ORIGINAL ARTICLE

Improved total synthesis of incednam

Akira Takada, Kanjiro Uda, Takashi Ohtani, Shinya Tsukamoto, Daisuke Takahashi and Kazunobu Toshima

An alternative and improved total synthesis of incednam, the aglycon of the 24-membered macrolactam glycoside antibiotic incednine, was accomplished. The synthesis was realized via construction of the 24 -membered macrocycle using intramolecular ring-closing olefin metathesis reaction as a key step.
The Journal of Antibiotics (2013) 66, 155-159; doi:10.1038/ja.2013.4; published online 6 February 2013
Keywords: incednam; incednine; olefin metathesis; total synthesis

INTRODUCTION

Incednam (1) is the aglycon of the 24 -membered macrolactam glycoside antibiotic incednine (2), which was isolated by Imoto et al. ${ }^{1}$ in 2008. Compound 2 exhibits significant inhibitory activity against the anti-apoptotic oncoproteins Bcl-2 and Bcl-xL, with a mode of action distinctly different from those of other agents that inhibit the binding capacity of $\mathrm{Bcl}-\mathrm{xL}$ to the pro-apoptotic protein Bax. Furthermore, these proteins are overexpressed in many cancer cells, resulting in the expansion of a transformed population and promotion of the multidrug-resistant stage. ${ }^{2-4}$ Therefore, 2 is expected to be a lead compound in the development of novel antitumor drugs. In addition, 2 is likely to be a useful tool for the further study of Bcl-2 and Bcl-xL functions. The identification of its target protein could provide insight into the anti-apoptotic mechanism of the Bcl-2 family proteins. From a chemical structural perspective, 1 and 2 contain unique features: an α-methoxy- α, β unsaturated amide moiety and two independent conjugated polyene systems embedded in the 24 -membered macrolactam ring. Due to the nature of the highly conjugated polyene subunits, $\mathbf{1}$ and $\mathbf{2}$ are lightand acid-sensitive. Although 1 was also isolated from Streptomyces sp., ${ }^{1}$ its semi-synthesis from 2 has not been realized, in part due to its inherent chemical instabilities. However, their important biological activities and novel molecular architecture make $\mathbf{1}$ and $\mathbf{2}$ prime targets for chemical synthesis. The first total synthesis of 1 involved preparation of the C1-C13 subunit 3 and the C14-C23 subunit 4, and construction of the novel 24 -membered macrocycle through Stille coupling between 3 and 4 , followed by macrolactamization as shown in Figure $1 .{ }^{5}$ The present report describes an alternative and improved synthesis of 1 via construction of the 24 -membered macrocycle by intramolecular ring-closing olefin metathesis reaction as a key step.

RESULTS AND DISCUSSION

The initial total synthesis of $\mathbf{1}$ was accomplished by preparation of the C14-C23 subunit 4, which could not be stored and was used
immediately for the next step due to the instability. ${ }^{5}$ To circumvent this issue for the practical synthesis of $\mathbf{1}$, the retrosynthesis of $\mathbf{1}$ was redesigned via precursor $\mathbf{5}$ or $\mathbf{6}$ for intramolecular ring-closing olefin metathesis reaction ${ }^{6-8}$ to construct the 24 -membered macrocycle concomitant with the labile C14-C21 tetraene unit at a later stage in the synthesis. The new retrosynthetic analysis of $\mathbf{1}$ is depicted in Figure 1. The convergent strategy applied to the construction of the 24 -membered macrocycle is based on coupling of three domains: the C1-C13 subunit 3 containing the vinyl iodide moiety, ${ }^{5}$ the $\mathrm{C} 14-\mathrm{C} 18$ subunit 7 containing the vinyl stannane moiety, and the C19-C23 subunit 8 containing the amino group. This union was produced by application of intermolecular Stille coupling and amidation, followed by intramolecular ring-closing olefin metathesis reaction.

The synthesis of the triene subunit 7, corresponding to the C14-C18 in 1, is summarized in Scheme 1. The known aldehyde $\mathbf{1 0}$ was prepared from ethyl 2-butynoate (9) in 5 steps by a procedure previously reported. ${ }^{9,10}$ Wittig reaction of 10 with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ provided the triene 7 in 88% yield. Next, the synthesis of the C19-C23 subunit $\mathbf{8}$ was accomplished starting from the alcohol 12, which was prepared as in the initial total synthesis of $1,{ }^{5}$ as shown in Scheme 2. The secondary alcohol $\mathbf{1 2}$ was converted into the mesylate 13 utilizing methanesulfonyl chloride (MsCl) in pyridine (Py), which was subsequently transformed into the azide $\mathbf{1 4}$ using NaN_{3} in DMF at $110^{\circ} \mathrm{C}$ with stereochemical inversion in 88% overall yield. Deprotection of the tert-butyldiphenylsilyl (TBDPS) ether of 14 with tetrabutylammonium fluoride (TBAF) in THF, and subsequent oxidation of the resulting allyl alcohol 15 using MnO_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ provided the aldehyde $\mathbf{1 6}$ in 89% overall yield. Wittig reaction of 16 using $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}$ gave the diene 17 in 72% yield. Finally, reduction of the azide group of 17 using PPh_{3} under Staudinger's conditions ${ }^{11,12}$ furnished the amine 8 in 98% yield.

With the key fragments 7 and 8 in hand, attention turned to the total synthesis of $\mathbf{1}$ using 3 . Completion of the synthesis of $\mathbf{1}$ is

[^0]

C1-C13 subunit

4
C14-C23 subunit
Previous work: Ref. 5
Incednam (1) : R = H

The present work

$5: R=T E S$
$6: R=H$
\downarrow

C19-C23 subunit

Figure 1 Retrosynthetic analysis of incednam (1).

Scheme 1 Synthesis of the C14-C18 subunit 7.

Scheme 2 Synthesis of the C19-C23 subunit 8.
summarized in Scheme 3. Amidation of $\mathbf{3}$ and $\mathbf{8}$ using 1-ethyl-3-(3dimethylaminopropyl) carbodiimide (EDC) and 4-dimethylaminopyridine (DMAP) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ proceeded smoothly to give the amide 18 in 94% yield. Subsequently, Stille coupling of 18 and 7 using $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ in the presence of LiCl and CuCl in $\mathrm{DMF} / \mathrm{THF}^{13}$ gave the best result, providing the desired coupling product 19 in 71% yield. Removal of the triethylsilyl (TES) groups of 19 using TBAF and AcOH in THF
furnished the diol 20 in 42% yield. Conditions for the intramolecular ring-closing olefin metathesis of 19 or 20 were rigorously explored using Grubbs first-generation, ${ }^{14}$ Grubbs second-generation, ${ }^{15}$ Hoveyda-Grubbs first-generation, ${ }^{16}$ Hoveyda-Grubbs second-generation, ${ }^{17}$ and Grela ${ }^{18,19}$ catalysts. Experimentation revealed that the best conditions were those using 19 and Grela catalyst 21 in the presence of P-methoxyphenol (PMPOH) and MS 3A in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give

Scheme 3 Total synthesis of incednam (1).
incednam (1) in 17% overall yield after deprotection of the TES groups in the resulting cyclic product. ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}, \mathrm{HRMS}$ (ESI-TOF), and optical rotation data obtained for a sample of the synthetic incednam matched those of an authentic sample ${ }^{1}$ and of a sample from the initial synthesis of $\mathbf{1 . 5}$

In conclusion, a novel convergent synthetic route was developed for incednam (1), which is the aglycon of the 24 -membered macrolactam glycoside antibiotic incednine (2), using intramolecular ring-closing olefin metathesis reaction as a key step. Although the yield of the intramolecular ring-closing olefin metathesis reaction was not extremely high, the present synthetic route avoids the use of unstable fragments, such as 4, in the total synthesis of 1 . Furthermore, this approach shows potential for intramolecular ring-closing olefin metathesis even in a complex structure possessing polyene units. Additional studies related to the total synthesis of incednine (2) from 1 are currently underway. ${ }^{20}$

With great respect, we dedicate this work to Professor Kuniaki Tatsuta as a memorial to his total synthesis of 101 antibiotics. This research was supported in part by the MEXT-supported Program for the Strategic Research Foundation at Private Universities, 2012-2016, Scientific Research on Innovative Areas 'Chemical Biology of Natural Products' and JSPS Fellow $22 \cdot 5820$ from MEXT.

EXPERIMENTAL PROCEDURE

Melting points were determined on a micro hot-stage (Yanako MP-S3) and were uncorrected. Optical rotations were measured on a JASCO P-2200 polarimeter. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded on a JEOL ECA-500 $(500 \mathrm{MHz})$ spectrometer. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were taken on a JEOL ECA-500 $(125 \mathrm{MHz})$ spectrometer in CDCl_{3} at room temperature, unless otherwise noted. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data were reported as follows: chemical shift in parts par million (p.p.m.) downfield or upfield from tetramethylsilane ($\delta 0.00$), CHCl_{3} (δ 7.26), integration, multiplicity ($\mathrm{br}=$ broad, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet) and coupling constants $(\mathrm{Hz}) .{ }^{13} \mathrm{C}$ chemical shifts were reported in p.p.m. downfield or upfield from $\mathrm{CDCl}_{3}(\delta 77.36)$ or acetone- d_{6} (δ 30.60). ESI-TOF Mass spectra and APCI-TOF Mass spectra were measured on a Waters LCT premier XE. Silica-gel TLC and column chromatography were
performed on Merck TLC 60F-254 (0.25 mm) and Kanto Chemical Co., Inc. (Tokyo, Japan) Silica-Gel 60 N (spherical, neutral), respectively. Air- and/or moisture-sensitive reactions were carried out under an atmosphere of argon using oven-dried glassware. In general, organic solvents were purified and dried using an appropriate procedure, and evaporation and concentration were carried out under reduced pressure below $30^{\circ} \mathrm{C}$, unless otherwise noted.

($1 E, 3 E, 5 E$)-3-Methylhex-1,3,5-trien-1-tributylstannane (7)

To a solution of $10(56.6 \mathrm{mg}, 146 \mu \mathrm{~mol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.12 \mathrm{ml})$ was added $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}(202 \mathrm{mg}, 731 \mu \mathrm{~mol})$ under Ar atmosphere at room temperature. The reaction mixture was stirred for 15 h at the temperature, the mixture was quenched by addition of a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aq. (1 ml). The resulting mixture was extracted with $\mathrm{CHCl}_{3}(2 \mathrm{ml} \times 3)$. The combined organic layer was washed with brine (1 ml), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification of the residue by column chromatography (hexane) on aluminum oxide activated, basic, Brockmann I gave $7(49.0 \mathrm{mg}, 128 \mu \mathrm{~mol}, 88 \%$ yield). Pale yellow syrup; $R_{f} 0.72$ (10/1 hexane/EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta$ $6.71(1 \mathrm{H}, \mathrm{ddd}, J=10.0,11.2,16.9 \mathrm{~Hz}), 6.57(1 \mathrm{H}, \mathrm{d}, J=19.2 \mathrm{~Hz}), 6.30(1 \mathrm{H}, \mathrm{d}$, $J=19.2 \mathrm{~Hz}), 6.06(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}), 5.26(1 \mathrm{H}, \mathrm{d}, J=16.9 \mathrm{~Hz}), 5.13(1 \mathrm{H}, \mathrm{d}$, $J=10.0 \mathrm{~Hz}), 1.87(3 \mathrm{H}, \mathrm{s}), 1.50(6 \mathrm{H}, \mathrm{m}), 1.31(6 \mathrm{H}, \mathrm{m}), 0.90(15 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}-$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 150.7,137.2,133.6,131.4,128.0,117.8,29.3,27.5,13.9,12.2$, 9.7; HRMS (ESI-TOF) $m / z 385.19$ (385.1921 calcd for $\left.\mathrm{C}_{19} \mathrm{H}_{37} \mathrm{Sn},[\mathrm{M}+\mathrm{Na}]^{+}\right)$.

(2E,5R)-1-tert-Butyldiphenylsilyloxy-5-methanesulfonyloxy-2-methylhex-2-ene (13)

To a solution of $12(1.30 \mathrm{~g}, 3.53 \mathrm{mmol})$ in dry pyridine $(19.5 \mathrm{ml})$ was added $\mathrm{MsCl}(410 \mu \mathrm{l}, 5.30 \mathrm{mmol})$ under Ar atmosphere at $0^{\circ} \mathrm{C}$. After the mixture was stirred for 3 h at room temperature, the reaction was quenched by addition of water $(20 \mathrm{ml})$. The resulting mixture was extracted with EtOAc $(10 \mathrm{ml} \times 3)$. The combined organic layer was washed with brine (20 ml), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification of the residue by silica-gel column chromatography (hexane/EtOAc $=4 / 1$) gave $13(1.53 \mathrm{~g}$, $3.42 \mathrm{mmol}, 97 \%$ yield). Colorless syrup; $R_{f} 0.60$ ($2 / 1$ hexane $/ \mathrm{EtOAc}$); $[\alpha]_{D}^{26}$ $+2.4^{\circ}\left(c 0.28, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 7.65(4 \mathrm{H}, \mathrm{dd}, J=1.5$, $7.7 \mathrm{~Hz}), 7.39(6 \mathrm{H}, \mathrm{m}), 5.51(1 \mathrm{H}, \mathrm{dt}, J=1.7,7.5 \mathrm{~Hz}), 4.79(1 \mathrm{H}, \mathrm{ddq}, J=6.3,6.3$, $6.6 \mathrm{~Hz}), 4.06(2 \mathrm{H}, \mathrm{s}), 2.94(3 \mathrm{H}, \mathrm{s}), 2.52(1 \mathrm{H}, \mathrm{ddd}, J=6.6,7.5,14.0 \mathrm{~Hz}), 2.38$ $(1 \mathrm{H}$, ddd, $J=6.3,7.5,14.0 \mathrm{~Hz}), 1.61(3 \mathrm{H}, \mathrm{s}), 1.41(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}) 1.06$
$(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 138.2,135.6,133.7,129.8,127.8,117.4,80.0$, 68.4, 38.6, 34.8, 26.9, 21.1, 19.4, 13.9; Anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{SSi}$: C, 64.53 ; H , 7.67; S, 7.18. Found: C, 64.37; H, 7.85; S, 7.46.

(2E,5S)-5-Azido-1-tert-butyldiphenylsilyloxy-2-methylhex-2-ene (14)

To a solution of $\mathbf{1 3}(1.53 \mathrm{~g}, 3.41 \mathrm{mmol})$ in dry DMF (20.0 ml) was added NaN_{3} ($333 \mathrm{mg}, 5.12 \mathrm{mmol}$) under Ar atmosphere at room temperature. After the mixture was stirred for 1.5 h at $110^{\circ} \mathrm{C}$, the reaction was quenched by addition of water $(20 \mathrm{ml})$. The resulting mixture was extracted with hexane $/ \mathrm{EtOAc}=1 / 1$ $(10 \mathrm{ml} \times 3)$. The combined organic layer was washed with brine $(20 \mathrm{ml})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification of the residue by silica-gel column chromatography (hexane/EtOAc $=20 / 1$) gave 14 $\left(1.22 \mathrm{~g}, 3.10 \mathrm{mmol}, 91 \%\right.$ yield). Colorless syrup; $R_{f} 0.61$ ($5 / 1$ hexane/EtOAc); $[\alpha]_{\mathrm{D}}^{26}+6.6^{\circ}\left(c 0.28, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 7.67(4 \mathrm{H}, \mathrm{d}, J=6.6$ $\mathrm{Hz}), 7.39(6 \mathrm{H}, \mathrm{m}), 5.50(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 4.07(2 \mathrm{H}, \mathrm{s}), 3.48(1 \mathrm{H}, \mathrm{tq}, J=6.6$, $6.9 \mathrm{~Hz}), 2.31(1 \mathrm{H}, \mathrm{ddd}, J=6.9,7.5,14.1 \mathrm{~Hz}), 2.22(1 \mathrm{H}, \mathrm{ddd}, J=6.9,7.5$, $14.1 \mathrm{~Hz}), 1.61(3 \mathrm{H}, \mathrm{s}), 1.23(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 1.07(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 137.3,135.6,133.9,129.7,127.7,119.1,77.4,77.1,76.9,68.7,58.0$, 34.3, 26.9, 19.4, 19.2, 13.8; Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{OSi}$: C, 70.18; H, 7.94. Found: C, 69.85; H, 8.00.

(2E,5S)-5-Azido-2-methylhex-2-en-1-ol (15)

To a solution of $\mathbf{1 4}(1.91 \mathrm{~g}, 4.85 \mathrm{mmol})$ in dry THF (38.0 ml) was added 1.0 M TBAF in THF ($7.27 \mathrm{ml}, 7.27 \mathrm{mmol}$) under Ar atmosphere at $0^{\circ} \mathrm{C}$. After the mixture was stirred for 3 h at room temperature, the reaction was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$. The resulting mixture was extracted with EtOAc $(20 \mathrm{ml} \times 3)$. The combined organic layer was washed with brine $(10 \mathrm{ml})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification of the residue by silica-gel column chromatography (hexane/EtOAc $=2 / 1,1 \% \mathrm{Et}_{3} \mathrm{~N}$) gave 15 ($726 \mathrm{mg}, 4.68 \mathrm{mmol}, 96 \%$ yield). Colorless syrup; $R_{f} 0.18$ ($5 / 1$ hexane/EtOAc); $[\alpha]_{D}^{25}+11.9^{\circ}\left(c 0.49, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 5.45(1 \mathrm{H}, \mathrm{dt}, J=1.6$, $7.2 \mathrm{~Hz}), 4.03(2 \mathrm{H}, \mathrm{s}), 3.51(1 \mathrm{H}, \mathrm{m}), 2.27(2 \mathrm{H}, \mathrm{m}), 1.69(3 \mathrm{H}, \mathrm{s}), 1.26(3 \mathrm{H}, \mathrm{d}$, $J=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 138.1,120.7,68.5,34.5,19.3,14.0 ;$ HRMS (ESI-TOF) $m / z 128.1077$ (128.1075 calcd for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{NO},\left[\mathrm{MH}-\mathrm{N}_{2}\right]^{+}$).
(2E,5S)-5-Azido-2-methylhex-2-en-1-al (16)
To a solution of $\mathbf{1 5}(726 \mathrm{mg}, 4.68 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(46.8 \mathrm{ml})$ was added $\mathrm{MnO}_{2}(4.07 \mathrm{~g}, 46.8 \mathrm{mmol})$ under Ar atmosphere at the room temperature. After the mixture was stirred for 15 h at $40^{\circ} \mathrm{C}$, the mixture was filtered through a pad of Celite. The combined filtrates were concentrated in vacuo. Purification of the residue by silica-gel column chromatography (hexane/EtOAc $=2 / 1$) gave 16 ($663 \mathrm{mg}, 4.33 \mathrm{mmol}, 93 \%$ yield). Colorless syrup; $R_{f} 0.33$ ($5 / 1$ hexane/ EtOAc $) ;[\alpha]_{\mathrm{D}}^{24}+24.3^{\circ}\left(c 0.68, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 9.45(1 \mathrm{H}, \mathrm{s})$, $6.51(1 \mathrm{H}, \mathrm{dt}, J=1.4,7.2 \mathrm{~Hz}), 3.71(1 \mathrm{H}, \mathrm{m}), 2.55(2 \mathrm{H}, \mathrm{dd}, J=6.6,7.0 \mathrm{~Hz}), 1.78$ $(3 \mathrm{H}, \mathrm{s}), 1.35(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 194.9,148.5,141.5,56.8$, 35.5, 19.5, 9.6; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z} 126.0917$ (126.0919 calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{NO}$, $\left[\mathrm{MH}-\mathrm{N}_{2}\right]^{+}$).

(2E,4E,6E)-2-Azido-5-methylhepta-4,6-diene (17)

To a solution of $16(175 \mathrm{mg}, 1.14 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(11.4 \mathrm{ml})$ was added $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}(450 \mathrm{mg}, 1.60 \mathrm{mmol})$ under Ar atmosphere at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at the room temperature, the mixture was quenched by addition of a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aq. $(5 \mathrm{ml})$. The resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{ml} \times 3)$. The combined organic layer was washed with brine $(5 \mathrm{ml})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification of the residue by silica-gel column chromatography (hexane/ $\left.\mathrm{Et}_{2} \mathrm{O}=30 / 1,1 \% \mathrm{Et}_{3} \mathrm{~N}\right)$ gave $17(124 \mathrm{mg}, 822 \mu \mathrm{~mol}, 72 \%$ yield). Pale yellow syrup; $R_{f} 0.71$ ($10 / 1$ hexane/EtOAc); $[\alpha]_{D}^{25}+12.1^{\circ}\left(c 0.52, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 6.38(1 \mathrm{H}, \mathrm{dd}, J=10.6,17.5 \mathrm{~Hz}), 5.48(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 5.14$ $(1 \mathrm{H}, \mathrm{d}, J=17.5 \mathrm{~Hz}), 4.99(1 \mathrm{H}, \mathrm{d}, J=10.6 \mathrm{~Hz}), 3.52(1 \mathrm{H}, \mathrm{m}), 2.35(2 \mathrm{H}, \mathrm{m})$, $1.77(3 \mathrm{H}, \mathrm{s}), 1.26(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 141.2,136.8,127.5$, 111.9, 57.9, 35.0, 19.3, 12.1; HRMS (ESI-TOF) m/z 124.1127 (124.1126 calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N},\left[\mathrm{MH}-\mathrm{N}_{2}\right]^{+}$).
(2E,4E,6E)-2-Amino-5-methylhepta-4,6-diene (8)
To a solution of $17(124 \mathrm{mg}, 822 \mu \mathrm{~mol})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(10 / 1, \mathrm{v} / \mathrm{v}, 11.7 \mathrm{ml})$ was added $\mathrm{PPh}_{3}(431 \mathrm{mg}, 1.64 \mathrm{mmol})$ under Ar atmosphere at room temperature. After the mixture was stirred for 15 h at $40^{\circ} \mathrm{C}$, the mixture was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$. The resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(5 \mathrm{ml} \times 3)$. The combined organic layer was washed with brine (5 ml), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification of the residue by silica-gel column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=10 / 1-5 / 1,1 \% \mathrm{NH}_{3}\right.$ aq.) gave 8 ($101 \mathrm{mg}, 806 \mu \mathrm{~mol}, 98 \%$ yield). Pale yellow syrup; $R_{f} 0.23\left(5 / 1 \mathrm{CHCl}_{3} /\right.$ $\mathrm{MeOH}) ;[\alpha]_{\mathrm{D}}^{24}+8.21^{\circ}\left(c 0.84, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 6.39(1 \mathrm{H}$, dd, $J=10.6,17.5 \mathrm{~Hz}), 5.51(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 5.11(1 \mathrm{H}, \mathrm{d}, J=17.5 \mathrm{~Hz}), 4.95$ $(1 \mathrm{H}, \mathrm{d}, J=10.6 \mathrm{~Hz}), 2.99(1 \mathrm{H}, \mathrm{m}), 2.19(2 \mathrm{H}, \mathrm{dd}, J=7.2,7.5 \mathrm{~Hz}), 1.74(3 \mathrm{H}, \mathrm{s})$, $1.42(2 \mathrm{H}, \mathrm{s}), 1.09(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 141.5,136.0,129.9$, 111.1, 47.4, 38.9, 23.7, 12.0; HRMS (ESI-TOF) m/z 126.1283 (126.1283 calcd for $\left.\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{~N},[\mathrm{M}+\mathrm{H}]^{+}\right)$.

$(2 Z, 4 \mathrm{E}, 6 E, 8 E, 10 R, 11 S, 12 Z)-1-((2 E, 4 E, 6 E)-5-M e t h y l h e p t a-4,6-$ diene)amide-10,11-bis(triethylsilyloxy)-13-iodo-2-methoxy-4,10,16-trimethyltrideca-2,4,6,8,12-pentaene (18)

To a solution of $\mathbf{3}(114 \mathrm{mg}, 176 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.50 \mathrm{ml})$ were added DMAP $(43.0 \mathrm{mg}, 352 \mu \mathrm{~mol})$ and $\operatorname{EDC}(67.4 \mathrm{mg}, 352 \mu \mathrm{~mol})$ under Ar atmosphere at $0^{\circ} \mathrm{C}$. After the mixture was stirred for 20 min at the temperature, a solution of $8(88.1 \mathrm{mg}, 704 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.00 \mathrm{ml})$ was added and stirring was continued for another 13 h at room temperature. The reaction was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{ml})$. The resulting mixture was extracted with EtOAc $(2 \mathrm{ml} \times 3)$. The combined organic layer was washed with brine (2 ml), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification of the residue by silica-gel column chromatography (hexane/EtOAc $=10 / 1$ to $4 / 1,1 \% \mathrm{Et}_{3} \mathrm{~N}$) gave 18 ($115 \mathrm{mg}, 152 \mu \mathrm{~mol}, 94 \%$ yield). Pale yellow syrup; $R_{f} 0.30$ ($5 / 1$ hexane/ EtOAc $) ;[\alpha]_{\mathrm{D}}^{26}+23.7^{\circ}\left(c 0.89, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 6.67(1 \mathrm{H}, \mathrm{s})$, $6.51(1 \mathrm{H}, \mathrm{dd}, J=11.5,14.0 \mathrm{~Hz}), 6.40(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}), 6.38(1 \mathrm{H}, \mathrm{dd}$, $J=10.9,17.5 \mathrm{~Hz}), 6.33(1 \mathrm{H}, \mathrm{dd}, J=10.9,14 \mathrm{~Hz}), 6.32(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 6.24$ $(1 \mathrm{H}, \mathrm{dd}, J=10.9,15.2 \mathrm{~Hz}), 6.15(1 \mathrm{H}, \mathrm{dd}, J=7.7,8.3 \mathrm{~Hz}), 5.86(1 \mathrm{H}, \mathrm{d}, J=15.2$ $\mathrm{Hz}), 5.50(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 5.12(1 \mathrm{H}, \mathrm{d}, J=17.5 \mathrm{~Hz}), 4.97(1 \mathrm{H}, \mathrm{d}, J=10.9$ $\mathrm{Hz}), 4.14(1 \mathrm{H}, \mathrm{m}), 4.12(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 3.57(3 \mathrm{H}, \mathrm{s}), 2.38(2 \mathrm{H}, \mathrm{dd}, J=6.9$, $7.5 \mathrm{~Hz}), 2.09(3 \mathrm{H}, \mathrm{s}), 1.77(3 \mathrm{H}, \mathrm{s}), 1.35(3 \mathrm{H}, \mathrm{s}), 1.20(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 0.93$ $(18 \mathrm{H}, \mathrm{m}), 0.59(12 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 163.7,147.3,141.3 \times 2,140.8$, 136.7, 135.9, 135.4, 131.8, 129.6, 128.4, 128.1, 124.8, 111.6, 83.6, 81.3, 78.3, 61.1, 45.5, 35.2, 22.9, 20.6, 15.0, 12.1, 7.3, 7.0, 6.8, 5.2; HRMS (ESI-TOF) m / z 756.3340 (756.3340 calcd for $\mathrm{C}_{36} \mathrm{H}_{63} \mathrm{NO}_{4} \mathrm{Si}_{2} \mathrm{I},[\mathrm{M}+\mathrm{H}]^{+}$).

$(2 Z, 4 E, 6 E, 8 E, 10 R, 11 S, 12 Z, 14 E, 16 E, 18 E)-1-((2 E, 4 E, 6 E)-5-$

Methylhepta-4,6-diene)amide-10,11-bis(triethylsilyloxy)-13-iodo-2-methoxy-4,10,16-trimethylnonadeca-2,4,6,8,12,14,16-heptaene (19) To a solution of $18(25.8 \mathrm{mg}, 34.1 \mu \mathrm{~mol})$ and $7(78.5 \mathrm{mg}, 205 \mu \mathrm{~mol})$ in dry THF/DMF ($1 / 1, \mathrm{v} / \mathrm{v}, 683 \mu \mathrm{l}$) were added $\mathrm{LiCl}(11.6 \mathrm{mg}, 273 \mu \mathrm{~mol}), \mathrm{CuCl}$ $(20.3 \mathrm{mg}, 205 \mu \mathrm{~mol})$ and $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(6.3 \mathrm{mg}, 6.83 \mu \mathrm{~mol})$ under Ar atmosphere at room temperature. After the mixture was stirred for 4 h , the reaction was quenched by addition of saturated NaHCO_{3} aq. (1 ml). The resulting mixture was extracted with hexane/EtOAc $(1 / 1, \mathrm{v} / \mathrm{v}, 1 \mathrm{ml} \times 3)$. The combined organic layer was washed with brine $(5 \mathrm{ml})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification of the residue by silica-gel column chromatography (hexane/EtOAc $=10 / 1$ to $8 / 1,1 \% \mathrm{Et}_{3} \mathrm{~N}$) gave 19 (16.5 mg , $22.8 \mu \mathrm{~mol}, 71 \%$ yield). Pale yellow syrup: $R_{f} 0.31$ ($5 / 1$ hexane/EtOAc); $[\alpha]_{D}^{26}$ $-86.8^{\circ}\left(\right.$ c $\left.0.98, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 6.72(1 \mathrm{H}$, ddd, $J=10.0$, $11.2,16.6 \mathrm{~Hz}), 6.56(1 \mathrm{H}, \mathrm{dd}, J=11.2,15.2 \mathrm{~Hz}), 6.51(1 \mathrm{H}, \mathrm{dd}, J=11.5$, $14.1 \mathrm{~Hz}), 6.41(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}), 6.37(1 \mathrm{H}, \mathrm{dd}, J=11.2,17.5 \mathrm{~Hz}), 6.32$ $(1 \mathrm{H}, \mathrm{dd}, J=11.8,14.1 \mathrm{~Hz}), 6.26(1 \mathrm{H}, \mathrm{d}, J=15.2 \mathrm{~Hz}), 6.25(1 \mathrm{H}, \mathrm{dd}, J=11.8$, $14.9 \mathrm{~Hz}), 6.12(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}), 6.11(1 \mathrm{H}, \mathrm{dd}, J=10.3,11.2 \mathrm{~Hz}), 5.91(1 \mathrm{H}$, d, $J=14.9 \mathrm{~Hz}), 5.50(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 5.37(1 \mathrm{H}, \mathrm{dd}, J=9.2,10.3 \mathrm{~Hz}), 5.26$ $(1 \mathrm{H}, \mathrm{d}, J=16.6 \mathrm{~Hz}), 5.15(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}), 5.12(1 \mathrm{H}, \mathrm{d}, J=17.5 \mathrm{~Hz}), 4.97$ $(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}), 4.32(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 4.14(1 \mathrm{H}, \mathrm{m}), 3.57(3 \mathrm{H}, \mathrm{s}), 2.38$ $(2 \mathrm{H}, \mathrm{dd}, J=6.9,7.2 \mathrm{~Hz}), 2.09(3 \mathrm{H}, \mathrm{s}), 1.90(3 \mathrm{H}, \mathrm{s}), 1.77(3 \mathrm{H}, \mathrm{s}), 1.31(3 \mathrm{H}, \mathrm{s})$, $1.20(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 0.91(18 \mathrm{H}, \mathrm{m}), 0.59(12 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 163.7, 147.3, 142.1, 141.3, 138.3, 136.7, 136.0, 135.9, 135.6, 133.3, 132.3, 131.7, $131.6,130.8,129.2,128.2,128.1 \times 2,125.0,124.8,117.8,111.6,61.1,45.5,35.2$,
21.8, 20.6, 15.0, 12.8, 12.1, 7.4, 7.3, 7.0, 6.8, 5.1; HRMS (ESI-TOF) m / z 722.4979 (722.5000 calcd for $\mathrm{C}_{43} \mathrm{H}_{72} \mathrm{NO}_{4} \mathrm{Si}_{2},[\mathrm{M}+\mathrm{H}]^{+}$).

Incednam (1)

To a stirred solution of $19(16.6 \mathrm{mg}, 23.0 \mu \mathrm{~mol})$ in deaerated $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12.0 \mathrm{ml})$ was added molecular sieves $3 \mathrm{~A}(16.6 \mathrm{mg})$, p-methoxyphenol $(5.7 \mathrm{mg}$, $46.0 \mu \mathrm{~mol})$ and Grela catalyst $21(6.2 \mathrm{mg}, 9.20 \mu \mathrm{~mol})$ at room temperature. After stirring at the temperature for 6.5 h , the solution was passed through silica-gel column chromatography $\left(\mathrm{CHCl}_{3}, 1 \% \mathrm{Et}_{3} \mathrm{~N}\right)$, and concentrated in vacuo. The crude product (3.9 mg) was used for the next reaction without further purification. To a solution of crude product (3.9 mg) in dry THF ($562 \mu \mathrm{l}$) were added the mixture of 1.0 m TBAF in THF ($33.7 \mu \mathrm{l}, 33.7 \mu \mathrm{~mol}$) and $\mathrm{AcOH}(1.6 \mu \mathrm{l}, 28.1 \mu \mathrm{~mol})$ under Ar atmosphere. The reaction mixture was stirred for 16 h at room temperature, and then the mixture of 1.0 m TBAF in THF $(67.4 \mu \mathrm{l}, 67.4 \mu \mathrm{~mol})$ and $\mathrm{AcOH}(3.2 \mu \mathrm{l}, 56.2 \mu \mathrm{~mol})$ was added at the same temperature. After the mixture was stirred for 8 h at the temperature, the reaction was quenched by addition of saturated NaHCO_{3} aq. (2 ml). The resulting mixture was extracted with EtOAc $(2 \mathrm{ml} \times 3)$. The combined organic layer was washed with brine (2 ml), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification of the residue by silica-gel column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=40 / 1,1 \% \mathrm{Et}_{3} \mathrm{~N}\right)$ gave $1(1.8 \mathrm{mg}, 3.9 \mu \mathrm{~mol}$, 17% yield in two steps). Data for an analytical sample of the synthetic incednam (1) obtained by ${ }^{1} \mathrm{H}-\mathrm{NMR}$, HRMS (ESI-TOF) and optical rotation matched those obtained for an authentic sample and a sample from the 1st generation synthesis. ${ }^{1,5}$ Pale yellow powder; $R_{f} 0.46\left(10 / 1 \mathrm{CHCl}_{3} / \mathrm{MeOH}\right) ;[\alpha]_{\mathrm{D}}^{26}$ -1469.4° (c 0.10, CHCl_{3}), lit. ${ }^{1}[\alpha]_{\mathrm{D}}^{20}-1616.7^{\circ}$ (c $0.1, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}=1: 1, \mathrm{TMS}\right) \delta 6.73(1 \mathrm{H}, \mathrm{d}, J=10.6 \mathrm{~Hz}) 6.43(1 \mathrm{H}, \mathrm{dd}, J=11.8$, $14.4 \mathrm{~Hz}), 6.21(1 \mathrm{H}, \mathrm{m}), 6.21(1 \mathrm{H}, \mathrm{m}), 6.19(1 \mathrm{H}, \mathrm{dd}, J=10.9,15.8 \mathrm{~Hz}), 6.18$ $(1 \mathrm{H}, \mathrm{d}, J=15.4 \mathrm{~Hz}), 6.15(2 \mathrm{H}, \mathrm{m}), 6.10(1 \mathrm{H}, \mathrm{m}), 6.05(1 \mathrm{H}, \mathrm{d}, J=10.6 \mathrm{~Hz})$, $6.02(1 \mathrm{H}, \mathrm{dd}, ~ J=10.9,14.4 \mathrm{~Hz}), 5.95(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}), 5.65(1 \mathrm{H}, \mathrm{d}$, $J=15.8 \mathrm{~Hz}), 5.45(1 \mathrm{H}, \mathrm{t}, J=9.2), 5.45(1 \mathrm{H}, \mathrm{m}), 4.22(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 4.17$ $(1 \mathrm{H}, \mathrm{m}), 3.58(3 \mathrm{H}, \mathrm{s}), 2.28(1 \mathrm{H}, \mathrm{m}), 2.32(1 \mathrm{H}, \mathrm{m}), 2.09(3 \mathrm{H}, \mathrm{s}), 1.70(3 \mathrm{H}, \mathrm{s})$, $1.66(3 \mathrm{H}, ~ \mathrm{~s}), \quad 1.49(3 \mathrm{H}, ~ \mathrm{~s}), 1.32(3 \mathrm{H}, \mathrm{d}, \quad J=6.7 \mathrm{~Hz} \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}=1: 1\right) \delta 167.0,147.4,143.4,138.0,137.8 \times 3,137.4,135.5$, $132.4 \times 2,130.7,130.6,130.0,129.1,128.1,127.1,125.4,124.6,76.2,76.0,61.3$, $47.2,38.5,22.8,20.9,14.3,13.0,12.8$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z} 466.2948$ (466.2957 calcd for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{NO}_{4},[\mathrm{M}+\mathrm{H}]{ }^{+}$).

1 Futamura, Y. et al. Discovery of incednine as a potent modulator of the anti-apoptotic function of Bcl-xL from microbial origin. J. Am. Chem. Soc. 130, 1822-1823 (2008).
2 Tsujimoto, Y., Finger, L. R., Yunis, J., Nowell, P. C. \& Croce, C. M. Cloning of the chromosome breakpoint of neoplastic B cells with the $t(14 ; 18)$ chromosome translocation. Science 226, 1097-1099 (1984).
3 Reed, J. C., Cuddy, M., Slabiak, T., Croce, C. M. \& Nowell, P. C. Oncogenic potential of bcl-2 demonstrated by gene transfer. Nature 336, 259-261 (1988).
4 Gross, A., McDonnell, J. M. \& Korsmeyer, S. J. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13, 1899-1911 (1999).
5 Ohtani, T. et al. Total synthesis of incednam, the aglycon of incednine. Org. Lett. 12, 5068-5071 (2010).
6 Grubbs, R. H. Olefin metathesis. Tetrahedron 60, 7117-7140 (2004).
7 Gradillas, A. \& Pérez-Castells, J. Macrocyclization by ring-closing metathesis in the total synthesis of natural products: reaction conditions and limitations. Angew. Chem. Int. Ed. 45, 6086-6101 (2006).
8 Nicolaou, K. C., Bulger, P. G. \& Sarlah, D. Metathesis reactions in total synthesis. Angew. Chem. Int. Ed. 44, 4490-4527 (2005).
9 Betzer, J. -F., Delaloge, F., Muller, B., Pancrazi, A. \& Prunet, J. Radical hydrostannylation, $\operatorname{Pd}(0)$-catalyzed hydrostannylation, stannylcupration of propargyl alcohols and enynols: regio- and stereoselectivities. J. Org. Chem. 62, 7768-7780 (1997),
10 Michels, T. D., Rhee, J. U. \& Vanderwal, C. D. Synthesis of δ-tributylstannyl- $\alpha, \beta, \gamma, \delta$ unsaturated aldehydes from pyridines. Org. Lett. 10, 4787-4790 (2008).
11 Staudinger, H. \& Meyer, J. New organic compounds of phosphorus. III. Phosphinemethylene derivatives and phosphinimines. Helv. Chim. Acta 2, 635-646 (1919).
12 Stuckwisch, C. G. Azomethine ylides, azomethine imines, and iminophosphoranes in organic syntheses. Synthesis 469-483 (1973).
13 Han, X., Stoltz, B. M. \& Corey, E. J. Cuprous chloride accelerated Stille reactions. A general and effective coupling system for sterically congested substrates and for enantioselective synthesis. J. Am. Chem. Soc. 121, 7600-7605 (1999).
14 Schwab, P., France, M. B., Ziller, J. W. \& Grubbs, R. H. A series of well-defined metathesis catalysts-synthesis of $\left[\mathrm{RuCl}_{2}\left(: \mathrm{CHR}^{\prime}\right)\left(\mathrm{PR}_{3}\right)_{2}\right]$ and its reactions. Angew. Chem. Int. Ed. 34, 2039-2041 (1995).
15 Scholl, M., Trnka, T. M., Morgan, J. P. \& Grubbs, R. H. Increased ring closing metathesis activity of ruthenium-based olefin metathesis catalysts coordinated with imidazolin-2-ylidene ligands. Tetrahedron Lett. 40, 2247-2250 (1999).
16 Kingsbury, J. S., Harrity, J. P. A., Bonitatebus, P. J. Jr \& Hoveyda, A. H. A recyclable Ru-based metathesis catalyst. J. Am. Chem. Soc 121, 791-799 (1999).
17 Garber, S. B., Kingsbury, J. S., Gray, B. L. \& Hoveyda, A. H. Efficient and recyclable monomeric and dendritic Ru-based metathesis catalysts. J. Am. Chem. Soc. 122, 8168-8179 (2000).
18 Grela, K., Harutyunyan, S. \& Michrowska, A. A highly efficient ruthenium catalyst for metathesis reactions. Angew. Chem. Int. Ed. 41, 4038-4040 (2002).
19 Bieniek, M., Michrowska, A., Gułajski, Ł. \& Grela, K. A practical larger scale preparation of second-generation Hoveyda-type catalysts. Organometallics 26, 1096-1099 (2007).
20 Ohtani, T., Sakai, S., Takada, A., Takahashi, D. \& Toshima, K. Efficient and stereoselective synthesis of the disaccharide fragment of incednine. Org. Lett. 13, 6126-6129 (2011).

[^0]: Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
 Correspondence: Professor K Toshima, Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
 E-mail: toshima@applc.keio.ac.jp
 Received 10 December 2012; revised 6 January 2013; accepted 7 January 2013; published online 6 February 2013

