
Abstract Two natural products, synerazol and pseurotin
E, were synthesized from the natural product pseurotin A in
58% and 57% yields, respectively in one-pot procedures.
This work also establishes the absolute stereochemistry of
pseurotin E.
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Pseurotin A (1) is a microbial secondary metabolite
isolated from the fermentation broth of Pseudeurotium
ovalis STOLK (Ascomycetes) in 1976 [1]. It has various

biological activities, including induction of cell
differentiation [2], inhibition of chitin synthase [3],
inhibition of monoamine oxidase [4], and apomorphine-
antagonistic activity [5]. Pseurotin A (1) possesses a highly
substituted 1-oxa-7-azaspiro[4,4]non-2-ene-4,6-dione
skeleton. The structure and absolute stereochemistry of 1
have been determined by a single-crystal X-ray analysis of
its 12,13-dibromo derivative [6]. The core structure of 1 is
found in other natural products, too (Fig. 1). These
pseurotin-related natural products also possess interesting
biological activities, including apomorphine-antagonistic
activity in the cases of pseurotin D [5] and F [7], anti-
angiogenic activity [8a], antifungal activity [8b] and
synergistic activity [8b] in the case of synerazol (2) isolated
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Fig. 1 Structure of pseurotin-related natural products.



from the fermentation broth of Aspergillus fumigatus
SANK 10588 in 1991 [8b], and anti-angiogenic activity in
the case of azaspirene [9]. Another member of the
pseurotin family, pseurotin E (3), was isolated from the
fermentation broth of Pseudeurotium ovalis STOLK in
1981 [10], though its absolute stereochemistry and
biological activity were not established.

Elegant total syntheses of 1 [11, 12], pseurotin F2 [11,
12], 2 [13] and azaspirene [14, 12] have been reported by
Hayashi et al. and Tadano et al. However, these syntheses
involved many steps, and are unsuitable for large-scale
application to provide samples for biological testing. On the
other hand, the supply of pseurotin-related natural products
from fermentation is also limited, except for 1. The
reported fermentation yields are 40 mg/liter for 1 [10],
1.4 mg/liter for 2 [8b], and 6 mg/liter for 3 [10]. Hence, we
thought chemical modification of 1 might be an attractive
way to obtain large amounts of pseurotin-related natural
products. In this paper, we wish to report one-pot synthesis
of synerazol (2) and pseurotin E (3) from pseurotin A (1)
and determination of the absolute stereochemistry of 3.
Various chemical modifications of pseurotin-related natural
products, including acetylation (pseurotin A [1] and
synerazol [16]), hydrogenation (pseurotin A [15], B [10], C
[10]), oxidative cleavage (pseurotin A [1], B [10], C [10]),

dibromination [1] (pseurotin A), formation of acetonide [1]
(pseurotin A), reduction of carbonyl group [15] (pseurotin
A), and synthesis of pseurotin A from synerazol for 
the purpose of the determination of its absolute
stereochemistry [16], have been reported.

Compound 1 was obtained from the fermentation broth
of Aspergillus sp. The synthesis of 2 from 1 is illustrated in
Table 1. First of all, epoxidation of the 1,2-diol of 1 under
the reported Mitsunobu condition [17] did not afford 2
(entry 1). However, this reaction proceeded when Cy3P was
replaced with PPh3 (entry 2). To optimize the reaction, the
effects of solvents and temperature were examined.
Dichloroethane (DCE) gave a better yield (entry 3).
Decreasing the temperature reduced the formation of minor
by-products (58% yield, entry 4). Synthetic 2 exhibited
properties identical to those of the natural product [8b] (1H-
NMR, 13C-NMR, and optical rotation [18]). We were able
to obtain 2 on a 200 mg scale.

We decided to synthesize the (10R,11S)-diastereoisomer
of 2 to confirm the diastereoselectivity in the synthesis of 2.
The (10R,11S )-diastereoisomer 4 is generated if the
hydroxyl group at the 10 position is eliminated under the
above Mitsunobu conditions. NMR spectra of the
(10R,11S )-diastereoisomer 4 have not been reported,
although its total synthesis was achieved [13]. Selective
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Table 1 Synthesis of synerazol by Mitsunobu reaction

Entry Phosphine Solvents Temp (°C) Time (hours) Yield of 2 (%)

1 Cy3P THF 22 to 40 25 0
2 Ph3P THF 22 to 60 28 14
3 Ph3P DCE 30 4.5 43
4 Ph3P DCE 15 7 58
5 Ph3P DCM 15 3 54

DIAD: diisopropyl azodicarboxylate; Cy: cyclohexyl; DCE: dichloroethane.

Scheme 1 Synthesis of 4a.
a Reagents: (a) TsCl, Et3N, n-Bu2SnO, DCM, rt, 17 hours, 33%; (b) K2CO3, MeOH, 4°C, 2 hours, 27%.



tosylation reaction of the 1,2-diol of 1 was achieved in the
presence of dibutyltin oxide [19] to give 5 (Scheme 1).
Regioselectivity of the tosyl group was assigned on the
basis of 1H-NMR multiplicity (H-C11 (ddd, J�5.1, 7.8,
9.5 Hz), H-C10 (d, J�7.8 Hz), and H-C9 (d, J�12.4 Hz)).
Epoxidation under basic conditions gave 4. The optical
rotation of 4 ([a ]D

26 �53.9° (c 0.075, CHCl3)) is in good
agreement with literature data [13] ([a]D

22 �49.2° (c 0.02,
CHCl3)). The (10R,11S)-diastereomer 4 [20] proved readily
distinguishable from 2 by 1H-NMR, 13C-NMR, and HPLC,
thereby confirming the complete diastereoselectivity of the
transformation leading to 2.

Next, we envisioned that 3 could be derived from 1 by
olefin cross metathesis. Treatment of 1 with methyl vinyl
ketone and second-generation Grubbs catalyst (1,3-bis-
(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(o-
isopropoxyphenylmethylene)ruthenium) [21] afforded 3 in
57% yield (Scheme 2). The 1H-NMR and 13C-NMR spectra
of synthetic 3 [22] were in good accordance with those
reported for the natural product [10]. Hence, the absolute
stereochemistry of pseurotin E (3) was defined. This
metathesis was also applicable to the synthesis of other
pseurotin E analogues (data not shown).

In summary, we have developed an efficient one-pot
synthesis of synerazol and pseurotin E from readily
available pseurotin A. This work also establishes the
absolute stereochemistry of pseurotin E. We will report
syntheses of pseurotin A, synerazol and various pseurotin E
analogs, as well as their biological activities, in due course.
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