ORIGINAL ARTICLE

Comparison of drug sensitivity and genotypes of clinically isolated strains of levofloxacin-resistant *Streptococcus pneumoniae* obtained from Okinawa Island, the Japanese main island and Hong Kong

Satoko Sunagawa^{1,2}, Jiro Fujita¹, Futoshi Higa¹, Masao Tateyama¹, Shusaku Haranaga¹, Isamu Nakasone³, Nobuhisa Yamane³ and Tsukasa Uno²

The prevalence of fluoroquinolone-resistant *Streptococcus pneumoniae* is increasing worldwide. In the present study, a comparison of drug sensitivity and genotypes of clinically isolated strains of levofloxacin (LVFX)-resistant *S. pneumoniae* obtained from Hong Kong, Okinawa Island and the Japanese main island (Honshu) was performed. MICs of quinolones (LVFX, tosufloxacin, ciprofloxacin, gatifloxacin and sitafloxacin (STFX)) and other antibiotics (penicillin G, cefcapene, cefditoren, clarithromycin and azithromycin) were determined by a microdilution broth method according to the Clinical and Laboratory Standards Institute Standards. The quinolone-resistance determining regions (QRDRs) of *gyrA*, *gyrB*, *parC* and *parE* of these strains were analyzed by PCR-based sequencing. All 40 strains tested had more than one amino-acid substitution in the QRDRs of *gyrA*, *gyrB*, *parC* or *parE*. Although there seemed to be some clonality in strains obtained from Hong Kong, there was no clonality in strains obtained from Okinawa and Japan. Strains obtained from Hong Kong, Okinawa Island and the Japanese main island were genetically different by pulsed-field gel electrophoresis analysis. The range of MIC values of STFX against isolates resistant to LVFX (MIC 4–32 mg l⁻¹) was 0.12–0.5 mg l⁻¹, and MIC₈₀ values of STFX against LVFX-resistant isolates were 0.25 mg l⁻¹. This study suggests that LVFX-resistant *S. pneumoniae* is similar in all three locations and STFX is potent against LVFX-resistant *S. pneumoniae* with multiple mutations in QRDRs of gyrase A and topoisomerase IV. *The Journal of Antibiotics* (2011) **64**, 539–545; doi:10.1038/ja.2011.46; published online 18 May 2011

Keywords: gyrase; levofloxacin-resistant S. pneumoniae; PFGE; sitafloxacin; topoisomerase IV

INTRODUCTION

Streptococcus pneumoniae is a major cause of respiratory tract infections, bacteremia and bacterial meningitis. Although penicillin has been the most effective drug for the treatment of infections caused by *S. pneumoniae*, the incidence of multiple drug-resistant *S. pneumoniae* is currently increasing throughout the world.¹ In particular, the rapid spread of pneumococcal clones resistant to β -lactams and macrolides has promoted the use of selected fluoroquinolones for the treatment of pneumococcal infections. Therefore, fluoroquinolones with antipneumococcal activity, such as levofloxacin (LVFX), tosufloxacin (TSFX), ciprofloxacin (CPFX), sparfloxacin (SPFX), gatifloxacin (GTFX) and sitafloxacin (STFX), may have an important role in the management of pneumococcal disease.²

The reported increase in *S. pneumoniae* resistance to fluoroquinolones is of great concern. So far, two mechanisms responsible for the reduced susceptibility to fluoroquinolones have been identified in clinical isolates: target alteration and/or reduced drug accumulation due to drug efflux.³ The targets of fluoroquinolones are DNA gyrase and topoisomerase IV, which are encoded by *gyrA*, *gyrB*, *parC* and *parE*, and fluoroquinolone-resistant strains show amino-acid substitutions in the quinolone-resistance determinant regions (QRDRs) of DNA gyrase and topoisomerase IV. Multiple mutations within the QRDRs of both *gyrA* and *parC* result in high-level resistance against LVFX.⁴ We hypothesized that the increase of fluoroquinolone-resistant clones in restricted areas. Therefore, in the present study, a comparison of the drug sensitivities and genotypes of clinically isolated strains of LVFX-resistant *S. pneumoniae* obtained from Hong Kong, Okinawa Island and the Japanese main island (Honshu) was performed.

Correspondence: Prof Dr J Fujita, Department of Infectious, Respiratory, and Digestive Medicine, Control and Prevention of Infectious Diseases (First Department of Internal Medicine), Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0125, Japan. E-mail: fujita@med.u-ryukyu.ac.jp

Received 27 February 2011; revised 26 April 2011; accepted 26 April 2011; published online 18 May 2011

¹Department of Infectious, Respiratory, and Digestive Medicine, Control and Prevention of Infectious Diseases, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan; ²Department of Hospital Pharmacy, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan and ³Clinical Laboratories, University of the Ryukyus Hospital, Okinawa, Japan

540

Bacterial strains

Forty clinical isolates of *S. pneumoniae* with resistance to LVFX (MIC $\ge 4 \text{ mgl}^{-1}$) were used in this study, including 19 from Hong Kong, 9 from Okinawa Island and 12 from the Japanese main island (Honshu). Strains were collected from various specimens submitted to the clinical laboratory. Only one isolate per patient was considered. The isolates were confirmed to be *S. pneumoniae* by colony morphology, optochin susceptibility and bile solubility, and the presence of the autolysin gene *lytA* was confirmed by PCR (Wakunaga Pharmaceuticals, Hiroshima, Japan). Bacteria were grown on 5% sheep blood agar (Kyokuto, Tokyo, Japan) at 37 °C in an atmosphere of 5% CO₂. LVFX-susceptible clinical strains, *S. pneumoniae* ATCC 700669 and ATCC 700671, were used as quality control strains for sequence analysis and MIC determination.

Antimicrobial susceptibility testing

The MICs of quinolones (IVFX, TSFX, CPFX, SPFX, GTFX and STFX) and other antibiotics (penicillin G (PCG), cefcapene (CFPN), cefditoren (CDTR), clarithromycin (CAM) and azithromycin (AZM)) were determined by the twofold broth microdilution method according to the guidelines of the Clinical and Laboratory Standards Institute (formerly National Committee for Clinical Laboratory Standards).⁵ Cation-adjusted Mueller–Hinton broth (Difco Laboratories, Detroit, MI, USA) was supplemented with 3% lysed horse blood. Microdilution trays (final volume, 100 µl per well) were inoculated using an automatic MIC-2000 inoculator (Dynatech Laboratories, Alexandria, VA, USA). Final inocula contained $\sim 5 \times 10^4$ CFU per well. The MIC of each drug was defined as the lowest concentration resulting in the complete inhibition of visible growth after 18 h incubation.

Sequencing and analysis of DNA-related drug sensitivity

Ouinolone-resistance gene. Mutations in the ORDRs of the gvrA, gvrB, parC and parE genes of LVFX-resistant strains were investigated by a method involving PCR. The primer sequences used in this study have been previously described.⁶ Bacterial genomic DNA was prepared from several colonies of S. pneumoniae grown on a blood agar plate by boiling with Chelex-100 (Bio-Rad, Hercules, CA, USA). Subsequently, 5 µl of the extract was added to 50 µl of a PCR solution (1×PCR buffer, 200 µM of each dNTP, 2.5 U of Taq polymerase (Takara Biomedical, Kyoto, Japan) and 0.5 µM of sense and reverse primers). PCR conditions were as follows: 35 cycles at 94 °C for 30 s, 55 °C for 30 s and 72 °C for 1 min. The PCR products were electrophoresed on an agarose gel to confirm the presence of the product, and were then purified with a PCR purification kit (Qiagen Sciences, Germantown, MD, USA) to prepare the sequencing template. The sequencing reaction was conducted with a Rhodamine Terminator Cycle Sequencing FS Ready Reaction kit (Perkin-Elmer Biosystems, Foster city, CA, USA). The reaction mixtures were placed in a thermal cycler and denatured at 94 °C for 2 min. Reactions were then subjected to 25 cycles (94 $^\circ \rm C$ for 10 s, 50 $^\circ \rm C$ for 5 s and 60 $^\circ \rm C$ for 4 min). The nucleotide sequences were determined using an ABI PRISM3100 DNA sequencer (Applied Biosystems, Carlsbad, CA, USA).

Penicillin-binding protein gene alterations. We evaluated alterations in penicillin-binding protein (PBP) genes of *S. pneumoniae* by PCR, according to Ubukata *et al.*,⁷ with some modifications described by Harimaya *et al.*⁸ The system contains primer sets for unaltered PBP genes (*pbp1a, pbp2x* and *pbp2b*). Extraction of DNA from a colony on a blood agar plate and PCR was performed according to Ubukata *et al.*⁹ The reaction profile used was 30 cycles of 94 °C for 30 s, 53 °C for 30 s and 72 °C for 1 min. PCR products were separated in 3% NuSieve 3:1 agarose (Cambrex, East Rutherford, NJ, USA) and visualized by UV light illumination. The bands of PBP genes were detected on the agarose gel when the PBP genes were not altered, and the bands were not detected when the genes were altered.

Macrolide-resistance gene. Two sets of oligonucleotide primers designed on the basis of our sequence results were as follows: ermB1, 5'-721CGTACCTTGG ATATTCACCG740-3' and ermB2, 5'-944GTAAACAGTTGACGATATTCTCG 922-3' for the *ermB* gene; and mefA1, 5'-288CTGTATGGAGCTACCTGT CTGG309-3' and mefA2, 5'-581CCCAGCTTAGGTATACGTAC562-3' for the *mefA* gene. The DNA fragments amplified by these primers were 224 bp for the

ermB and 294 bp for the *mefA* gene. A single colony on the blood agar medium was suspended in a microtube containing 30 μ l lysis solution.⁷ The tube was set in a thermal cycler (Gene Amp PCR System 9600-R; Perkin-Elmer, Norwalk, CT, USA), and bacterial cells were lysed by incubation at 60 °C for 10 min followed by 94 °C for 5 min. Next, 2 μ l of the lysed bacterial solution was placed in a PCR tube containing 25 μ l of a reaction mixture. One milliliter of the reaction mixture consisted of 60 ng of a primer for each of *ermB* and *mefA*, 80 μ l 25 mM dNTP mixture, 25 U *Taq* DNA polymerase and 100 μ l of 10×PCR buffer. The PCR conditions were 94 °C for 20 s, 52 °C for 20 s and 72 °C for 15 s, with 30 cycles in total.

Molecular typing

Isolates were characterized by pulsed-field gel electrophoresis (PFGE) by previously described methods.^{10,11} Fragments were separated by PFGE in a CHEF-DRIII apparatus (Bio-Rad) as previously described, and were compared using the Fingerprinting software (Bio-Rad). The PFGE profiles were visually examined, and clusters were assigned on the basis of three or fewer band differences,¹² corresponding to a similarity index of ~80%. Therefore, a cluster was defined as three or more isolates sharing $\geq 80\%$ similarity on the dendrogram.

RESULTS

A list of LVFX-resistant strains obtained from Hong Kong, Okinawa Island and the Japanese main island and susceptibilities of several antibiotics against these strains are shown in Table 1. The MICs for LVFX, TFLX, CPFX, SPFX, GFLX, STFX, PCG, CFPN, CDTR, CAM and AZM against the control strain, ATCC 700669, were 1, 0.12, 2, 0.25, 0.25, 0.06, 2, 1, 1, <0.06 and <0.06 mgl⁻¹, respectively (Table 1). The MICs for LVFX, TFLX, CPFX, SPFX, GFLX, STFX, PCG, CFPN, CDTR, CAM and AZM against the second control strain, ATCC 700671, were 1, 0.12, 1, 0.25, 0.25, <0.03, 2, 1, 0.5, <0.06 and <0.06 mgl, respectively (Table 1).

The ranges of MICs for PCG, CFPN, CDTR, CAM and AZM against isolates resistant to LVFX (MIC 4–32 mg l⁻¹) are shown in Figure 1. Strains obtained from Okinawa had relatively high susceptibilities to β -lactams and macrolides (Table 1; Figure 1). In addition, the ranges of MICs for LVFX, TFLX, CPFX, SPFX, GFLX and STFX against isolates resistant to LVFX (MIC 4–32 mg l⁻¹) are shown in Figure 2. STFX demonstrated the lowest MICs against LVFX-resistant strains (Figure 2). The range of MIC for STFX against isolates resistant to LVFX (MIC 4–32 mg l⁻¹) was 0.125–0.5 mg l⁻¹ and the MIC₈₀ for STFX against LVFX-resistant isolates was 0.25 mg l⁻¹ (Table 1; Figure 2).

Nucleotide sequencing of the region encoding the QRDRs of *gyrA*, *gyrB*, *parC* and *parE* was carried out to investigate the involvement of gene mutations in IVFX-resistant clinical isolates. The results of sequencing analysis were reproducible. Table 2 summarizes the substitutions of deduced amino-acid sequences within QRDRs of *gyrA*, *gyrB*, *parC* and *parE* of the 42 IVFX-resistant strains. All 40 IVFX-resistant strains had more than one amino-acid substitution in the QRDRs of *gyrA*, *gyrB*, *parC* or *parE*, which included Ser81Tyr/Phe, Glu85Lys, Ser114Gly and Ala115His in *gyrA*, Ser79Phe/Ile/Tyr, Asp83Tyr, Asn91Asp, Ser107Phe, Lys137Asn and Ala142Ser in *parC* and Asp435Asn and Ile460Val in *parE*. Among these, 34 strains had amino-acid substitutions in both QRDRs of *gyrA* and *parC*. Most isolates had Ser81Tyr/Phe in *gyrA*, and Ile460Val substitutions in *parE*. Only one strain (#19) had the amino-acid substitution Arg477His in *gyrB* (Table 2).

PBP gene mutations

Among 42 isolates, 40 had mutations in the PBP genes. Only two strains obtained from Okinawa Island (#27 and #28) had no mutations in PBP genes (Table 3). Thirty-one strains had pbp1a+2x+2b, two strains (#22 and #29) had pbp2x+2b, three strains

541

Table 1 Levofloxacin-resistant strains obtained from Hong Kong, Okinawa Island and Japan main island and sensitivities to several drugs

Number of strains	Name of strains	Strains obtained from	LVFX	TFLX	CPFX	SPFX	GFLX	STFX	PCG	CFPN	CDTR	CAM	AZM
1	ATCC 700669	Standard strain	1	0.12	2	0.25	0.25	0.06	2	1	1	< 0.06	< 0.06
2	ATCC 700671	Standard strain	1	0.12	1	0.25	0.25	< 0.03	2	1	0.5	< 0.06	< 0.06
3	06M092601	Hong Kong	16	4	32	8	4	0.25	2	2	1	>64	>16
4	06M092603	Hong Kong	16	4	32	8	4	0.25	2	2	1	>64	>16
5	06M092604	Hong Kong	16	4	32	8	4	0.25	2	2	1	>64	>16
6	06M092605	Hong Kong	16	4	16	8	4	0.25	2	1	1	4	8
7	06M092606	Hong Kong	16	4	16	8	4	0.25	2	2	1	>64	>16
8	06M092607	Hong Kong	8	0.5	4	1	2	0.25	4	2	2	0.5	0.5
9	06M092608	Hong Kong	8	4	16	4	4	0.25	4	2	2	>64	>16
10	06M092609	Hong Kong	16	4	32	8	8	0.25	2	2	1	1	2
11	06M092610	Hong Kong	16	4	32	8	8	0.25	2	1	1	0.5	1
12	06M092611	Hong Kong	16	4	32	8	8	0.25	2	2	1	0.5	1
13	06M092612	Hong Kong	16	2	32	16	8	0.5	2	4	2	0.5	2
14	06M092613	Hong Kong	4	0.25	2	0.5	1	0.25	2	0.5	0.5	>64	>16
15	06M092614	Hong Kong	4	0.25	2	0.5	2	0.25	1	0.5	0.5	>64	>16
16	06M092615	Hong Kong	4	0.25	2	0.5	2	0.25	2	0.5	0.5	>64	>16
17	06M092616	Hong Kong	16	4	32	8	4	0.25	4	2	1	16	>16
18	06M092617	Hong Kong	16	4	32	8	8	0.5	2	2	1	0.5	1
19	06M092618	Hong Kong	16	8	32	8	4	0.25	2	2	1	>64	>16
20	06M092619	Hong Kong	16	4	32	8	4	0.25	2	2	1	>64	>16
21	06M092620	Hong Kong	8	4	16	4	4	0.25	2	2	1	1	2
22	2528	Okinawa	8	1	4	1	2	0.25	0.5	0.5	0.5	>64	>16
23	A0184	Okinawa	16	8	32	16	4	0.25	1	0.25	0.25	1	2
24	E67	Okinawa	16	8	32	16	8	0.25	0.12	< 0.06	< 0.06	>64	>16
25	2E54	Okinawa	16	8	64	8	4	0.25	< 0.03	< 0.06	< 0.06	< 0.06	< 0.06
26	98	Okinawa	16	8	64	8	8	0.25	2	2	1	>64	>16
27	V7	Okinawa	16	8	64	16	8	0.25	< 0.03	< 0.06	< 0.06	< 0.06	< 0.06
28	HC37	Okinawa	16	8	64	8	8	0.25	< 0.03	< 0.06	< 0.06	< 0.06	< 0.06
29	YE4	Okinawa	32	8	32	32	8	0.5	0.25	< 0.06	< 0.06	< 0.06	< 0.06
30	TZ2-7	Okinawa	32	8	32	16	8	0.5	0.25	0.5	0.25	1	2
31	H35	Okayama	16	4	16	8	4	0.25	< 0.03	0.5	0.25	< 0.06	< 0.06
32	H41	Nagasaki	32	4	32	8	8	0.25	< 0.03	< 0.06	< 0.06	>64	>16
33	H91	Kanagawa	8	1	8	2	2	0.125	2	1	1	2	4
34	H26	Tokyo	16	2	16	8	8	0.5	1	0.5	0.5	1	2
35	H364	Tokyo	16	8	32	8	4	0.25	1	0.5	0.5	1	2
36	H1344	Fukuoka	32	4	32	8	8	0.25	0.06	0.25	0.12	>64	>16
37	H1565	Miyagi	16	8	32	8	4	0.25	2	1	0.5	2	4
38	H358	Tokyo	8	0.5	8	1	2	0.25	1	0.5	0.5	0.25	0.5
39	H2360	Hokkaido	16	8	32	8	4	0.25	2	8	4	4	8
40	H1881	Fukuoka	8	2	16	8	2	0.125	0.25	0.5	0.5	>64	>16
41	H1892	Fukuoka	8	2	32	4	2	0.125	1	2	1	>64	>16
42	H2364	Hokkaido	8	0.5	4	2	4	0.125	< 0.03	1	0.5	2	2

Abbreviations: LVFX, levofloxacin; TFLX, tosufloxacin; CPFX, ciprofloxacin; SPFX, sparfloxacin; GFLX, gatifloxacin; STFX, sitafloxacin; PCG, penicillin G; CFPN, cefcapene; CDTR, cefditoren; CAM, clarithromycin; AZM, azithromycin.

(#24, #32 and #36) had pbp2x, one strain (#25) had pbp2b, and three strains (#31, #40 and #42) had pbp1a+2x (Table 3). In particular, all 19 strains obtained from Hong Kong had pbp1a+2x+2b. In contrast, strains obtained from Okinawa Island and the Japanese main island demonstrated heterogeneous mutation patterns in PBP genes (Table 3).

Expressions of macrolide-resistant genes

Among 42 strains, 18 strains had *mefA* gene expression and 18 strains had *ermB* gene expression. Only one strain (#26) expressed both *mefA* gene and *ermB* gene.

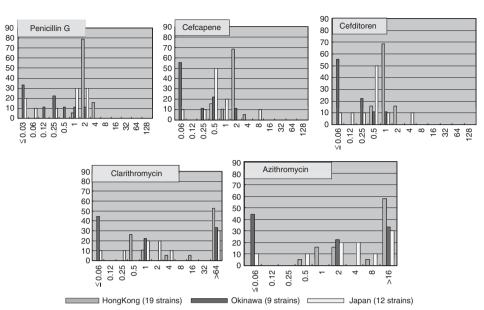
Patterns of PFGE

Two ATCC strains (ATCC 700669 and ATCC 70671) and 40 LVFX-resistant strains were classified in 25 different PFGE patterns (Figure 3;

DISCUSSION

patterns by PFGE (Table 3).

The emergence of quinolone-resistant *S. pneumoniae* is an important clinical issue. In the PROTEKT study, it has been demonstrated that the frequency of quinolone-resistant *S. pneumoniae* strains in Asia is


Table 3). Two strains obtained from Okinawa Island showed similar

PFGE patterns (as shown G1 and G2 in Table 3). In particular, 15 of

19 strains obtained from Hong Kong had a similar PFGE pattern (as

shown C in Table 3). In addition, three strains among the remaining

four strains obtained from Hong Kong had a similar PFGE pattern (as shown E in Table 3). In contrast, strains obtained from Okinawa Island and the Japanese main island demonstrated heterogeneous

Figure 1 Susceptibilities for several antibiotics of clinically isolated strains of levofloxacin (LVFX)-resistant *S. pneumoniae.* Susceptibilities to penicillin G, cefcapene, cefditoren, clarithromycin and azithromycin were evaluated in 19 strains obtained from Hong Kong, 9 strains obtained from Okinawa and 12 strains obtained from the Japanese main island. A full color version of this figure is available at *The Journal of Antibiotics* journal online.

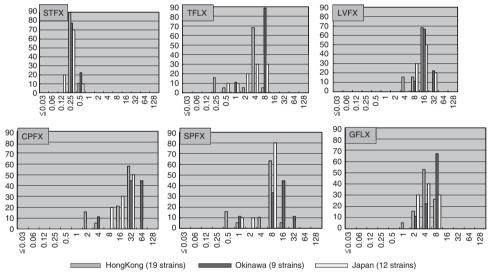


Figure 2 Susceptibilities of clinically isolated strains of levofloxacin (LVFX)-resistant *S. pneumoniae* to several fluoroquinolones. Susceptibilities to sitafloxacin (STFX), tosufloxacin (TFLX), levofloxacin (LVFX), ciprofloxacin (CPFX), sparfloxacin (SPFX) and gatifloxacin (GFLX) were evaluated in 19 strains obtained from Hong Kong, 9 strains obtained from Okinawa and 12 strains obtained from the Japanese main island. A full color version of this figure is available at *The Journal of Antibiotics* journal online.

 \sim 3.5%, and the prevalence rate of quinolone-resistant S. pneumoniae has been indicated as high in Hong Kong. 13

Given this information, the purpose of the present study was to compare LVFX-resistant strains obtained from Hong Kong, Okinawa Island and the Japanese main island (Honshu) by analyzing the heterogeneity of strains, drug sensitivities, amino-acid substitutions at QRDRs, PBP alterations, expressions of *mefA* and *ermB* genes and PFGE patterns. Based on the data of drug sensitivity tests, it was suggested that strains obtained from Okinawa Island have relatively high susceptibilities to β -lactams and macrolides. Interestingly, based on the data of PBP gene mutations, all 19 strains obtained from Hong Kong had *pbp1a+2x+2b*. In contrast, strains obtained from Okinawa

Island and the Japanese main island demonstrated heterogeneous mutation patterns in the PBP genes. Based on the data of PFGE patterns, 15 of 19 strains obtained from Hong Kong had similar migration patterns. In addition, three strains among the remaining four strains obtained from Hong Kong had similar PFGE patterns. In contrast, strains obtained from Okinawa Island and the Japanese main island demonstrated heterogeneous patterns by PFGE. These data suggested that the same or closely related strains of bacteria had been transmitted in Hong Kong, since strains obtained from Hong Kong were derived from the relatively small restricted area. In addition, it is well known that nosocomial, familial or social droplet transmission was possible in *S. pneumoniae* infection. Therefore, the rate of LVFX

543

Table 2 Levofloxacin-resistant strains obtained from Hong Kong, Okinawa Island and Japan main island and patterns of mutation of genes related to the quinolone resistance

			GyrA								G	γrB	ParC												ParE			
Number Name of strains	Name of	Strains obtained	8	31	٤	85	1	114	11	15	477		79	'9	٤	33	9	91	10	27	13	37	1	42	4	435	460	160
	strains	from	Ser	TCC	Glu	GAA	Ser	AGT	Ala	GCT	Arg	CGT	Ser	тст	Asp	GAT	Asn	AAC	Ser	тст	Lys	AAG	Ala	GCA	Asp	GAC	lle	ATC
1	ATCC 700669	Standard strain	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	Asn	AAT	_	_	_	_	Val	GTO
2	ATCC 700671	Standard strain	—	—	—	—	—	—	—	—	—	—	—	—	Gly	GGT	—	—	—	—	Asn	AAT	—	—	—	—	Val	GTC
3	06M092601	Hong Kong	Phe	TTC	_	_	_	_	_	_	_	_	Phe	TTT	_	_	_	_	_	_	Asn	AAT	_	_	_	_	Val	GTC
4	06M092603	Hong Kong	Phe	TTC	—	—	_	_	—	_	_	_	Phe	TTT	_	_	_	—	_	_	Asn	AAT	—	_	—	_	Val	GT
5	06M092604	Hong Kong	Phe	TTC	—	—	_	—	—	_	—	—	Phe	TTT	—	_	—	—	—	—	Asn	AAT	—	—	—	—	Val	GTC
6	06M092605	Hong Kong	Phe	TTC	_	_	_	_	_	_	_	_	Phe	TTT	_	_	_	_	_	_	Asn	AAT	_	—	_	—	Val	GTC
7	06M092606	Hong Kong	Phe	TTC	—	—	_	—	—	_	—	—	Phe	TTT	—	_	—	—	—	—	Asn	AAT	—	—	—	—	Val	GTC
8	06M092607	Hong Kong	Tyr	TAC	—	—	_	—	—	—	—	—	—	—	—	_	—	—	—	—	Asn	AAT	—	—	Asn	AAC	Val	GTC
9	06M092608	Hong Kong	Phe	TTC	_	_	_	_	_	_	_	_	Phe	TTT	_	_	_	_	_	_	Asn	AAT	_	_	_	_	Val	GTC
10	06M092609	Hong Kong	Tyr	TAC	_	_	_	_	_	_	_	_	Phe	TTT	_	_	_	_	_	_	Asn	AAT	_	_	Asn	AAC	Val	GTC
11	06M092610	Hong Kong	Tyr	TAC	_	_	_	_	_	_	_	_	Phe	TTT	_	_	_	_	_	_	Asn	AAT	_	_	Asn	AAC	Val	GTC
12	06M092611	Hong Kong	Tyr	TAC	_	_	_	_	_	_	_	_	Phe	TTT	_	_	_	_	_	_	Asn	AAT	_	_	Asn	AAC	Val	GTC
13	06M092612	Hong Kong	_	_	Lys	AAA	_	_	_	_	_	_	Phe	TTT	_	_	_	_	_	_	Asn	AAT	_	_	_	_	Val	GTC
14	06M092613	Hong Kong	Phe	TTC	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	Asn	AAC	_	_
15	06M092614	Hong Kong	Phe	TTC	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	Asn	AAC	_	_
16	06M092615	Hong Kong	Phe	TTC	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	Asn	AAC	_	_
17	06M092616	Hong Kong	Phe	TTC	_	_	_	_	_	_	_	_	Phe	TTT	_	_	_	_	_	_	Asn	AAT	_	_	_	_	Val	GTC
18	06M092617	Hong Kong	Tyr	TAC	_	_	_	_	_	_	_	_	Phe	TTT	_	_	_	_	_	_	Asn	AAT	_	_	Asn	AAC	Val	GTC
19	06M092618	Hong Kong	Phe	TTC	_	_	_	_	_	_	His	CAT	Phe	TTT	_	_	_	_	_	_	Asn	AAT	_	_	_	_	Val	GTC
20	06M092619	Hong Kong	Phe	TTC	_	_	_	_	_	_	_	_	Phe	TTT	_	_	_	_	_	_	Asn	AAT	_	_	_	_	Val	GTC
21	06M092620	Hong Kong	Phe	TTC	_	_	_	_	_	_	_	_	Phe	TTT	_	_	_	_	_	_	Asn	AAT	_	_	_	_	Val	GTC
22	2528	Okinawa	Phe	TTC	_	_		_	_	_	_	_	_	_	_	_	_	_	Phe	TTT	_	_	_	_	Asn	AAC	Val	GTC
23	A0184	Okinawa	Phe	TTC	_	_		_	_	_	_	_	Phe	TTT	_	_	_	_	_	_	_	_	_	_	_		Val	GTC
24	E67	Okinawa	Phe	TTC	_	_	_	_	_	_	_	_	_	_	Tyr	TAT	_	_	_	_	_	_	_	_	Asn	AAC	Val	GTC
25	2E54	Okinawa	Phe	TTC	_	_	_	_	_	_	_	_	Phe	TTT	_	_	_	_	_	_	_	_	_	_	Asn	AAC	Val	GTC
26	98	Okinawa	Phe	TTC	_	_	_	_	_	_	_	_	Phe	TTT	_	_	_	_	_	_	_	_	_	_	Asn	AAC	Val	GTC
27	V7	Okinawa	Tyr	TAC	_	_	_	_	_	_	_	_	lle	ATT	_	_	Asp	GAC	_	_	_	_	Ser	тст	_	_	Val	GTC
28	HC37	Okinawa	Tyr	TAC	_	_	_	_	_	_	_	_	lle	ATT	_	_	Asp	GAC	_	_	_	_	Ser	тст	_	_	Val	
29	YE4	Okinawa		_	Lys	AAA	_	_	_	_	_	_	Tyr	TAT	_	_			_	_	Asn	AAT		_	_	_	Val	GTC
30	TZ2-7	Okinawa	_	_	Lys	AAA	_	_	_	_	_	_	Phe	TTT	_	_	_	_	_	_		_	_	_	_	_	Val	
31	H35	Okayama	Phe	TTC				_					Tyr	TAT									_					
32	H41	Nagasaki	Tyr	TAC									Tyr	TAT													Val	GTC
33	H91	Kanagawa	Phe	TTC					Val	GTT			iyi	IAI											Asn	AAC	Val	GTC
33 34	H26	Tokyo	Tyr	TAC	_	_	_	_	vai	GII	_	_	_	_		_	_	_	_	_	_	_	_	_		AAC	Val	
34 35	H364	Tokyo	Phe	TTC																					7.211	AAC	Val	GTC
	H1344	-			_	_		_	_	_	_				_	_	_		_				_	_	_	_	Val	
36 37	H1544 H1565	Fukuoka Miyagi	Tyr Phe	TAC TTC	_	_	_	_	_	_	_	_	Tyr Phe	TAT TTT	_	_	_	_	_	_	_	_	_	_	_	_	Val	GTC
37 38	H1565 H358	Miyagi Tokyo	Phe Phe		_	_	_	_	_	_	_	_	гпе	111	_	_	_	_	_	_	_	_	_	_			Vai Val	
38 39	H358 H2360	Tokyo Hokkaido			_	_	 Gly	 GGT	_	_	_	_			_	_	_	_	_	_	_	_	_	_	ASI	AAC	val	uit
			Phe		_	_	GIY	991	_	_	_	_	Phe	TTT		 TAT	_	_	_	_	_	_	_	_	_	_	_	_
40	H1881	Fukuoka			_	_			_	_	_			 TAT	Tyr	TAT	A	_	_				_	_	_		_	_
41	H1892	Fukuoka	Tyr	TAC	_	_	Gly	GGT	_	_	_	_	Tyr	TAT	_	_	Asp	GAC	_	_	_	_	_	_	_	_	_	_
42	H2364	Hokkaido	Phe	TTC	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—	_	_	_	_	_	_	_	—	_

resistance was high and PBP as well as PFGE pattern were similar in Hong Kong. In contrast, strains obtained from Okinawa Island as well as Japan were derived from relatively wide geographic areas.

Recently, Hong Kong investigators demonstrated high rates of resistance of *S. pneumoniae* isolates to various fluoroquinolones and the presence of the Spanish 23F clone that had acquired fluoroquinolone resistance while circulating in Hong Kong.^{14–16} Our data confirmed a prevalence of similar strains of LVFX-resistant *S. pneumoniae* in Hong Kong. Although the overall rate of strains resistant to fluoroquinolones remains low in most Asian countries, the emergence of highly resistant strains to fluoroquinolones will likely be a concern in the future with regard to the treatment of pneumococcal pneumonia. In fact, clinical failures of LVFX for the treatment of pneumococcal pneumonia have already been documented.¹⁷ To overcome this problem, STFX, a recently developed quinolone, is potent against

Gram-positive cocci as well as Gram-negative rods, and excellent activities of these drugs against *S. pneumoniae* have been reported.¹⁸ In the present study, STFX had significantly lower MICs against *S. pneumoniae* with resistance to LVFX, compared with other quinolones tested, and these findings support previous reports that show the potency of this drug against LVFX-resistant *S. pneumoniae* with defined multiple mutations within both the gyrase A and topoisome-rase IV genes.^{19,20} Interestingly, three (#13, #29 and #30) of five strains (#13, #18, #29, #30 and #35) that showed a higher MIC (0.5 mgl⁻¹) against LVFX-resistant strains possessed Glu85Lys substitutions in *gyrA*. This suggests that the primary target of STFX may be *gyrA*, and Glu85Lys substitution in *gyrA* reflected the higher MIC for STFX.

The reason why STFX was potent compared with other quinolones based on mutations in *gyrA* should be discussed. In general, quinolones are known to interact with two related but distinct targets: DNA Table 3 Levofloxacin-resistant strains obtained from Hong Kong, Okinawa Island and Japan main island, patterns of mutation of genes related to β-lactams and macrolides, and genotyping by pulsed-field gel electrophoresis

Number	Name of	Strains obtained	Mutations of penicillin-binding protein	Expressions of macro			
of strains	strains	from	Patterns of mutation	mefA	ermB	Patterns of PF	
1	ATCC 700669	Standard strain	pbp1a+2x+2b	_	_	А	
2	ATCC 700671	Standard strain	pbpla+2x+2b	_	-	В	
3	06M092601	Hong Kong	pbp1a+2x+2b	_	+	С	
4	06M092603	Hong Kong	pbp1a+2x+2b	_	+	С	
5	06M092604	Hong Kong	pbp1a+2x+2b	_	+	С	
6	06M092605	Hong Kong	pbp1a+2x+2b	+	_	D	
7	06M092606	Hong Kong	pbp1a+2x+2b	_	+	С	
8	06M092607	Hong Kong	pbp1a+2x+2b	+	_	С	
9	06M092608	Hong Kong	pbp1a+2x+2b	_	+	С	
10	06M092609	Hong Kong	pbp1a+2x+2b	+	_	С	
11	06M092610	Hong Kong	pbp1a+2x+2b	+	_	С	
12	06M092611	Hong Kong	pbp1a+2x+2b	+	_	С	
13	06M092612	Hong Kong	pbp1a+2x+2b	+	_	С	
14	06M092613	Hong Kong	pbp1a+2x+2b	_	+	E	
15	06M092614	Hong Kong	pbp1a+2x+2b	_	+	E	
16	06M092615	Hong Kong	pbp1a+2x+2b	_	+	E	
17	06M092616	Hong Kong	pbp1a+2x+2b	_	+	С	
18	06M092617	Hong Kong	pbp1a+2x+2b	+	_	С	
19	06M092618	Hong Kong	pbp1a+2x+2b	_	+	С	
20	06M092619	Hong Kong	pbp1a+2x+2b	_	+	С	
21	06M092620	Hong Kong	pbp1a+2x+2b	+	-	С	
22	2528	Okinawa	pbp2x+2b	_	+	F	
23	A0184	Okinawa	pbp1a+2x+2b	+	_	G1	
24	E67	Okinawa	pbp2x	_	+	н	
25	2E54	Okinawa	pbp2b	_	_	1	
26	98	Okinawa	pbp1a+2x+2b	+	+	G2	
27	V7	Okinawa	no mutation	-	_	J	
28	HC37	Okinawa	no mutation	-	_	J	
29	YE4	Okinawa	pbp2x+2b	-	_	К	
30	TZ2-7	Okinawa	pbp1a+2x+2b	+	_	М	
31	H35	Okayama	pbpla+2x	_	_	Ν	
32	H41	Nagasaki	pbp1a+2x pbp2x	_	+	0	
33	H91	Kanagawa	pbp1a+2x+2b	+	- -	P	
34	H26	Tokyo	pbp1a+2x+2b pbp1a+2x+2b	+		Q	
35	H364	Tokyo	pbp1a+2x+2b pbp1a+2x+2b	+		R	
36	H1344	Fukuoka	pbp1a+2x+20	-	+	S	
37	H1565	Miyagi	pbp1a+2x+2b	+	т _	T	
38	H358	Tokyo	pbp1a+2x+2b pbp1a+2x+2b	+	_	U	
39	H2360	Hokkaido	pbp1a+2x+2b pbp1a+2x+2b	+	_	v	
40	H1881	Fukuoka	pbp1a+2x	т _	+	Ŵ	
41	H1892	Fukuoka	pbp1a+2x+2b	_	+	x	
+1 42	H2364	Hokkaido	pbp1a+2x+20 pbp1a+2x	+	+	× Y	

Abbreviation: PFGE, pulsed-field gel electrophoresis.

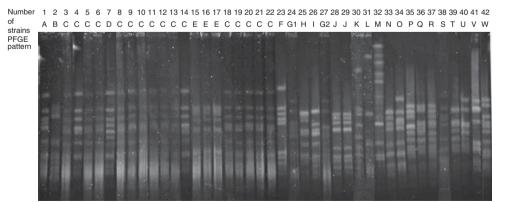


Figure 3 Genomic analysis of two ATCC strains and 40 clinically isolated strains of levofloxacin (LVFX)-resistant S. pneumoniae by pulsed-field gel electrophoresis (PFGE).

gyrase and topoisomerase IV. The recognition of dual drug target enzymes also has important implications for the development of resistance. For resistance mutations in the primary target enzyme, the increment in resistance may be limited by the level of sensitivity of the unmutated secondary target enzyme, which becomes the more sensitive enzyme when the primary target is resistant.²¹ This scheme implies that concurrent dual mutations in both target enzymes would be required for any quinolone that had equal potency against DNA gyrase and topoisomerase IV.²¹ In the present study, as STFX has strong activity against LVFX-resistant *S. pneumoniae*, it was suggested that STFX might have equal strong inhibitory activity against DNA gyrase as well as topoisomerase IV.

There may be some limitations in interpreting the data from this study. Since pneumococcal isolates were collected from one or two referral centers, mainly in urban areas, and the number of isolates was relatively small, data from this study may not reflect the overall resistance status in these populations.

In summary, LVFX-resistant *S. pneumoniae* isolated in Hong Kong showed similarities to strains from Okinawa Island and the Japanese main island. In addition, STFX was potent against LVFX-resistant *S. pneumoniae* with multiple mutations in QRDRs of gyrase A and topoisomerase IV. Further clinical studies are warranted to evaluate the usefulness of STFX against infections caused by LVFX-resistant *S. pneumoniae*.

CONFLICT OF INTEREST

JF has served on speaker's bureaus for GlaxoSmithKline, Abbott Japan, Boehringer Ingelheim, Pfizer, Astellas, Daiichi Sankyo and Taisho Toyama.

- Appelbaum, P.C. Resistance among *Streptococcus pneumoniae*: implications for drug selection. *Clin. Infect. Dis.* 34, 1613–1620 (2002).
- 2 File, T.M. Jr. Clinical implications and treatment of multiresistant Streptococcus pneumoniae pneumonia. Clin. Microbiol. Infect. 12(suppl. 3), 31–41 (2006).
- 3 Broskey, J. et al. Efflux and target mutations as quinolones resistance mechanisms in clinical isolates of Streptococcus pneumoniae. J. Antimicrob. Chemother. 45 (suppl. 1), 95–99 (2000).
- 4 Richter, S.S. et al. The molecular epidemiology of Streptococcus pneumoniae with quinolone resistance mutations. Clin. Infect. Dis. 40, 225–235 (2005).

- 5 National Committee for Clinical Laboratory Standards. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Approved Standard, 6th edn. NCCLS document M7-A6. (NCCLS, Wayne, PA, USA, 2003).
- 6 Pestova, E., Beyer, R., Cianciotto, N.P., Noskin, G.A. & Peterson, L.A. Contribution of topoisomerase IV and DNA gyrase mutations in *Streptococcus pneumoniae* to resistance to novel fluoroquinolones. *Antimicrob. Agents Chemother.* **43**, 2000–2004 (1999).
- 7 Ubukata, K., Muraki, T., Igarashi, A., Asahi, Y. & Konno, M. Identification of penicillin and other beta-lactam resistance in *Streptococcus pneumoniae* by polymerase chain reaction. *J. Infect. Chemother.* **3**, 190–197 (1997).
- 8 Harimaya, A. et al. Alterations of pbp1a, pbp2b, and pbp2x in Streptococcus pneumoniae isolates from children with otolaryngological infectious disease in the Sapporo district of Japan. J. Infect. Chemother. 12, 366–371 (2006).
- 9 Ubukata, K., Iwata, S. & Sunakawa, K. *In vitro* activities of new ketolide, telithromycin, and eight other macrolide antibiotics against *Streptococcus pneumoniae* having mefA and that mediate macrolide resistance ermB genes. *J. Infect. Chemother.* 9, 221–226 (2003).
- 10 Lefevre, J. C., Faucon, G., Sicard, A. M. & Gasc, A. M. DNA fingerprinting of *Streptococcus pneumoniae* strains by pulsed-field gel electrophoresis. *J. Clin. Microbiol.* **31**, 2724–2728 (1993).
- 11 McEllistrem, M. C., Stout, J. E. & Harrison, L. H. Simplified protocol for pulsed-field gel electrophoresis analysis of *Streptococcus pneumoniae*. J. Clin. Microbiol. **38**, 351–353 (2000).
- 12 Tenover, F. C. *et al.* Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. *J. Clin. Microbiol.* 33, 2233–2239 (1995).
- 13 Felmingham, D., Reinert, R. R., Hirakata, Y. & Rodloff, A. Increasing prevalence of antimicrobial resistance among isolates of *Streptococcus pneumoniae* from the PRO-TEKT surveillance study, and comparative *in vitro* activity of the ketolide, telithromycin. *J. Antimicrob. Chemother.* **50** (suppl. S1), 25–37 (2002).
- 14 Critchley, I. A. *et al.* Phenotypic and genotypic analysis of levofloxacin-resistant clinical isolates of *Streptococcus pneumoniae* collected in 13 countries during 1999-2000. *Int. J. Antimicrob. Agents* **20**, 100–107 (2002).
- 15 Canton, R., Morosini, M., Enright, M. C. & Morrissey, I. Worldwide incidence, molecular epidemiology and mutations implicated in fluoroquinolone-resistant *Streptococcus pneumoniae*: data from the global PROTEKT surveillance programme. *J. Antimicrob. Chemother.* **52**, 944–952 (2003).
- 16 Ho, P. L. et al. Fluoroquinolone and other antimicrobial resistance in invasive pneumococci, Hong Kong, 1995-2001. Emerg. Infect. Dis. 10, 1250–1257 (2004).
- 17 Fuller, J. D. & Low, D. E. A review of *Streptococcus pneumoniae* infection treatment failures associated with fluoroquinolone resistance. *Clin. Infect. Dis.* **41**, 118–121 (2005).
- 18 Jolley, A., Andrews, J.M., Brenwald, N. & Wise, R. The *in-vitro* activity of a new highly active quinolone, DU-6859a. J. Antimicrob. Chemother. **32**, 757–763 (1993).
- 19 Jones, M. E. et al. Prevalence of gyrA, gyrB, parC, and parE mutations in clinical isolates of *Streptococcus pneumoniae* with decreased susceptibilities to different fluoroquinolones and originating from worldwide surveillance studies during 1997-1998 respiratory season. *Antimicrob. Agents Chemother.* 44, 462–466 (2000).
- 20 Browne, F.A. *et al.* Antipneumococcal activity of DK-507k, a new quinolone, compared with the activities of 10 other agents. *Antimicrob. Agents Chemother.* **47**, 3815–3824 (2003).
- 21 Hooper, D.C. Mechanisms of action of antimicrobials: focus on fluoroquinolones. Clin Infect Dis. 32(suppl. 1), S9–15 (2001).