NOTE

Revised structure and stereochemical assignments of amphidinolide N

Yohei Takahashi¹, Takaaki Kubota¹, Misako Imachi², Markus R Wälchli² and Jun'ichi Kobayashi¹

The Journal of Antibiotics (2013) 66, 277-279; doi:10.1038/ja.2012.117; published online 9 January 2013

Keywords: amphidinolide N; Amphidinium sp.; cytotoxic macrolide; dinoflagellate; stereochemistry

Amphidinolides are a series of cytotoxic macrolides isolated from laboratory-cultured marine dinoflagellates Amphidinium sp.¹ Amphidinolide N (1),² isolated from Amphidinium sp. (Y-5 strain), is a 26-membered macrolide having an allyl epoxide and a tetrahydropyran with 13 chiral centers. Among all amphidinolides isolated so far, amphidinolide N (1) is the most potent cytotoxic macrolide with IC50 values against murine lymphoma L1210 and human epidermoid carcinoma KB cells in vitro being 0.00005 and $0.00006 \,\mu g \,ml^{-1}$, respectively. Owing to the complex structure and the extraordinarily potent cytotoxicity, amphidinolide N (1) has been a challenging target for total synthesis.^{3–6} In our previous studies,² gross structure 1b was proposed based on 2D NMR and mass spectral data, and the configuration of epoxide and the relative stereochemistry of the C-14-C-19 portions were assigned from J-values and NOESY data. However, the stereochemistry of the remaining part has not yet been elucidated. Here we describe a revision of the gross structure from 1b to 1a (Figure 1) and full assignment of the relative stereochemistry of amphidinolide N (Figure 5).

The molecular formula of amphidinolide N was established as $C_{33}H_{52}O_{11}$ from ESIMS (m/z 647 (M + Na)⁺ (pos.), m/z 623 (M-H)⁻ (neg.)) (in our previous studies,² pseudo molecular ion peaks of amphidinolide N, m/z 730 (M + DEA + H)⁺ and m/z 748

 $(M + DEA + H_3O)^+$, were misinterpreted as m/z 730 $(M + DEA + DEA)^+$ $H-H_2O)^+$ and m/z 748 (M + DEA + H)⁺, respectively). Deuteriuminduced shifts in ¹³C NMR resonances for amphidinolide N were measure by using C₆D₆/CD₃OH (3:1) and C₆D₆/CD₃OD (3:1) as solvents. Of 11 signals observed for oxygenated sp³ carbons, six oxymethines did not show deuterium-induced upfield shifts (Table 1). Of the unchanged oxymethines, two high-field methine carbons at δ 54.92 (C-5) and 62.98 (C-4) in C₆D₆/CD₃OH (3:1) were attributed to those of an epoxide ring. Two carbons at δ 98.08 (which did show the upfield shift) and 66.73 were assigned as a hemiacetal carbon at C-15 and an oxymethine carbon at C-19, respectively, whereas an oximethine carbon (δ 75.66) was elucidated to be that forming a lactone linkage between C-1 and C-25. The remaining two unchanged oxygenated carbons at δ 75.61 and 80.22 were assigned as C-21 and C-24, respectively, suggesting that C-21 and C-24 were not connected to hydroxy groups. The cross-peak of H-24 to C-21 observed in the HMBC spectrum of 1a indicated that C-21 and C-24 were connected to each other through an ether linkage. Thus, the gross structure of amphidinolide N was revised from 1b to 1a (Figure 1).

In our previous studies,² the configuration of the 4,5-epoxide was deduced to be *trans* from the coupling constant (${}^{3}J_{H-4/H-5} = 1.9 \text{ Hz}$), and the relative stereochemistry of the C-14-C-19 portions was

Figure 1 Revised (1a) and proposed (1b) gross structures of amphidinolide N.

¹Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan and ²Bruker Biospin K.K. 3-9, Moriya-cho, Kanagawa-ku, Yokohama-shi, Kanagawa, Japan Correspondence: Professor J Kobayashi, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan. E-mail: jkobay@pharm.hokudai.ac.jp

Received 3 September 2012; revised 29 November 2012; accepted 4 December 2012; published online 9 January 2013

npg

Table 1 ¹³C NMR data of amphidinolide N (1)

Position	$\delta_{\mathcal{C}}^{a}$	$\delta_{\mathcal{C}}^{b}$	$\Delta \delta_{\mathcal{C}}^{c}$
1	174.33	174.34	-0.01
2	45.96	45.90	0.06
3	73.60	73.50	0.10
4	62.98	62.94	0.04
5	54.92	54.92	0.00
6	147.49	147.46	0.03
7	69.89	69.77	0.12
8	46.10	46.06	0.04
9	210.70	210.75	-0.05
10	47.33	47.33	0.00
11	127.18	127.13	0.05
12	136.75	136.75	0.00
13	40.45	40.39	0.06
14	71.38	71.27	0.11
15	98.08	97.98	0.10
16	65.74	65.59	0.15
17	27.37	27.34	0.03
18	25.72	25.72	0.00
19	66.73	66.74	-0.01
20	42.02	42.01	0.01
21	75.61	75.62	-0.01
22	32.99	32.98	0.01
23	28.01	28.01	0.00
24	80.22	80.22	0.00
25	75.66	75.66	0.00
26	31.38	31.38	0.00
27	27.91	27.91	0.00
28	22.74	22.74	0.00
29	14.16	14.17	-0.01
30	13.94	13.94	0.00
31	111.73	111.75	-0.02
32	15.59	15.58	0.01
33	15.05	15.05	0.00

 δ_{C} in C₆D₆/CD₃OH, 3:1.

 δ_{C} in C₆D₆/CD₃OD, 3:1.

 ${}^{c}\varDelta\delta_{C} = \delta_{C}$ (in C₆D₆/CD₃OH, 3:1)— δ_{C} (in C₆D₆/CD₃OD, 3:1).

Figure 2 Rotation models for (a) C-2-C-3 and (b) C-3-C-4 bonds of amphidinolide N.

elucidated from J-values and NOESY data. In this study, the relative stereochemistry of the C-2-C-4 segment was analyzed by the J-based configuration analysis method.⁷ The values for ${}^{3}J_{H-2/H-3}$ (7.2 Hz), ${}^{3}J_{C-1}$

Figure 3 Selected NOESY correlations and relative stereochemistry for amphidinolide N (C-4-C-10 part).

Figure 4 Selected NOESY correlations and relative stereochemistry for amphidinolide N (C-15-C-26 and C-1-C-2 parts).

Figure 5 Relative stereochemistry of amphidinolide N (1).

 $_{4/H-2}$ (3.3 Hz), $^{3}J_{C-1/H-3}$ (3.4 Hz) and $^{2}J_{C-3/H-2}$ (-4.7 Hz), which were obtained from the ¹H NMR and J-HMBC⁸⁻¹² spectra, indicated that C-1 was *gauche* to C-4, H-2 was *gauche* to 3-OH and H-3 was *gauche* to C-30. The *gauche* relation between the H-3 and C-30 was deduced from the intense NOESY correlation for H-3/H₃-30 as well, suggesting the *threo* relation for the C-2-C-3 bond (Figure 2a). The values for $^{3}J_{H-3/H-4}$ (4.6 Hz), $^{3}J_{C-5/H-3}$ (4.6 Hz), $^{3}J_{C-2/H-4}$ (3.3 Hz) and $^{2}J_{C-4/H-3}$ (-3.2 Hz), and the intense NOESY correlation for H-2/H-5 indicated that C-2 was *gauche* to C-5, H-3 was *gauche* to O-4 and H-4 was

gauche to 3-OH, suggesting assignment of the relative configuration of C-3-C-4 as threo (Figure 2b).

The relative stereochemistry of the C-5-C-10 segment was deduced from *J*-values and NOESY data. The values for ${}^{3}J_{\text{H-7/H-8a}}$ (10.4 Hz) and ${}^{3}J_{\text{H-7/H-8b}}$ (2.3 Hz) indicated an *anti* relationship for H-7 and H-8a, while NOESY correlations of H-5/H-8b and H-8b/H-10 showed proximity of H-5, H-8b and H-10, reading to the relative configurations shown in Figure 3.

Proximity of H-18, H-21 and H-25 was indicated by NOESY correlations of H-18/H-21 and H-21/H-25, suggesting that the relative stereochemistry of H-21 and H-24 in the tetrahydrofuran ring was *anti*. The proximity of H-24 and H-2 was deduced from the NOESY correlation of H-24/H-2. The relative configurations from C-15 through C-2 as shown in Figure 4 were suggested by these NOESY correlations. Thus, the relative stereochemistry of amphidinolide N (1) was elucidated as shown in Figure 5.

ACKNOWLEDGEMENTS

We thank Ms S Oka and Ms M Kiuchi, Instrumental Analysis Division, Equipment Management Center, Creative Reseach Institution, Hokkaido University, for measurements of ESIMS. This work was partly supported by a research fellowship for young scientists from the Japan Society for the Promotion of Science (to YT), the Akiyama Life Sience Foundation, the Suhara Memorial Foundation and Grant-in-Aid for Scientific Research on Innovative Areas (Biosynthetic Machinery) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

- Kobayashi, J. & Kubota, T. In *Comprehensive Natural Products II: Chemistry and Biology* Vol. 2 (ed. Mander, L. & Lui, H.-W.) 263–325 (Elsevier Science, Oxford, 2010).
- 2 Ishibashi, M., Yamaguchi, N., Sasaki, T. & Kobayashi, J. Amphidinolide N, a novel 26-membered macrolide with remarkably potent cytotoxicity from the cultured marine dinoflagellate Amphidinium sp. J. Chem. Soc., Chem. Commun. 1455–1456 (1994).
- 3 Nicolaou, K. C., Brenzovich, W. E. & Bulger, P. G. Synthesis of *iso*-epoxy-amphidinolide N and des-epoxy-caribenolide I structures. Initial forays. *Org. Biomol. Chem.* 4, 2119–2157 (2006).
- 4 Nicolaou, K. C., Bulger, P. G., Brenzovich, W. E. & Francis, T. M. Synthesis of *iso*epoxy-amphidinolide N and *des*-epoxy-caribenolide I structures. Revised strategy and final stages. *Org. Biomol. Chem.* **4**, 2158–2183 (2006).
- 5 Seck, M., Franck, X., Seon-Meniel, B., Hocquemiller, R. & Figadére, B. A. Baylis-Hillman approach to the synthesis of C₁-C₁₁ fragment of caribenolide I. *Tetrahedron Lett.* 47, 4175–4180 (2006).
- 6 Trost, B. M. & Rey, J. Diastereoselective formation of tetrahydrofurans via Pd-catalyzed asymmetric allylic alkylation: synthesis of the C13-C29 subunit of amphidinolide N. *Org. Lett.* 14, 5632–5635 (2012).
- 7 Matsumori, N., Kaneno, D., Murata, M., Nakamura, H. & Tachibana, K. Stereochemical determination of acyclic structures based on carbon – proton spin-coupling constants. A method of configuration analysis for natural products. *J. Org. Chem.* 64, 866–876 (1999).
- 8 Zhu, G., Live, D. & Bax, A. Analysis of sugar puckers and glycosidic torsion angles in a DNA G-tetrad structure by heteronuclear three-bond J couplings. *J. Am. Chem. Soc.* **116**, 8370–8371 (1994).
- 9 Willker, W. & Leibfritz, D. Determination of heteronuclear long-range H,X coupling constants from gradient-selected HMBC spectra. *Magn. Reson. Chem.* **33**, 632–638 (1995).
- 10 Sheng, S. & Halbeek, H. V. Accurate and precise measurement of heteronuclear longrange couplings by a gradient-enhanced two-dimensional multiple-bond correlation experiment. J. Magn. Reson. 130, 296–299 (1998).
- 11 Furihata, K. & Seto, H. J-Resolved HMBC, a new NMR technique for measuring heteronuclear long-range coupling constants. *Tetrahedron Lett.* **40**, 6271–6275 (1999).
- 12 Keyang, D. Direct measurement of heteronuclear long-range coupling constants from phase-sensitive HMBC spectra. *Magn. Reson. Chem.* **38**, 321–323 (2000).