acidimicro_ferrooxidans_1250_592aa -Kytococcus_sedentarius_09230 -Frank sp_Cu12_1960 -Frank sp_Ccl3_1214 -Frank ani 1919 Nocar_das_3385 Thermobispora_bispora_2465 VII-3 rrank_alni 1919
Nocar_das_3385
Thermobispora bispora_2465
Thermobispora bispora_1685
Janib sp_05649
Krib fla 2302
Kroib fla 2302
Streptomy_clatulegrus_4179
Streptomy_cattleya_5676
Streptomy_cattleya_5676
Streptomy_cattleya_5676
Streptomy_risus_apails_02766
Streptomy_risus_4934
Streptomy_locattleya_5676
Streptomy_locattleya_5676
Streptomy_risus_4934
Streptomy_locatelya_5676
Streptomy_risus_4934
Streptomy_risus_4934
Streptomy_location
Streptomy_logonicus_4100
Streptomy_logonicus_4100
Streptomy_logonicus_4100
Streptomy_logonicus_4100
Streptomy_logonicus_4100
Streptomy_logonicus_41774
Streptomy_logonicus_4178
Streptomy_logonicus_4178
Streptomy_logonicus_41774
Streptomy_logonicus_4178
Streptomy_logonicus_41774
Streptomy_logonicus_41774
Streptomy_logonicus_4178
Streptomy_logonicus_4178
Streptomy_logonicus_4178
Streptomy_logonicus_4178
Streptomy_logonicus_4178
Streptomy_logonicus_4176
Streptomy_logonicus_4178
Streptomy_logo П-3 - VII-6 Catenu acidiphila_7282 Acido_cellulolyticus_0751 Atopo_par_0673 Crypto_cur_06100 Slackia_heliotrinireducens_14210 Rubro xyl_1138 Conex_woe_2661 Acido fer 0769 Conex_woe_1104 Conex_woe_1104 Conex_woe_1104 Conex_woe_1104 Mathine aurescens_3184 Rhodo_erythropolis_10670 Nocar farcinica_54970 Tsukamurella_paurometabola_0349 Gordo_poly isoprenivorans_05610 Coryne_resistens_0263 Rhodo erythropolis_10660 Nocar farcinica_18430 Tsukamurella_paurometabola_3973 Gordo_alkanivorans_00240 - X-2 **IX**-2 - VI-3

Figure 1 Continued.

The Journal of Antibiotics

Figure 1 Continued.

Figure 1 Continued.

Table 2 Comparison of genomic arrangements adjacent to PBPs in three Streptomyces species

S. clavulig	gerus (SCLAV	/)		S. ca	attleya (SCAT)		S. cc	pelicolor (SCO)
Gene no.	No. of aa	Function	Gene no.	No. of aa	Function	Gene no.	No. of aa	Function
1769	1456	Ribonuclease E	1725	136	Hypothetical protein	2603	518	Integrase
1770	251	Radical SAM protein	1726	148	Hypothetical protein	2604	311	Hypothetical protein
1771	651	Fe-S oxidoredactase	1727	61	Hypothetical protein	2605	233	Hypothetical protein
1772	520	Metal-binding protein	1728	651	Hypothetical protein	2606	661	Hypothetical protein
1773	401	RodA, FtsW	1729	401	Hypothetical protein	2607	398	Sfr protin
1774	773	Penicillin-binding protein	1730	738	Penicillin-binding protein	2608	769	Penicillin-binding protein
1775	219	MreD	1731	209	MreD	2609	223	MreD
1776	372	MreC	1732	302	MreC	2610	341	MreC
1777	343	MreB, Mbl	1733	343	MreB	2611	343	MreB
1778	144	Nucloside diphosphate kinase	1734	137	Nucloside diphosphate kinase	2612	137	Nucloside diphosphate kinase
1779	121	Membrane protein	1735	122	Hypothetical protein	2613	118	Hypothetical protein
1780	505	Dihydrofolate synthase	1736	510	Tetrahydrofolate synthase	2614	444	Tetrahydrofolate synthase
1781	417	Two component histidine kinase	1737	877	ValyI-tRNA synthetase	2615	874	ValyI-tRNA synthetase
1782	875	ValyI-tRNA synthetase	1738	284	Hypothetical protein	2616	335	Hypothetical protein
1783	386	PAT1 multi-domain protein	1739	427	ATP-dependent protease	2617	428	ATP-dependent protease
1784	464	ATP-dependent protease						

A full color version of this table is available at The Journal of Antibiotics journal online.

(3.2e – 59), SSEG_00010 and SSEG_00011 (9.3e – 61), and SSQG_03242 and SSQG_03243 (3.5e - 61). The amino-acid sequences of these pairs of PBPs are not only very similar to each other, but also all the sequences are closely related and pertain to the subcluster VIII-7 in the phylogenetic tree (Figure 1). That is, the amino-acid sequence identity and similarity of PBPs in subcluster VIII-7 are in the range of 49.2–51.8% and 71.8–77.8%, respectively. Furthermore, the nucleotide sequences of each pair are arrayed in the same direction, indicating that they were duplicated and transferred to each other very recently. The pair of *S. clavuligerus* SCLAV_4179 and SCLAV_4180 is an exception. *S. clavuligerus* is a cephamycin and clavulanic acid producer. These PBPs of *S. clavuligerus* belong to the different subclusters (VIII-6 and VIII-2) and the similarity of the amino-acid sequences is very low (the E-value is 1.5e - 11). Although

S. clavuligerus possesses two PBPs in subcluster VIII-7, SCLAV_2276 and SCLAV_4198, their similarity value E is not so low (3.1e-28). In addition, S. cattleya, a cephamycin and thienamycin producer, carries only one PBP (SCAT_0768) in this subcluster. This peculiar behavior may be related to β -lactam production. The two PBPs of S. clavuligerus SCLAV_4179 and SCLAV_4180 are located at the end of cephamycin-clavulanic acid biosynthetic gene cluster, but arrayed in the reverse direction. Moreover, PBP SCLAV_4179 in S. clavuligerus is reported to have a low affinity to β -lactam antibiotics and is essential to the growth,²³ consequently it is presumed to be involved in the selfresistance. Interestingly, the amino-acid sequence of SCLAV_4179 is highly similar to that of SCAT_5676 (the similarity value E is 8.4e – 186) of S. cattleya, indicating that the PBP genes were interchanged between the two species as a whole-cephamycin biosynthetic

Figure 2 Phylogenetic tree of 292 class A PBPs listed in Table 1 from *Actinobacteria*. The tree was constructed by using ClustalX 2⁴⁰ as SCO4049 (penicillin acylase) as outgroup. A full color version of this figure is available at *The Journal of Antibiotics* journal online.

Figure 2 Continued.

gene cluster, and the clavulanic acid gene cluster was inserted in this region later. In *S. cattleya*, the protein of the similar amino-acid sequence to SCLAV_4180 is located not in the next to SCAT_5676 but in the completely different position as SCAT_3088, where no β -lactam biosynthetic gene is present. On the other hand, two proteins having highly similar amino-acid sequences to SCLAV_4179 (SCAT_5676 and SCAT_1730, the similarity E-values are 8.4e – 186 and 1e – 144,

respectively) exist in *S. cattleya*. In *S. clavuligerus*, a similar PBP to SCLAV_4179 is present as SCLAV_1774 (E-value is 2.9e-159). Furthermore, a similar protein to SCLAV_4179 is also found in *S. coelicolor* (SCO2608, an E-value is 1.1e-160). Comparison of the genomic arrangements in these three species reveals similar arrangements of the genes, at least in the downstream of PBPs (Table 2). Moreover, similar proteins to SCLAV_4179 are present not only in

240

Figure 2 Continued.

Streptomyces species such as S. avermitilis MA-4680 (SAV_5458, an E-value is 2.5e-158, the same hereafter), S. lividans TK24 (SSPG_04919, 3.7e-169), S. viridochromogenes DSM 40736 (SSQG_02628, 5.6e-161), S. scabiei 87.22 (SCAB_60051, 1.7e-174), S. griseus (SGR_4934, 4.5e-165) and S. hygroscopicus (SHJG_4100, 2.9e-163), but also in Catenulispora acidiphila DSM 44928 (Caci_7282, 1.2e-101), Kitasatospora setae KM-6054 (KSE_26130, 5.9e-137), Kribbella flavida DSM 17836 (Kfla_2302, 4.3e-105) and Nocardioides sp. JS614 (Noca_3462, 2.0e-108).²⁴ That is, the amino-acid sequence identity and similarity are in the range of 74.3–75.5% and 90.8–92.5% in Streptomyces, respectively, and 45.7–62.7% and 72.6–83.2% in other species, respectively. None of

these species is reported to produce β -lactam antibiotics, suggesting that SCLAV_4179 and its analogs in *Streptomyces* at least are not related to β -lactam biosynthesis but associated only with β -lactam resistance. This is supported by the fact that similar proteins to SCLAV_4179 are also found in other *Actinobacteria*, such as *Thermomonospora curvata* DSM 43183 (Tcur_1542, 6.3e – 99), *Frankia* sp. EuI1c (FraEuI1c_1960, 4.9e – 76), *Nocardiopsis dassonvillei* (Ndas_3385, 5.2e – 108) and *Janibacter* sp. HTCC2649 (JNB_05649, 4.3e – 72), β -proteobacteria, such as *Methylobacillus flagellatus* KT (YP_546600, 5.2e – 40) and *Janthinobacterium lividum* (WP_010393193, 3.9e – 49), and γ -proteobacteria, such as *Plesiomonas shigelloides* (WP_010864271, 9.8e – 36) and *Pseudomonas putida*

Figure 2 Continued.

(WP_009397921, 4.3e – 38). The PBP of *S. clavuligerus*, SCLAV_4179, is reported to have a low affinity to β-lactam antibiotics.²³ Therefore, the low-affinity PBP gene of *S. clavuligerus* (SCLAV_4179) is supposed to overspread to most *Actinobacteria*, especially to *Streptomyces* species, to have a major role in β-lactam resistance and to reflect on the fact that most *Streptomyces* species, in particular, are highly resistance to benzylpenicillin, although they are Gram-positive bacteria.²⁵ In addition, two low-affinity type PBPs, SCLAV_1774 and SCLAV_4179, and SCAT_1730 and SCAT_5676, greedily present in *S. clavuligerus* and *S. cattleya*, β-lactam-antibiotic producers, reinforces their self-resistance to their own β-lactams.

Another PBP proposed to be involved in the self-resistance in *S. clavuligerus* is SCLAV_4198.^{26,27} SCLAV_4198 belongs to subcluster VIII-7 together with SCLAV_2276. Most *Streptomyces* species occupy two or three PBPs in this subcluster. These PBPs are supposed to strengthen further the self-resistance against β -lactam antibiotics in these *Streptomyces* species. Furthermore, most of these PBPs are

adjacent to each other, as described above. S. clavuligerus is again an exception.

Goffin and Ghuysen^{18,26} showed that class B PBPs from Grampositive bacteria were classified into three distinct subclasses, B1 (whose prototype is *Enterococcus faecium* PBP5, X84859), B4 (whose prototype is *S. pneumoniae* PBP2x, P14677) and B5 (whose prototype is *S. pneumoniae* PBP2b, P10524). Phylogenetic and similarity analyses indicate that all the PBPs from *Streptomyces* analyzed in this paper form disparate clusters from these subclass members, and SCLAV_4179 is only distantly related to class B1/B2 PBPs, lowaffinity class PBPs, rather than class B4 or B5 PBPs, whether they are analyzed in whole sequence or penicillin-binding core sequences²⁶ (see Supplementary Figure 1).

Protein kinases are classified into two families based on their biochemical similarities and enzymatic specifications as following: the histidine kinase superfamily belonging to the two component systems²⁸ and the serine/threonine and tyrosine protein kinase

2/1

	SCAT_2889 @) SGR_3341 @	STSU_19470@) SCAT_3140 @	SGR_3679 @	SRIM_00295 ©	SAV_7219 ®	SHJG_3853 ©	SRIM_08328 ®	SGR_2494 @	SAV_3225@	SHJG_6136 @	SGR_4647 ©	SHJG_4373 ©
SCAT_2889 () SGR_3341 () STSU_19470 (i	1.2e-114 6.3e-114	9.5e-121												
SRIM_13873 @	3.6e-126	3.1e-127	5.2e-123	1.7e-26	1.2e-30	7.4e-29	4.7e-25	7.3e-22	1.1e-24	5.2e-29	7.6e-30	1.6e-28	6.0e-31	8.0e – 26
SHJG_5432 0	2.3e-121	1.7e-119	2.3e-135	7.4e-33	4.9e-33	1.3e – 33	2.5e-27	4.8e – 27	2.3e-27	6.1e-39	6.8e-31	2.1e-25	6.5e-32	8.7e-30
SCAT_3140 @	2.0e-26	8.3e – 29	1.1e-27											
SGR_3679 @	8.7e-28	4.4e-28	7.8e-29	2.0e – 93										
SRIM_00295 @	0 3.6e-33	1.6e-31	6.0e-36	1.4e-98	9.1e-98									
SHJG_5171 @	1.5e-30	8.5e-38	4.3e-40	4.5e-88	7.9e-92	3.5e-91	2.9e-64	3.5e – 63	8.0e-70	9.8e – 57	5.3e – 52	6.9e – 54	1.3e-54	1.9e – 48
SAV_7219 ③	1.5e-24	3.6e-33	7.5e-31	5.6e-63	7.1e-70	2.5e-75								
SHJG_3853 ()	3.9e – 28	1.5e-31	2.4e-30	3.4e-56	3.4e – 80	2.6e-77	2.5e – 135							
SRIM_08328 @	0 2.8e-29	6.7e-38	1.9e - 35	1.1e-87	3.8e – 80	6.7e-79	2.5e-99	3.9e – 91						
SGR_2494	1.3e-31	3.7e-38	8.1e-30	2.5e-55	9.5e – 60	1.7e-65	1.6e - 40	1.2e – 39	4.9e-49					
SAV_3225 @	2.8e – 34	6.0e-29	3.8e-30	5.0e-54	7.0e – 50	2.1e-51	1.6e-44	2.2e – 38	4.9e-45	1.2e-98				
SHJG_6136	3.5e-31	3.9e-31	4.8e-31	1.1e-51	4.2e-57	1.2e – 59	2.7e-46	2.2e – 43	8.2e-52	7.6e-109	5.0e-120			
SCAT_3906 @	2.2e-29	5.9e-39	1.4e - 33	9.6e-47	1.7e-44	4.8e – 56	1.7e-44	1.5e - 40	3.4e – 48	1.9e-81	2.8e-78	2.5e-79	1.8e-70	2.4e – 59
SGR_4647 ③	1.9e-26	1.2e-34	4.0e-28	1.0e-57	8.6e-51	2.4e – 56	1.9e-45	6.1e-43	2.9e – 49	2.6e-66	2.0e – 52	6.6e-70		
SHJG_4373 ⑤	1.3e – 23	5.1e-29	1.1e-26	1.0e - 54	1.7e-46	2.7e-50	1.2e-43	3.6e – 43	1.9e-47	1.6e–62	1.7e-49	3.9e – 63	2.4e-75	
SAV_5179 ©	1.4e-35	1.7e-33	1.7e-31	7.7e-49	1.0e - 59	1.2e – 52	1.9e-41	3.7e-41	3.7e-43	2.7e-67	1.5e – 59	9.8e-71	5.4e-88	6.4e – 89
SCAT_1929 (5)	5.1e-26	5.2e-31	1.6e-32	2.5e-51	1.5e – 55	6.6e – 59	2.7e-43	1.0e - 45	6.9e-48	3.5e-66	1.5e - 60	9.2e-66	9.3e-86	2.4e – 78
STSU_11540 @	3.1e-29	1.9e-32	8.8e – 29	1.3e-50	2.3e – 47	7.5e-58	1.0e-46	2.7e-41	2.1e-47	7.0e-118	9.9e – 99	4.0e-101	7.4e-71	2.3e – 59
SFLA_4003 ⑤										1.9e–63	6.7e-60	6.4e-72		
Abbreviations: S(Journal of Antibio	CAT, S. cattleya; S otics journal online	SGR, <i>S. griseus</i> ; S ^{a.}	TSU, <i>S. tsukuba</i> e	nsis; SRIM, S. rimo	isus; SAV, S. ave	rmitilis; SHJG, S. I	hygroscopicus; SF	LA, S. flavogrise	<i>is</i> . Subcluster num	bers are shown i	n the circle. A fu	ill color version of	this table is ava	lable at <i>The</i>

The Journal of Antibiotics

Table 3 Similarity of amino-acid sequences of class A PBPs in Streptomyces (E-values)

superfamily.^{29,30} Recently, these serine/threonine and tyrosine protein kinases were shown to be involved in the regulation of cell morphogenesis of Streptococcus pneumonia,31 Corynebacterium glutamicum³² and Mycobacterium tuberculosis,³³ germination of Bacillus subtilis spores³⁴ and polar growth and hyphal branching in S. coelicolor.35 Although investigating the S. coelicolor homolog of PknB, a serine/threonine protein kinase of M. tuberculosis, Yeats et al.36 identified a novel domain called PASTA domain that is found in the C-termini of eukaryotic-like serine/threonine kinases and PBPs. This domain binds B-lactam antibiotics and their peptidoglycan analogs. It is intriguing in this connection that serine/threonine protein kinases are present next to PBPs in Streptomyces species. Furthermore, these protein kinases carry four PASTA domains in tandem in these molecules. Such protein kinases are K530_23511, SSHG_02907, SAV_4338, SBI_05406, SCAT_3089, SCATT_30800, SCLAV 2946, SMCF 8885, SCO3848, B446 19315, BN159 4479, SFLA_3201, SSFG_03588, SGM_3503, SSRG_03159, SGR_3725, SHJG_5218, SSPG_03807, SSDG_03054, SRIM_00070, SrosN1_ 010100017505, SCAB_45561, F750_3547, SACTE_3284, SSEG_02705, STSU_17414, SVEN_3632, STRV1_0274, SSQG_03956 and SZN_17937. However, although these PBPs adjacent to the protein kinases belong to the same subcluster VIII-3, they have no PASTA domain in their molecules in contrast to PBPs in other bacteria. The PBPs in Actinobacteria such as M. tuberculosis class A PBP (accession number is YP_178005, the same hereafter), Rhodococcus sp. DK17 (WP_016884523) and Nocardia sp. BMG111209 (WP_019931711) possess one PASTA domain each in their C-terminal region. Intriguingly, the amino-acid sequences of the protein kinases in this group are almost the same with each other, especially in N-terminal regions containing the protein kinase domains. Protein kinases located adjacent to PBPs are also seen in other Actinobacteria such as Cfla 0025 and Cfla 0026, AMIR 0021 and AMIR 0022, TCUR 0063 and TCUR_0064, Snas_6471 and Snas_6472, and Afer_0087 and Afer_0088. Two protein kinases arrange in tandem, and then comes PBP. Although the function of these protein kinases and the relationship to PBPs are not known yet, they might involve in peptidoglycan biosynthesis in concert with PBPs.

CLASS A PBPS

A phylogenetic tree constructed on the basis of their amino-acid sequences of 292 class A PBPs from Actinobacteria is classified into 10 clusters and is shown in Figure 2. Like the class B PBPs, the PBPs from taxonomically related species form the same clusters. Accordingly, cluster I consists of PBPs of subclass Rubrobacteridae (Rubrobacter and Conexibacter) and Coriobacteriae (Atopobium, Cryptobacterium and Slackia). All the PBPs of Trophyryma, Clavibacter and Leifsonia compose cluster II. The similarity of the amino-acid sequences between TW_0722 and TWT_0705 is 100% except the C-terminal amino acid, where glutamic acid is replaced by aspartic acid. Aminoacid sequence similarity values (E-values) are 1.3e-68 between TW_0722 and CMM_0915, 1.2e-86 between TW_0722 and LXX 03600, and 2.5e-70 between TW 0722 and LXX 02090. Among Micrococcineae PBPs, PBPs of three genera (Trophyryma, Clavibacter and Leifsonia) behave as a group like the class B PBPs. Cluster III is made up of PBPs of order Bifidobacteriales (Bi®dobacterium and Gardnerella). These PBPs are divided into two subclusters, III-1 and III-2. PBPs of suborder Actinomycineae (Actinomyces and Mobiluncus) and Micrococcineae (Isoptericola, Beutenbergia, Brevibacterium, Micrococcus, Rothia, Kocuria, Janibacter, Renibacterium and Arthrobacter), together with two PBPs of genus Kineococcus (KRAD_0429 and KRAD_4341), form subclusters IV-1, IV-2 and

Streptomy_rimosus_22689 -MKGSEOP Kitasato setae 38960 treptomy_scabiei_64431 --MTSQGNPAGSEGEDRARRRAPRAPGEGRTEEVRESDLTMQLKLPPAPPDETMQLRLP--EPGTFDLPEEQPKTG-GRGRRKAPRPSVLARFT-Streptomy zinciresistens 18682 ------MTRAGGEGPEP----DETMQLKVPPPPADETMQLRTADLDPVRAEIAAAESRTGEGAK-------GDARAEGRSRRAPRPSLLARAK-Streptomy_viridochromogenes_0232 -MTRAGWEP--RSRRRRRAPRPSPLSRLR-Streptomy ghanaensis 02387 ---MQLQVPPPPVAADETMQLRVPDGGIPDGGIPDGSGMSAASAEPAASDTPSA-------ASGAPSRRRKAPRPSPAARLA-Streptomy_griseoaurantiacus_0550 Streptomy_avermitilis_7219 Streptomy_hygroscopicus_3853 Kitasato_setae_59840 -MPGOPGNGDFAAAGP----PERTARADARTARAGRRR Streptomy rimosus 08328 --MIERRKGAHARTTA---Streptomy_violaceusniger_2314 Streptomy bingchenggensis 03076 -MSSLKGRSAST-

Streptomy_rimocus_226899
Kitansto_seate_38960
Streptomy_schoie_64431
Streptomy_rimidochromogenem_0232
Streptomy_dnamensis_02387
Streptomy_griseonarantiacus_0550
Streptomy_nygroscopicus_3853
Kitansto_seate_59840
Streptomy_rimosus_08328
Streptomy_rimosus_08328
Streptomy_rimosus_08328
Streptomy_rimosus_08328
Streptomy_rimosus_08376

Streptomy_rimosus_22889 Kitasato_setae_38960 Streptomy_caliei6_4431 Streptomy_riridochromogenes_0232 Streptomy_riridochromogenes_0232 Streptomy_glanaensis_02337 Streptomy_glanaensis_02337 Streptomy_riseourrantiatus_0550 Streptomy_nermitilis_7219 Streptomy_hygroscopicus_3853 Kitasato_setae_58940 Streptomy_rimosus_08328 Streptomy_rindocums_0314

Streptomy_rimosus_22689 Kitasto_setae_38960 Streptomy_setoie_64431 Streptomy_rimideationgenes_2872 Streptomy_rimonesis_02387 Streptomy_monesis_02387 Streptomy_proceeding_3853 Kitasto_setae_59840 Streptomy_rimosus_08228 Streptomy_rimosus_08228 Streptomy_rimosus_08228 Streptomy_rimosus_08228

Streptowy_rimosum_22689 Kitasato_setae_33940 Streptowy_setaie[_4431 Streptowy_rimidentians_18682 Streptowy_rimidentians_0232 Streptowy_ghamaensis_02387 Streptowy_ghamaensis_02387 Streptowy_nyemitilis_7219 Streptowy_nyemitilis_7219 Streptowy_nyemitilis_03838 Kitasato_aetae_50940 Streptowy_rimosum_03238 Streptowy_rimosum_03238 Streptowy_rimosum_03218

Streptomy_rimosus_22689 Kitasato_setae_38960 Streptomy_sehie_164431 Streptomy_rimic/resistens_18682 Streptomy_rimic/resistens_18682 Streptomy_rimosus_02387 Streptomy_rimosus_0350 Streptomy_hygroscopicus_3853 Kitasato_setae_5840 Streptomy_rimosus_08328 Streptomy_rimosus_08328 Streptomy_rimicaechage_2314 Streptomy_rimicaechage_314

GGGDAGGPPNGRAAGRGGKPGKKRI I DYPRFGKQGFRRIMPSWRQVLSVFLI FFGSCVAAVYTAYANVKVPDEKVPLQI Q-SNVYWADGSEMARTGTENQQLVDLSKI SRQAQDAV IAAENDTFRTDSGLDPKGI ARAVYKMATGGETQGST I TQQVVKNVYLSQDQTLSKKAKEPFI - FAPFVSRMRPEYPRPGRTDWRRWVPSWROSLGAAGLAVGASGMFLTVAVAATDIPADLNTFATOODNVYFWSDGTPMARTGWVROAMPLKDVPEDVRWAVLAAENSSFYSDPGISFSGITRALVRTVGEGDTOGGSTITOOVVKNVYLSODRSLGKKEDIAM AAGARLAP--LA-APLTARLAWAARL 1PPL/BRURPUYER/REGRER/RWYPT/REGGGR/RWYPT/REGGR/RWYPT/RW AAGSRLTPLIARVA — --PHARRIRPRYPHARTGWRWAPSWRWIGAALTFTGLALGFLGVATAATD IPELISYAATQDWVYWSDCTPMARTGWRWAPAMPLKD IPEUVRAVLAMEAASFYSDPGISFSGLTRALJWRUGQDTQGGT 100 VNVVLAQORSVGKFTHAML SAVARILAPLAPLGARLAPYARHIRPYYPBRGRADMRRWLSWRWILGAFLIAFGLGTGTLVVAYAATD IPENLATYATOQDNYFW ADGTPMARTGWVQRAMPLDD IPADVRWAVLAPOSPSYSDRGISLKGISRALJMETVGKGDTEGGST I TOQVKNVLJAQAVTSRKFTHMI RRKAAEPTA I AWTYRLTPYARRLKPEYPRGLGGWRRWPSVRWLGICLVSLGISGTFLVVAYAATD IPENLATYATOQDNYFW ADGTPMARTGWVRQAMPLAD IPEDVRWAVLAPOSPSSDRGISVSGIGRALJMETVGGGDTQGGST I TOQVKNVLJAQASTKSFTHMI GAVYRLIGPLAPYARRIAPYA - LLPRRPR------RPRRLDYPRAGRSGVRWLPSWRQLLLLAGTCCALLCGTVGVLYATTEVPTDLNAFAT00NNVFYWADGTEMARTGLVNR0DVPLD0VPE0VRWAVLAAENETFYSDPGISF0GIGRALYRMGSGGDT0GGSTIT00VVKNAVLN0R0DFSKLDEMFI APDGRWPALLLRWWRAGYLR I RRI. RPAYPRPGRTGLRRW I PSWRGSLGLGGSFYG I LTG I LA INYARTE I PADLNAFATQQDNY YWADGTEMARTGD I NRQDMPLDSV PEXVEWAALAA EN ETFYSDSOL SPSGI I RAATRWI TGQDTQGST I TQQI YKNAY LNQDQTFT RKLTHAFI * .*::*:*: *. * ..* : * .: ** *: ** * . :* : *.:**** :* :*.*:. *: ** ALKLIMRKSKSETLGGVLMTSYFORISFO I QAAMAAYYG FPAKDLDPSQGAALAAL LKGAEQO'DPALSEANIRRAV AØWKUTL DREV ETGRUSREERARYTRFPEPKPVTPTSQRGGTGVLVDAAKKYL-KSRTGLTDREDLARGEYR HUTTPEKRKVTRL TKAVEDERRKS LDPKREAA TLKVNDEKTKEQILGGVLMTSWFGRGATO I QAAMAAYYGVDASKLDVCQGAMLAGLLKGAGLFDPSLSPANIERW SØWSWI LDRAV TTKVLSAEDRAKCK0PFPF I ETQRVTKTTGEVSVL I ETAKQVTSKDSTI TAAALDRGCYQ HITTPGKRKVDALKKAVDØPQAATLKPDSREA ALKLINNINS DE LLEGYLMTSNFORGTYG I QRASQAYYGRIVSELNI SEAAALASL LKGAGLIDPSLSBARHARTVWRIET IL DRIVAT KKLSKAERAKYTKPPEPI DPSNQYDTGKQGDYL VELASQVA-KKAAN I TAQEFDRCXYQ I YTT DRINROTEL TDAVYKAR-REVTENPEK ALKLINNINS DDI LEGYLMTSNFORGTYGNQRAAQAYYGRIVRELNASEAAFLASL LKGAGLIDPSLSBARHARTVWRIET IL DRIVAT KKLSKAERAKYTKPPEP ALKLIDNONSKOD I LEGYLATSWFGRGTYG I QRAAQAYYGKUV GELDAGEAAFLASLLKGASLYDPALSKANHARAVERISW I LPRIVDNOALSKSERAKYKEFPEPLKQTPGYDTGKQSDYL VELAAQYA-KKAAH I SAKEFDLGGFQI YTT DRKQETAL TDAVAEAR-KKARKDDAAK ALKLDNEMSKDETLEGYLNTSWYGRGTYGTORAAGAYYGKDVSKINASESAFLASIJKGAGLFDPTLGAANRERAVERWSWTIDRWVETGELSPOERAGYRTFPEPLKSNPLYNTGEOSDYLVELVAQYA-KKNAGTSDREFDLGCYETHTFDKKRMARI.TDAVTKAR-KKAQKDHPKA SLKLDN9ASKDK1LEGYLNTSWFGRGTYG1QRAA9AYYGKDVSKLNASEAAFLACLLKGAGLYDPTLNQTNHARAVDRWNULDPRUVK1GKLSASERATYKTFPEPLKSNPLYDTGEQSDYLVQLAAQYV-KKSARLTDKEFDLQGFQ1YTTPDKKREKVLTDTVTKAR-KKALDEDPKA AVKLDORNSKDØTLEGYLNTSWFGRGTYG TORASØAYYGKDVGELNASEAALLASLLKGAGLYDPTLSQANHØRAVERWKYTLDRWFLGKLSPTERAKYTHFPEPTK9A0TYDTGNOSDYLVELAQVA-KKAGHTSDKOFDLGGYQTYTTFDKKREEALTAAVKKAR-KKAQKDDKGK ALKLINNISK KOLLE OT LINNISK KOLLE OT LINNISKA KOLE OT LINNISKA KOLE OT LINNISKA KOLE ALKLIDQRDSKEQILSGYLNISWFGRGSYGIERAAQAYYGKHVSELNVSEGAFLAAVLKGASLYDPALNADNHARAVDRWSWILDRAVKIGRLSAADRAKYTDFPEPNPVPPLVGLNGQTGYLVDLAKSYA-QSHADITPAQFDLGGYQIHTTFEKPKEQALTEAVQSAA-KKLDPERPA A IKLDNKNSKDE I LERYLNTSWYGRGTYG I QRAAHAYYGKDASQLNVSEGAFLASLLKGAALYDPALGSEAHKRAVERINNVLDRUVVI GKLSKEERDGYTRFPEPQAPPKPAGLTGQNGYLVETARAYV-DAHTDI SEKDFALGGYQ I HTFFEKPRIITALAKAVGAAR-AKLSPDTRQA ATKLIDDRVT/RETLIARYLMTSNFORGSVG IQRANAYYGKDVSELNASEGALLASI.LKGAGTFDPTLSSKNIRRAVDØKKVU DRIVD I GKLSRSERARYTSPEPEAPRRAGLTGQVGVI VETAKAVV-SSHTE I SDADFDLGCVQ HTTPERKVQALAKAVKRT-DTLDPCQPEQ ATKLIDDRUSKEDI LERVLINTSNFORGTVG IQRANYAYYGKDVSQLNPSEGANLASI.LKGAGTFDPTVSARNIRRAVDØKKVU DRIVD I GKLSRSERARYTKPEPEAPRRPEGLTGQVGVI VETARAV-SSHTE I SDADFDLGCVQ HTTPERKVQALAKAVKRT-DTLDPCQPEQ :* .**. *** *::** : *:: *: **** . .:: :.* ** :**** :**::. . * * **. * *** * :. :* : **: *:***:. . DAHVEFGAAS<mark>VRPKDGALVALYGGPD</mark>-ATQHFANNADTAGVPAG**SAFR**PFVMAAALRDTAPEKAVAAPAD---APAA--GTATVQAAVPPDLY---------DGLVTSAHPPFVAAGRRLGLEKVRDLAIEAGLHKTSL-ARLEPTFPLGTSTPSAIRLAGAYS

LFGNDGSRTEPYSVTRVEHDGTPLPGLTPPAPRRVLTPGAAHGINWALR-AYAGKTLPPETVAKLPRGIWAG-GTGPQDRMRSAWFIGNDGTRGGGLTTAVTVFRAEP-GAPRLLPMEGVGGD-----MRFGNGIPPRVWA VFAAHGQOTDPYSVTAVOFHGKDLPNFARPTPKTALDPAVADNITDVLONVAKN-GTGNKTAALGFPV-AG---------KTGTTDDSMSAWWVGYT---PSLVTSVSMWREEPGKA-KLLDLKGTGGK------NEVHGGDYPTDIFT TFAAQGKHTEPYSVRKMTHNGYRVP-LKTPGPERAVGADVAAEVTSALTDAFRT-AHPDSPGAASYEV-AA-GTTQDDKAAWYVGTA----ANVSTAVVVYRIDLTKSLEPLRLGGIAGT--------PNSGVPYDIWS TFAAEGNHVEPYSVSRITRNGSKVA-LERPDRRRAMSPQVAEQVQSALRDSLRL-ADPAAADSAP-QA-AG-KRGTTQDDTASWYTGTV---SEVSTAVVAYRIDLAKSLEPLPLKGLAGT-----RTDSVPYAIWS TFAAAGTHVEPYSVARITRNGSEVR-LAKPASRRAVRASVAASVQSALTDAFRT-ARPGADPDT-EV-AG-KAGTVQNDTASWYVGTA---HSVSTAVVAYRIDLSKSLEPLPLQGIAGT-----SDDSVPYRVWS TFAADGLHTEPYSVRRITHNGHKVA-LAEPRTRRAMGADTAREVQAALADAFRE—AHPEDAPATA-EV-AG-KAGTTEDSVAAWYVGTA----KKVSTAVVVYRIDLGESLEPLPLEGLDGT----AADSVPYGIWS TFDAGGRHTEPYSVRRVTHNGSTVP-MDRPAVRRAMGADVAGQVTEALTDSFHL-AHPTATAASA-KV-SG-KAGTTEDDTASWYVGTD---KEISTAVVVYRMDLAKSLEPLPLKGLAGT----TFAAGGTHTAPYSVRRVTRNGSKVD-LDTPRPRRAVGADVARQVTDALTDSFRT-QHPTAAPASA-QV-AG GTTDKDTAAWYVGTN---RSVSTAVVVYRMDLTKSLEPLPLKGIAGT---------PATGVPYDIWS TFAAGGNHTEPYSVRRTTRNGSPVA-LATPRPKRAVGAKVAEEVTQALTDSFRT-AHPEAAAGRA-GV-SG--AQSAPDAAIPAGIWA TFAGRGRHSEPYSVGKLVRNGSNVA-IGKPSVKQVLPQNVAGAVDDALREAVAR-GSATAAKAAGTGA-AG-TFAAEGTHYAPYSVSGLTHGGQRLE-LRKDSAKRAFSPAVAAQVDEALRGAVQSPDGAARGAAAAGGEV-AG NGTAQDGNSAWFVGYT----KKLSTAVSLSRVDP-KTQELMPLKGMGGE------ATDTSGDTYPLDIWK TFAAGGRHTPPYSVTGLTHQGERVP-LEKQPATRAFSPEVAAQVDDALHGAVQG-GTAQSAAAVGSDV-AG-TGTEQNNTSSWFVGYT----KEMSTAVSLSRVDP-KTQELLPLNGLGGSGTSGTTGTSGTTGTPGATGTPGAPGAVGGATSGTGSTYAIDIWI * * . **** : * :* : .* * : ::*: * : *:: * : : : * *

19.4	Ald I
RYM	${\rm KIIGPGNPKNFTPPTPwGQEVDSSGAPVSASPSASATESAPAVPTEQPSVPVEQPSPTESASSTGKPTGKPSGSPTASPSTCLPVICNPGTTGGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGT$
RAM	
GALGI	LDRPVDRSS
GA	
RAM	
RAM	APLG
SAM	
AA	
ANA	RGTAR
RYM	TAR
SYM-	TDRAAE
RYM	KAVTPPS

Figure 3 Amino-acid alignment of 13 PBPs in subcluster VIII-3 of the phylogenetic tree (Figure 2). The amino-acid sequences are aligned by using MUSCLE.⁴¹ The conserved motifs¹⁸ are boxed, and the essential SXXK sequences are marked with red, bold letters. A full color version of this figure is available at *The Journal of Antibiotics* journal online.

Table 4 Low-affinity and some closely related PBPs in Streptomyces

Penicillin-binding protein	E-value (similarity value)
Subcluster VIII-6	
Streptomy_clavuligerus_4179	7.2e-218 (100%)
Streptomy_clavuligerus_1774	1.4e-145
Streptomy_albulus_21226	3.8e-156
Streptomy_bingchenggensis_07119	4.1e-186
Streptomy_cattleya_5676	8.4e-186
Streptomy_coelicolor_2608	1.1e-160
Streptomy_davawensis_5684	1.1e-167
Streptomy_griseoflavus_04177	3.1e-167
Streptomy_griseus_4934	4.5e-165
Streptomy_hygroscopicus_4100	2.9e-163
Streptomy_scabiei_60051	1.7e-174
Streptomy_venezuelae_2386	3.7e-172
Subcluster VIII-7	
Streptomy_clavuligerus_4198	5.5e-144 (100%)
Streptomy_clavuligerus_2276	6.3e-34
Streptomy_albulus_01507	2.8e-28
Streptomy_bingchenggensis_02283	6.3e-30
Streptomy_cattleya_0768	6.7e-26
Streptomy_coelicolor_3156	2.5e-30
Streptomy_davawensis_5121	1.8e-30
Streptomy_griseoflavus_03076	1.9e-41
Streptomy_griseus_4340	1.1e-27
Streptomy_hygroscopicus_4628	8.5e-32
Streptomy_scabiei_53621	2.5e-25
Streptomy_venezuelae_2985	1.3e-24

IV-3. The class A PBPs of Kineococcus radiotolerans behave with those of suborder Micrococcineae, such as Brevibacterium, but other PBPs of suborder Micrococcineae, such as Isoptericola and Beutenbergia, comport themselves with those of suborder Actinomycineae, such as Actinomyces and Mobiluncus (subclusters IV-1 and IV-3). PBPs of suborder Corynebacterineae (Corynebacterium, Tsukamurella, Gordonia, Mycobacterium, Rhodococcus, Nocardia and Amycolicicoccus) and Pseudonocardineae (Saccharopolyspora, Saccharomonospora and Actinosynnema) form subclusters V-1 and V-2 but different branches, although the amino acid similarity is not so different between PBPs of these branches. PBPs of genus Nakamurella move with those of suborder Pseudonocardineae like the class B PBPs, although genus Nakamurella is classified as suborder Frankineae. Subclusters VI-1 and VI-2 consist of PBPs of suborder Micromonosporineae (Salinispora, Micromonospora and Actinoplanes). PBPs of genus Stackebrandtia form outgroups in the phylogenetic tree as suggested by the taxonomic position. PBPs of genus Frankia form distinct subclusters VII-1 and VII-2, and those of genus Propionibacterium construct other discrete subclusters IX-1 and IX-2.

Like the class B PBPs, class A PBPs of *Streptomyces* species form large five subclusters, VIII-1, VIII-2, VIII-3, VIII-4 and VIII-5. Similarity analyses of class A PBPs from *Streptomyces* indicate that those inherent in the same subcluster have very low E-values irrespective of different species, especially PBPs in subcluster VIII-1 (Table 3). In addition, E-values between PBPs belonging to different subclusters but from the same species are not so different from those from different species. The amino-acid sequence similarity among class A PBPs are generally higher than those among class B PBPs. Another interesting fact clarified by amino-acid alignment analysis is that among 13 PBPs in subcluster VIII-3, 4 PBPs (SGM_0550,

SHJG_3853, STRVI_2314 and SBI_03076) do not have essential serine residues in the motif SXXK. In addition, except two PBPs (SRIM_22689 and KSE_38960), they do not possess essential lysine residues, although other features^{18,26} requisite for PBPs are conserved (Figure 3), suggesting that it is doubtful whether these PBPs function as transpeptidases or the transpeptidase activity is very low even though they retain penicillin-binding properties.

Class A PBPs from Gram-positive bacteria are classified into five subclasses,²⁶ A1 (whose prototype is *Escherichia coli* PBP1A), A2 (whose prototype is *E. coli* PBP1B), A3 (whose prototype is *Streptococcus pneumoniae* 1A), A4 (whose prototype is *S. pneumoniae* 2A) and A5 (whose prototype is *S. pneumoniae* 1B). Phylogenetic and similarity analyses indicate that all the class A PBPs from *Streptomyces* analyzed in this paper form a completely different cluster in a phylogenetic tree from these five clusters, where E-values are in the range of 3.4e - 16 to 4.9e - 31, indicating very low similarities (see Supplementary Figure 2). These results, together with the results in class B PBPs where E-values range from 9.3 to 7.7e - 39, suggests strongly that the gene transfer and/or gene conversion occurred very rarely between PBPs in *Streptomyces* and those in Gram-positive and Gram-negative bacteria.

PBPS WITH LOW AFFINITY TO PENICILLINS

Ogawara and Horikawa³⁷ reported over 30 years ago that β -lactamproducing *Streptomyces* species possessed PBPs of very low affinity to benzylpenicillin. Later, two PBPs, that is, SCLAV_4179 and SCLAV_4198 were reported to have low affinity to penicillins.^{23,27} A mutant disrupted in SCLAV_4198 gene exhibited a significant decrease in its resistance to benzylpenicillin and cephalosporins.²⁷ Moreover, a probe containing SCLAV_4198 hybridized to genomic DNAs from β -lactam producers, *S. jumonjinensis* NRRL 5741, *S. griseus* NRRL 3851 and *S. lipmanii* NRRL 3584, suggesting that SCLAV_4198-like sequences and SCLAV_4198-mediated resistance mechanisms are likely to be present in these β -lactam-producing species. Table 4 lists low-affinity PBPs and some of the closely related PBPs in *Streptomyces*. The PBPs belonging to subclusters VIII-6 and VIII-7 in Figure 1 are assumed to have low affinity to penicillins.

CONCLUSION

The work on self-resistance to β-lactam antibiotics in Actinobacteria in my research career started by the findings that most of the Streptomyces species constitutively produced β-lactamase independent of their resistance to β-lactam antibiotics and β-lactam production,^{25,38} and the detection of PBPs in Streptomyces species by autoradiography took over 6 months instead of a few days in E. coli16 and *B. subtilis*.³⁷ When I visited Dr Hamao Umezawa, my boss at that time, for the proofreading of the paper, he immediately said that 'The avoidance of the contamination of Streptomyces species was the most important and absolute necessity in the fermentation of Penicillium for the production of benzylpenicillin. It caused the complete destruction of benzylpenicillin because of their production of β-lactamases.' He knew by experience that most Streptomyces species produced β-lactamases. On the basis of these two findings, I proposed about 35 years ago in Antimicrobial Agents and Chemotherapy³⁷ and Microbiological Reviews³⁹ that low-affinity PBPs were the main cause of self-resistance to β -lactam antibiotics in *Streptomyces*. Since then, supporting evidence is gradually accumulating. This review offers some substantiating evidence from the points of PBPs for selfresistance and resistance in general to *β*-lactam antibiotics in Streptomyces even though they are Gram-positive bacteria.

- 1 Fleming, A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of *B. influenza*. Br. *J. Exp. Pathol.* **10**, 226–236 (1929).
- 2 Bush, K. & Jacoby, G. A. Updated functional classification of β-lactamases. Antimicrob. Agents Chemother. 54, 969–976 (2010).
- 3 Spratt, B. G. The 2011 Garrod Lecture: from penicillin-binding proteins to molecular epidemiology. J. Antimicrob. Chemother. 67, 1578–1588 (2012).
- 4 Gao, B. & Gupta, R. S. Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol. Mol. Biol. Rev. 76, 66–112 (2012).
- 5 Ventura, M. et al. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol. Mol. Biol. Rev. 71, 495–548 (2007).
- 6 Chater, K. F., Biró, S., Lee, K. J., Palmer, T. & Schrempf, H. The complex extracellular biology of *Streptomyces. FEMS Microbiol. Rev.* 34, 171–198 (2010).
- 7 Liras P., Martin J. F. Gene clusters for β-lactam antibiotics and control of their expression: why have clusters evolved, and from where did they originate?. Int. Microbiol. 2006; 9: 9–19.
- 8 Ochi, K., Hosaka, T. New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. *Appl. Microbiol. Biotechnol.* **97**, 87–98 (2013).
- 9 Núñez, L. E., Méndez, C., Braña, A. F., Blanco, G. & Salas, J. A. The biosynthetic gene cluster for the β-lactam carbapenem thienamycin in *Streptomyces cattleya. Chem. Biol.* 10, 301–311 (2003).
- 10 Cundliffe, E. How antibiotic-producing organisms avoid suicide. Annu. Rev. Microbiol. 43, 207–233 (1989).
- 11 Cundliffe E. & Demain A. L. Avoidance of suicide in antibiotic-producing microbes. J. Ind. Microbiol. Biotechnol. 37: 643–672 (2010).
- 12 Davies, J. & Davies, D. Origins and evolution of antibiotic resistance. *Microbiol. Mol. Biol. Rev.* 74, 417–433 (2010).
- 13 Thaker, M. N. et al. Identifying producers of antibacterial compounds by screening for antibiotic resistance. Nat. Biotechnol. 31, 922–927 (2013).
- 14 Macheboeuf, P., Contreras-Martel, C., Job, V., Dideberg, O. & Dessen, A. Penicillin binding proteins: key players in bacterial cell cycle and drug resistance processes. *FEMS Microbiol. Rev.* **30**, 673–691 (2006).
- 15 Typas, A., Banzhaf, M., Gross, C. A. & Vollmer, W. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. *Nat. Rev. Microbiol.* **10**, 123–136 (2012).
- 16 Spratt, B. G. Distinct penicillin binding proteins involved in the division, elongation, and shape of *Escherichia coli* K12. *Proc. Natl Acad. Sci. USA* 72, 2999–3003 (1975).
- 17 Suginaka, H., Blumberg, P. M. & Strominger, J. L. Multiple penicillin-binding components in *Bacillus subtilis, Bacillus cereus, Staphylococcus aureus*, and *Escherichia coli. J. Biol. Chem.* 247, 5279–5288 (1972).
- 18 Goffin, C. & Ghuysen, J.-M. Biochemistry and comparative genomics of SxxK superfamily acyltransferases offer a clue to the mycobacterial paradox: presence of penicillinsusceptible target proteins versus lack of efficiency of penicillin as therapeutic agent. *Microb. Mol. Biol. Rev* 66, 702–738 (2002).
- 19 Pratt, R. F. Substrate specificity of bacterial DD-peptidases (penicillin-binding proteins). *Cell Mol. Life Sci.* 65, 2138–2155 (2008).
- 20 Sauvage, E., Kerff, F., Terrak, M., Ayala, J. A. & Charlier, P. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. *FEMS Microbiol. Rev.* 32, 234–258 (2008).
- 21 Ogawara, H. Self-resistance to β-lactam antibiotics in *Streptomyces* (in Japanese). *Bull. Meiji Pharmaceut. Univ* 43, 1–20 (2014).

- 22 Zhi, X. Y, Li, W. J. & Stackebrandt, E. An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class *Actinobacteria*, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. *Int. J. Syst. Evol. Microbiol.* **59**, 589–608 (2009).
- 23 Ishida, K. et al. Characterization of pbpA and pbp2 encoding penicillin-binding proteins located on the downstream of clavulanic acid gene cluster in Streptomyces clavuligerus. Biotechnol. Lett. 28, 409–417 (2006).
- 24 National Institutes of Health Protein clusters: PCLA_902386. Available at http://www. ncbi.nlm.nih.gov/proteinclusters/?term=PCLA_902386. Accessed on 24 September 2014.
- 25 Ogawara, H. Production and properties of beta-lactamase in Streptomyces. Antimicrob. Agents Chemother. 8, 402–408 (1975).
- 26 Goffin, C. & Ghuysen, J.-M. Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. *Microb. Mol. Biol. Rev.* 62, 1079–1093 (1998).
- 27 Paradkar, A. S, Aidoo, K. A, Wong, A. & Jensen, S. E. Molecular analysis of a β-lactam resistance gene encoded within the cephamycin gene cluster of *Streptomyces clavuligerus. J. Bacteriol.* **178**, 6266–6274 (1996).
- 28 Hoch, J. A. & Varughese, K. I. Keeping signals straight in phosphorelay signal transduction. J. Bacteriol. 183, 4941–4949 (2001).
- 29 Molle, V. & Kremer, L. Division and cell envelope regulation by Ser/Thr phosphorylation: Mycobacterium shows the way. Mol. Microbiol. 75, 1064–1077 (2010).
- 30 Urabe, H. & Ogawara, H. Cloning, sequencing and expression of serine/threonine kinase-encoding genes from *Streptomyces coelicolor* A3(2). *Gene* 153, 99–104 (1995).
- 31 Morlot, C. et al. Interaction of penicillin-binding protein 2x and Ser/Thr protein kinase StkP, two key players in Streptococcus pneumoniae R6 morphogenesis. Mol. Microbiol. 90, 88–102 (2013).
- 32 Fiuza, M. et al. Phosphorylation of a novel cytoskeletal protein (RsmP) regulates rodshaped morphology in *Corynebacterium glutamicum*. J. Biol. Chem. 285, 29387–29397 (2010).
- 33 Munshi, T. *et al.* Characterisation of ATP-dependent Mur ligases involved in the biogenesis of cell wall peptidoglycan in *Mycobacterium tuberculosis. PLoS ONE* 8, e60143 (2013).
- 34 Shah, I. M., Laaberki, M. H., Popham, D. L. & Dworkin, J. A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. *Cell* 135, 486–496 (2008).
- 35 Hempel, A. M. et al. The Ser/Thr protein kinase AfsK regulates polar growth and hyphal branching in the filamentous bacteria Streptomyces. Proc. Natl Acad. Sci. USA 109, E2371–E2379 (2012).
- 36 Yeats, C., Finn, R. D. & Bateman, A. The PASTA domain: a β -lactam-binding domain. *Trends Biochem. Sci.* **27**, 438–440 (2002).
- 37 Ogawara, H. & Horikawa, S. Penicillin-binding proteins of *Streptomyces cacaoi*, *Streptomyces olivaceus*, and *Streptomyces clavuligerus*. *Antimicrob*. *Agents Chemother*. 17, 1–7 (1980).
- 38 Ogawara H., Horikawa S., Shimada-Miyoshi S. & Yasuzawa K. Production and properties of β-1actamases in *Streptomyces*.Comparison of the strain isolated newly and thirty years ago. *Antimicrob. Agents Chemother*. 1978; 13: 865–870.
- 39 Ogawara H. Antibiotic resistance in the pathogenic and the producing bacteria, with special reference to β -lactam antibiotics. *Microbiol. Rev.* 1981; **45**: 591–619.
- 40 Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).
- 41 Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Res.* 32, 1792–1797 (2004).

Supplementary Information accompanies the paper on The Journal of Antibiotics website (http://www.nature.com/ja)