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The genetic variants that underlie microbial environmental adaptation are key components of models
of microbial diversification. Characterizing adaptive variants and the pangenomic context in which
they evolve remains a frontier in understanding how microbial diversity is generated. The genomics
of rhizobium adaptation to contrasting soil environments is ecologically and agriculturally important
because these bacteria are responsible for half of all current biologically fixed nitrogen, yet they live
the majority of their lives in soil. Our study uses whole-genome sequencing to describe the pan-
genome of a focal clade of wild mesorhizobia that show contrasting levels of nickel adaptation
despite high relatedness (99.8% identity at 16S). We observe ecotypic specialization within an
otherwise genomically cohesive population, rather than finding distinct specialized bacterial lineages
in contrasting soil types. This finding supports recent reports that heterogeneous environments
impose selection that maintains differentiation only at a small fraction of the genome. Our work
further uses a genome-wide association study to propose candidate genes for nickel adaptation.
Several candidates show homology to genetic systems involved in nickel tolerance and one cluster of
candidates correlates perfectly with soil origin, which validates our approach of ascribing genomic
variation to adaptive divergence.
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Introduction

A central challenge in microbial evolutionary ecol-
ogy is identifying genomic variation responsible for
environmental adaptation. Local adaptation results
when environment-specific selection is stronger than
migration and builds local reservoirs of genetic
diversity within a population’s biogeographic struc-
ture (Martiny et al., 2006; Reno et al., 2009; Hanson
et al., 2012; Cordero et al., 2012b; Cordero and Polz,
2014; Shapiro and Polz, 2014). Current models of
microbial diversification require selection for
habitat-specific adaptive variants leading to the
formation of stable genomic clusters, that is, ‘eco-
types’ (Konstantinidis and Tiedje, 2005; reviewed in
Polz et al., 2013; Shapiro and Polz, 2014). In genome-
wide sweeps, environmental selection causes clonal

expansion of the first genome that acquires an
adaptive variant (Cohan, 2002; Shapiro and Polz,
2014). Sweeps initially lower diversity, which is
replenished by subsequent mutations (Shapiro and
Polz, 2014). In contrast, gene-specific sweeps occur
when recombination across habitats erodes genome-
wide linkage with environment-specific adaptive
variants (Cordero et al., 2012b; Shapiro et al., 2012;
Polz et al., 2013; Shapiro and Polz, 2014; Rosen
et al., 2015). Empirical genomic data supporting
these different paths to microbial ecotypic diversifi-
cation are relatively sparse (Polz et al., 2013; Cordero
and Polz, 2014; Shapiro and Polz, 2014). Thus,
characterizing adaptive variants and their genomic
context remains a key frontier (Shapiro et al., 2009;
Zaneveld et al., 2011).

A transformative insight from high-throughput bac-
terial population genome sequencing (Stapley et al.,
2010; Zaneveld et al., 2011) is that closely related
strains share a core genome but that each has a suite of
varying accessory (flexible) genes (Reno et al., 2009;
Polz et al., 2013); collectively these make up the pan-
genome (Kettler et al., 2007; Lapierre and Gogarten,
2009; Reno et al., 2009; Denef et al., 2010a). If genome-
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wide linkage is low, variation in the core and
accessory genomes may have distinct biogeographi-
cal patterns. For example, the core genomes of
Rhizobium leguminosarum (Kumar et al., 2015)
and Vibrio cholerae (Boucher et al., 2011) are
globally well-mixed, while the accessory genome is
ecologically differentiated. The core genome encodes
basic functions necessary for the common niche of
the sampled isolates (Lapierre and Gogarten, 2009;
Polz et al., 2013). Adaptation via the core genome
could be constrained by slow rates of nucleotide
substitution or genome-wide selective sweeps
(Gevers et al., 2005; Cohan and Perry, 2007). However,
adaptive alleles within the core genome demonstrate
that recombination can act rapidly enough for
gene-level sweeps to occur in response to tempera-
ture and latitude (terrestrial fungus Neospora;
Ellison et al. (2011)), and substrate particle size
(marine Vibrio bacteria; Shapiro et al. (2012)). The
accessory genome, with its shifting complement of
genes that can be lost or gained via horizontal
transfer (Polz et al., 2013), is considered the primary
reservoir of microbial adaptive variation, as well as
containing transient, non-adaptive genes (Kuo and
Ochman, 2009; Lapierre and Gogarten, 2009; Andam
and Gogarten, 2011; Smillie et al., 2011). Adaptive
accessory genes have been identified for phosphorus
availability (marine Prochlorococcus and Pelagibac-
ter; Coleman and Chisholm (2010)) and successional
context (acid mine drainage Leptospirillum bacteria;
Denef et al. (2010a)). An environment-specific
horizontally transmitted accessory gene pool can
connect otherwise unrelated strains (reviewed in
Polz et al., 2013).

Recent work presented a collection of locally
adapted wild Mesorhizobium strains across naturally
nickel-enriched serpentine soils paired with nearby
low-nickel soils (Porter and Rice, 2013). Rhizobia are
an accessible population because they disperse
through soil between generations of symbiotic
association with their host plant (here, Acmispon
wrangelianus) and are readily culturable in the
laboratory (Sprent, 2007; Oldroyd et al., 2009).
Heavy metal enrichment and unusual ionic ratios
in both natural serpentine soils (Brady et al., 2005;
Turner et al., 2010) and anthropogenic mine spoils
(McNeilly, 1968) can drive local adaptation in
plants. While rhizobia are often sensitive to heavy
metals (Giller et al., 2009), these Mesorhizobium
exhibit local adaptation to nickel in culture: strains
originating from high-nickel serpentine soil had
higher fitness under high-nickel levels than strains
originating from low-nickel non-serpentine soil, and
strains originating from non-serpentine soil had
higher fitness in low-nickel media than strains from
serpentine (Porter and Rice, 2013).

We use whole-genome sequencing to describe the
pan-genome of a focal clade of mesorhizobia that
show contrasting levels of nickel adaptation. We
describe how spatial distance and soil type structure
the core and accessory genomes. Using a genome-

wide association study, we identify genomic variants
that are statistically associated with strain growth
in nickel-containing medium and compare these
with known heavy metal resistance mechanisms
(Sa-Pereira et al., 2009; Mengoni et al., 2010). We ask
whether adaptive variants (i) reside in the core or
accessory genome, (ii) are clustered and (iii) are
shared with distantly related lineages.

Materials and methods

Mesorhizobium strains with varying responses to
nickel were isolated from field-collected A. wrange-
lianus root nodules by Porter and Rice (2013)
(Figure 1) from serpentine soil, which is naturally
enriched in toxic levels of nickel (3.1–86.5mg
Ni kg− 1), and from spatially adjacent non-
serpentine soils containing lower levels of nickel
(0.8–6.85mg Ni kg− 1) at each of three Californian
reserves (Figure 1). We selected 38 strains from a
focal 16S subclade (99.8% identity over 1340 bp)
present in both soil types and all three reserves that
exhibit adaptation to soil nickel, as well as 9 strains
that captured the diversity of sympatric Mesorhizo-
bium clades (Figure 1a). Within the focal clade,
serpentine strain fitness is higher than non-
serpentine strain fitness under high nickel
(F1,34 = 78.4, Po0.0001; Figure 1c), while serpentine
and non-serpentine strain fitness is similar under
low nickel (Figure 1). Supplementary Information 1
contains additional details regarding methods.

DNA extraction and genomic library construction
followed Dunham and Friesen (2013). Libraries
were sequenced in a paired 76 bp format on an
Illumina GAIIx (San Diega, CA, USA). Draft genomes
were assembled with the A5 pipeline (Tritt et al.,
2012). Genes were annotated using a two-stage
procedure. First, draft genomes were searched for
‘reference’ genes homologous to 7272 protein-coding
sequences in the complete Mesorhizobium huakuii bv.
loti MAFF303099 genome (BLASTX alignment with
480% overlap, E-value o1E-20, and protein sequence
identity 450%). Next, we identified ‘de novo’ genes in
the wild strains that were absent in M. huakuii bv. loti.
Regions of the draft assemblies that did not contain
reference genes were aligned using BLASTX to the non-
redundant GenBank CDS translations+PDB+Swiss-Prot
+PIR+PRF (nr) database using the same BLASTX
parameters. Orthology among de novo genes was
determined using reciprocal BLAST (Supplementary
Information 1). Annotation was conducted with Blas-
t2GO v.2.3.5 (Conesa et al., 2005) and UniProt (UniProt
Consortium, 2015).

‘Core’ genes are present in all strains for a given
subset (focal clade: 38 strains; full wild set: 47
strains; full set with references: 53 strains). ‘Acces-
sory’ genes are absent from one or more strain in
each subset. Delineation of core and accessory was
calculated for each of the three subsets. For genes in
the core genome across all 53 strains, we performed
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multiple sequence alignments to identify single-
nucleotide polymorphisms (SNPs) (ClustalW; Larkin
et al., 2007). Simulation verified the efficacy of our
methods in identifying accessory genes (Supplementary
Figure S1).

To compare core and accessory genomes, we
calculated GO enrichment tests (R Bioconductor
package ‘GOstats’; Falcon and Gentleman (2007))
and rates of non-synonymous (Ka) to synonymous
(Ks) substitution (KaKs Calculator; Zhang et al.,
2006). Strain relatedness was assessed using core
genome allelic variation and accessory gene pre-
sence/absence. We used a population-based per-
spective allowing horizontal gene transfer
implemented by NeighborNet (SplitsTree v4.12.8;
Huson, 1998, 2005).

To analyze biogeographic patterns we used ‘ado-
nis’ in the R package ‘vegan’ (Dixon, 2003) with
bootstrapping. To infer population structure and
probabilistically assign individuals to populations,
we ran STRUCTURE v2.3.2.1 (Pritchard et al., 2000)
on each of 10 replicate SNP subsets sampled every
25 SNPs. We used delta K with K ranging from 1 to 8
(Evanno et al., 2005).

We conducted genome-wide association mapping
(Friesen and von Wettberg, 2010) of growth in the
presence of nickel for (i) gene content in the
accessory genome, and (ii) SNPs in the core genome,
excluding singletons and regressing out STRUC-
TURE effects (see Supplementary Information 1).
Significance of the Wilcoxon test was assessed using
Bonferroni correction and false discovery rates (FDR)
(Hochberg and Benjamini, 1990). Candidates were
further annotated using TrEMBL and Swiss-Prot. We
examined draft genome contigs containing
FDRo0.10 candidates to assess clustering of candi-
date genes. A cluster was defined as a region on a
single contig with at least four tandem candidate
genes, and expanded to include nearby candidate
genes until no candidate gene was found for 10 kb on
either end.

We tested whether candidate accessory genes are
shared with lineages that are more phylogenetically
distant from the focal clade than expected by chance.
For each accessory gene, we identified the lineage
bearing the closest homolog in Genbank and calcu-
lated the distance between this bacteria and the focal
clade at 16S. We compared the distribution of

Figure 1 Differential nickel adaptation in wild Mesorhizobium. (a) Phylogenetic tree based on 16S Sanger sequence data, with bootstrap
values (teal: serpentine; red: non-serpentine soil of origin; gray background: focal clade). (b) Collection sites in California (CA) (star: a
reserve where adjacent serpentine and non-serpentine soils were sampled). (c) Growth data for strains from the focal clade in the presence
and absence of nickel in liquid media (OD600: optical density at 600 nm).
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distances for candidate vs non-candidate accessory
genes using a KS test.

Results

Population pan-genomics
We characterized the pan-genome of 47 strains of
wild symbiotic Mesorhizobium isolates collected
across replicated serpentine and non-serpentine
Californian soils (Figure 1). Draft genomes ranged
in size from 5.75 to 7.79Mbp (median 6.61Mbp;
Supplementary Table S1). Assemblies used from
95% to 98% of filtered reads for a median coverage
of 70× (42–130× ). The number of genes identified
in each draft genome ranged between 5454 and 6725,
with a median of 6078. Draft genomes had a median
of 56.5 contigs (21–273) and median N50 of 358 kbp
(129–911 kbp).

Across our 47 wild strains, genes tended to be rare
or ubiquitous (Figure 2a). Across our 47 wild strains
and 6 fully sequenced relatives, 27 802 genes are
present in at least one strain with 2059 core genes in
all 53 strains (Figure 2b). Wild Californian strains
have a pan-genome containing 20 582 genes and a
core genome of 2874 genes, while our focal clade has
a pan-genome of 13 049 genes and a core genome of
4308 genes (Figure 2b). Within the core genome of
the complete set of 53 strains, there were 1 106 970
segregating SNPs called in all strains; 212 192 of
these varied within the focal clade and were used for
phenotype associations.

Core and accessory genomes exhibit contrasting
patterns of functional enrichment and molecular
evolution. Compared with the core genome, acces-
sory genes show the strongest enrichment for
the molecular function, nucleotide binding
(GO:0003676: all strains P= 4.42E-10; wild strains
P=8.51E-13), and the biological process, DNA
metabolism (GO:0006259: all strains P= 1.45E-36;
wild strains P= 2.36E-49). The accessory genome is
also strongly enriched in DNA recombination
(GO:0006310: all strains P= 1.37E-35; wild strains
P=2.69E-50), with all but one gene annotated with
this term located in the accessory genome (all strains
528/529 genes; wild strains 430/431 genes). Finally,
the accessory genome is enriched in cellular

compartment terms related to the cell membrane,
including membrane (GO:0016020: all strains
P= 1.42E-23; wild strains P= 6.08E-20), intrinsic to
membrane (GO:0031224: all strains P= 7.43E-10;
wild strains P = 1.64E-05) and membrane part
(GO:0044425: all strains P= 8.33E-09; wild strains
P= 5.24E-05) (Supplementary Table S2).

Compared with the core genome, the accessory
genome showed elevated rates of protein sequence
evolution relative to genome sequence change,
reflected in the ratio of non-synonymous to synon-
ymous substitutions (Wilcoxon rank sum test on
log10 values: W=4 337 428, Po2.2E-16; Figure 2c).

Using NeighborNet, the core genome of the focal
clade of 38 strains is divergent from six fully
sequenced Mesorhizobium strains as well as the
remaining 9 wild strains (Figure 3). NeighborNet
trees show more reticulation in the gene content
network than the SNP network (Figure 3). However,
SNPs in the core genome and variation in the
accessory genome show congruent topologies
(Figure 3). Furthermore, both core and accessory
genome variation show that the focal clade subnet is
approximately a star with little deep structure and no
strong signal of soil type or reserve (Figure 3).

STRUCTURE and the delta K method demarcate
two clusters within the 47 wild strains, with the focal
clade distinct from the more distantly related strains.
Within the focal clade, there is weak genomic
structuring among collection locations and soil
types. STRUCTURE analysis revealed two subgroups
within the focal clade core genome (Supplementary
Figure S2 and Supplementary Table S3). Divergence
within the focal clade is not split cleanly by soil type
or geographic separation: averaged over multiple
STRUCTURE runs, the minority STRUCTURE
subgroup contains five fully assigned strains from
serpentine soil from Jasper Ridge and Hopland and
one 92.8% assigned strain from non-serpentine soil
from Jasper Ridge. Other strains contained 0.011–38.0%
of the minority cluster (Supplementary Figure S2).
Nonparametric analysis of variance revealed that a
significant but relatively small amount of genetic
variation is explained by reserve (a proxy for geographic
distance) and soil type (Supplementary Figure S3).
This analysis also revealed that soil type explains
more of the variance in the accessory genome than in

-3 -2 -1 0
0

0.4

0.8

1.2

D
en

si
ty

log(Ka/Ks) per gene

Accessory genes
Core genes

A
ll 

M
es

o
47

 C
A 

M
es

o
38

 fo
ca

l M
es

o

Mean per
Strain 

Number of Strains Containing a Gene 

N
um

be
r o

f G
en

es

N
um

be
r o

f G
en

es

0 10 20 30 40
0

5K

15K

10K

0
5K

10K
15K
20K
25K

Figure 2 Core and accessory genome compartments of wild Mesorhizobium are distinct. (a) Distribution of genes across strains. (b) Pan-
genome size for different groups of strains. (c) Distribution of non-synonymous to synonymous substitution ratio (log10 Ka/Ks) for core and
accessory genes.

Pangenomic perspective on microbial adaptive variation
SS Porter et al

251

The ISME Journal



the core genome, whereas reserve does not (see 95%
confidence intervals; Supplementary Figure S3).

Adaptive variants
The presence or absence of 202 accessory genes was
associated with a strain’s growth phenotype in
nickel-enriched media at the 10% FDR significance
level (Figure 4 and Supplementary Table S4; 33
genes significant after Bonferroni correction). In
contrast, there were no accessory genes associated
with growth in the low-nickel media, even at the
20% FDR level.

At the stringent Bonferroni-corrected threshold,
several nickel-associated accessory genes are pre-
dicted to have functional roles in metal tolerance
according to homology-based annotation (Table 1,
bolded; Table 2). Candidates that share homology
with proteins with functional validation in the
literature include a putative high-affinity nickel
transporter, a chromate ion transporter, a metal
cation efflux system protein, a manganese and
iron superoxide dismutase protein, and an opine
dehydrogenase (Table 2). At 10% FDR significance,
four additional candidate accessory genes have
compelling annotations: a cobalt–zinc–cadmium
resistance protein, a nickel import ATP-binding protein,

an ABC-type dipeptide/oligopeptide/nickel transport
system and a nickel–cobalt–cadmium resistance protein
(Table 2).

In the core genome, 199 biallelic SNPs associate
with growth in nickel-enriched media at 10% FDR
significance (Table 1, Figure 4 and Supplementary
Table S5). The single Bonferroni-significant SNP is
located in a gene annotated as succinoglycan trans-
port protein exoP (Table 2). No SNP candidates
reside in genes homologous to proteins with func-
tions related to nickel.

Candidates from the accessory and core genomes
do not fully co-segregate across strains (Figure 5). We
identified seven clusters with at least 10 candidate
genes, with 3 of these occurring only in serpentine-
origin strains. These three clusters span a total of
~ 131 Kbp and contain 97 of the 202 candidates with
10% FDR significance. The largest cluster (Cluster A)
spans 86 Kbp and contains 77 candidate genes,
including 32/33 Bonferroni-significant candidates,
all 13 of the candidates that assort perfectly by soil
type, and all candidates with supporting evidence
for metal tolerance in the literature (Table 2), except
for GI:13475426 (Supplementary Table S6). We
determined that the 13 candidates that assort
perfectly by soil type are within an ~ 30 Kbp region
in Cluster A (Figure 6a). However, their gene order
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and contig position is variable among strains due to
non-candidate gene indels, local duplications and
transversions (Figure 6a). Two other clusters span a
region of 30 Kbp (Cluster B) and 15 Kbp (Cluster C)
and include 10 and 11 candidate genes, respectively
(Figures 6b and c). Clusters B and C are always found
on different contigs, and each is carried by six
serpentine strains, with four strains containing both
clusters. Clusters B and C have conserved gene
content and order, and each contains genes primarily
from the de novo assembly, with only one reference
gene each; many of the genes in these clusters are
annotated as conjugal transfer proteins or transpo-
sases (Supplementary Table S6). Groups of reference
genes, within and flanking the ends of each cluster,

were not consistently co-located in the M. huakuii
bv. loti reference genome. This could be due to
structural divergence between the focal population and
the reference, or to a complex process of integration of
horizontally acquired material into the genome, and
precludes the identification of putative cluster inser-
tion sites.

In the focal clade, nickel-adaptation candidates
from the accessory genome are shared with lineages
that are more phylogenetically distant to the focal
clade than expected. This pattern was strongest for
nickel-adaptation candidates at 1% FDR—of these
43 genes, 33 were found in bacterial lineages with
existing 16S sequence data. On average, this set was
3.3% more divergent in terms of 16S base pair

de novo
genes 

Figure 4 Loci associated with nickel adaptation do not cluster positionally relative to the reference Mesorhizobium huakuii
bv. loti genome. Significance of genome-wide association study association of genes with nickel tolerance, corrected for weak genetic
structure, in (a) the core genome and (b) the accessory genome (black points: genes not significant; cyan points: 10% FDR significant; red
points: 5% FDR significant; dashed gray line, Bonferroni significance level; de novo genes are present in the wild strains but absent in the
M. huakuii bv. loti reference). (c) Prevalence of each reference M. huakuii bv. loti gene across the wild focal population, shown by the
number of wild strains containing each gene (solid gray line: location of the symbiosis island in the reference M. huakuii bv. loti genome).
Physical positions of loci in (a–c) correspond to the positions of homologous regions in the M. huakuii bv. loti reference genome diagram;
de novo genes in (b) are plotted with jitter because positional information is lacking for them.
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similarity (0.033 average nucleotide identity) from
M. huakuii bv. loti than lineages sharing the closest
homologs to non-candidate accessory genes (Wil-
coxon test P=0.023; Figure 5c). This result also held
for the 5% FDR set of genes (62/87 genes with 16S
distance, Wilcoxon difference 0.006, P=0.034) and
the pattern was marginally significant for the FDR
10% genes (128/202 genes with 16S distance,
Wilcoxon difference 0.0029, P=0.076).

Discussion

Understanding rhizobial adaptation to soil environ-
ments is important because symbiotic rhizobia are
responsible for half of all current biologically fixed
nitrogen (Gruber and Galloway, 2008) yet live the
majority of their lives in soil. Genomic analysis of a
population of wild Mesorhizobium from California
shows that adaptive differentiation across contrast-
ing soil nickel levels occurs within an otherwise
cohesive genome and gives insight into the biogeo-
graphy of the pan-genome, the identity of adaptive
genomic variants and the process of environmental
adaptation in bacteria.

Genomic context of environmental adaptation
The focal Mesorhizobium clade in this study is a
genomically cohesive population that is widely

dispersed across habitat boundaries yet harbors
ecotypic variation for adaptation to high-nickel soils.
Phylogenomic analysis of this population (99.8%
16S similarity) yields a star-like topology for both
variation in the core and accessory genomes, with
relatively long terminal branches that reflect strain-
specific mutations similar to those observed in other
rhizobial populations (Bailly et al., 2011; Kumar
et al., 2015). STRUCTURE analysis further supports
this population’s distinctness from other sympatric
strains. The lack of phylogenetic structure within the
focal population is consistent with recombination
homogenizing the core and accessory genomes
among soil types and across hundreds of kilometers.
A similar pangenomic pattern was observed in early
stages of habitat-based ecotypic differentiation in a
wild population of marine Vibrio cyclitrophicus
(Shapiro et al., 2012), and Ensifer meliloti rhizobia
display similar homogenizing levels of recombina-
tion across host species and thousands of kilometers
(Epstein et al., 2012).

Bacterial pan-genomes typically consist of distinct
core and accessory genome compartments and our
Mesorhizobium draft genome sequences recapitulate
this pattern. Our assemblies appear to capture the
vast majority of genomic content despite not being
fully closed, because they are similar in size to
related closed genomes and a high fraction of raw
reads are used in the assembly (95–98%).

Table 1 Candidate genetic variants associated with nickel adaptation include variants functionally implicated in heavy metal tolerance
(in bold)

Variant q-value Ni phenotype
effect

Frequency Gene Annotation

S N

SNP 0.024 0.22 1.00 0.59 GI:13476964 Succinoglycan transport protein exoP (non-synonymous, L/F)
Gene 5.13E-08 0.28 1.00 0.00 denovo003242 CBS domain-containing protein

5.13E-08 0.28 1.00 0.00 denovo003246 Family transcriptional regulator
5.13E-08 0.28 1.00 0.00 denovo003256 Membrane protein
5.13E-08 0.28 1.00 0.00 denovo003257 Major facilitator transporter; H+ antiporter protein
5.13E-08 0.28 1.00 0.00 denovo003258 Cation diffusion facilitator family transporter
5.13E-08 0.28 1.00 0.00 denovo003265 Opine dehydrogenase
5.13E-08 0.28 1.00 0.00 denovo003268 Peroxidase-related enzyme
5.13E-08 0.28 1.00 0.00 denovo003270 ABC-type polar amino acid transport ATPase component
5.13E-08 0.28 1.00 0.00 denovo003273 Amino acid ABC permease 3-tm his glu gln arg opine family
8.17E-08 0.28 0.95 0.00 denovo003272 Amino acid ABC permease 3-tm his glu gln arg opine family
2.14E-07 0.27 0.95 0.00 denovo003267 Flavoprotein involved in K+ transport
4.32E-06 0.26 0.81 0.00 denovo003240 Recombinase
1.38E-04 0.24 0.86 0.00 denovo003271 Periplasmic component of AA-type transporter signal transduction

system
1.58E-04 0.24 0.90 0.00 denovo003269 ABC-type polar amino acid transport ATPase component
4.50E-04 0.22 0.95 0.41 denovo000014 High-affinity nickel-transporter
5.85E-04 0.23 0.81 0.00 denovo003250 Manganese and iron superoxide dismutase
7.96E-04 0.24 0.62 0.00 denovo003455 Aminophosphonate oxidoreductase; hydrolase; FAD dependent

oxidoreductase
9.69E-04 0.22 0.76 0.00 denovo003248 Chromate ion transporter family

The q-values indicate significance values for loci in an FDR-controlled association test on residual trait values corrected for weak genetic structure.
Values remain significant after Bonferroni correction. Fifteen unannotated candidates are omitted. Positive Ni phenotype effecta values indicate
that a variant is associated with nickel tolerance rather than sensitivity. Frequency of the variant is given for strains from serpentine (S) and non-
serpentine (N) soils. Annotations are based upon Blast2Go. Polymorphism type is parenthetically indicated for the SNP candidate.
aNi phenotype effect is the mean growth (OD600) in Ni-enriched media of strains with the reference variant minus that of strains lacking the
variant.
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Contrasting patterns of functional enrichment and
molecular evolution in core vs accessory Mesorhizo-
bium genomic compartments demonstrate that they
experience different evolutionary processes. The
accessory genome is strongly enriched in genes
related to DNA recombination and metabolism, and
many appear to reside in the symbiosis island region.
These characteristics accord with the concept that
horizontally transferred genes occur at sites of
recombination (Karberg et al., 2011) and that intra-
population gene content variation results largely
from phage, plasmid and transposon movement
(Denef et al., 2010b). The accessory genome is also
enriched for cell membrane cellular compartment
GO terms, similar to findings from studies of biotic
drivers of rapidly evolving cell-surface molecules,

membrane-spanning transporters and cell membrane
modifiers, which play key roles in microbial biotic
interactions (Kettler et al., 2007; Cordero et al.,
2012a; Polz et al., 2013). Biotic selection, environ-
mental selection, or mutational bias could underlie
the elevated rates of protein sequence evolution
relative to genome sequence change that we observe
in the accessory genome; although most core and
accessory genomes have a negative log ratio of non-
synonymous to synonymous substitution which
suggests primarily purifying selection, as observed
in Ensifer rhizobia (Epstein et al., 2014). Higher
network reticulation for the accessory genome
compared with the core genome is consistent with
a pattern of horizontal exchange of accessory genes
among lineages (Polz et al., 2013). However, at
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Figure 5 Candidate loci from the accessory genome do not strictly co-segregate and tend to be shared with lineages that are relatively
distantly related to Mesorhizobium. (a) Growth of each focal population strain in media containing 1 mM nickel (dark gray: non-serpentine
origin; light gray: serpentine origin). Strain identity is indicated in corresponding column of (b). (b) Pattern of co-segregation of accessory
gene nickel adaptation candidates (10% FDR set) across the 38 strains in the focal population (black: candidates associated with increased
growth in nickel; gray: candidates associated with decreased growth in nickel). Genes are ordered based on co-segregation as indicated in
the dendrogram. (c) Phylogenetic distance at 16S between focal clade mesorhizobia and the bacterial lineage with the closest homolog to
each accessory gene (dark gray: FDR 1% accessory gene candidates; light gray: all accessory genes with a match for which we could extract
16S information).
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broader phylogenetic scales these Mesorhizobium
core and accessory genomes yield congruent topol-
ogies, in contrast to the divergent phylogenetic
processes acting at core and accessory genomic
compartments in Rhizobium leguminosarum
(Kumar et al., 2015).

Bacterial populations are often weakly structured
by geographic distance, particularly in taxa that can
disperse via aerial dust or surface water (Martiny
et al., 2006; Hanson et al., 2012). We find that both
geographic location and soil type explain low but
significant amounts of genomic variation within our
focal population. Environmental selection appears to
be stronger and play a relatively large role in
structuring accessory genes compared with core
genes, as accessory genes showed greater divergence
across soil types than core genes, but equivalent
isolation by distance. Given that only a few migrants
per generation are sufficient for complete population
admixture, our observation of genetic structure
across adjacent serpentine and non-serpentine soils
points to strong environmental selection, particu-
larly since gene flow, in the present study and other
studies, commonly occurs over geographic distances

several orders of magnitude higher (Shapiro and
Polz, 2014). Our study adds to a growing list of
microbial populations that remain cohesive at
neutral loci despite large-scale geographic separation
(Shapiro and Polz, 2014).

Genetic variants underlying environmental adaptation
As phylogenetic and biogeographic evidence indi-
cate that our focal Mesorhizobium population
experiences ongoing recombination, we undertook
a genome-wide association study to detect genetic
variants associated with nickel adaptation (Friesen
and von Wettberg, 2010; Chen and Shapiro, 2015).
The majority of candidate variants for nickel adapta-
tion are gene content variants in the accessory
genome rather than allelic variants in the core
genome. Numerous candidate genes have high
statistical support and homology to loci that have
been experimentally demonstrated to be involved in
nickel tolerance, consistent with the perspective that
the accessory genome is a reservoir of adaptive genes
(Coleman and Chisholm, 2010; Polz et al., 2013),
though there could be rare genes associated with
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nickel tolerance we are unable to detect with
genome-wide association study.

Nickel efflux systems prevent toxic intracellular
nickel concentrations (Macomber and Hausinger,
2011) and are upregulated in response to metal
exposure in other mesorhizobia (Maynaud et al.,
2013). We find several candidate loci with putative
roles in the transport of nickel or other divalent
cations—common resistance proteins often underlie
adaptation to multiple divalent cations (Macomber
and Hausinger, 2011). Candidate ‘denovo000014’ is
homologous to a high-affinity nickel transporter in
Ensifer medicae and the nickel/cobalt efflux system
RcnA. RcnA is a membrane-bound polypeptide that
contributes to nickel resistance (Rodrigue et al.,
2005; Koch et al., 2006; Iwig et al., 2006) and nickel
homeostasis (Macomber and Hausinger, 2011). Can-
didate ‘denovo003248’ shares homology with a
putative chromate transport protein in E. meliloti
and chromate transport protein chrA1, a plasmid-
borne gene that contributes to chromate efflux in
metal-tolerant Cupriavidus metallidurans (Nies
et al., 1990; Juhnke et al., 2002). Elevated soil
chromate may be associated with elevated soil nickel
concentrations (Brady et al., 2005), or this transpor-
ter could recognize a negatively charged nickel
complex. Candidates ‘denovo003258’ and
‘denovo000013’ are related genes that share homol-
ogy with a probable cobalt–zinc–cadmium efflux
system protein in Rhzobium etli, as well as cation
efflux protein Rv2025c, which encodes a function-
ally validated cation diffusion facilitator (CDF)-
family metal exporter inMycobacterium tuberculosis
(Campbell et al., 2007). Rv2025c is de-repressed
by Ni2+ and Co2+, is controlled by the high-affinity
Ni2+/Co2+ sensor KmtR and may use Ni2+ as a
substrate (Cubillas et al., 2013). Candidate
‘denovo003460’ has homology to an inferred ABC-
type dipeptide/oligopeptide/nickel transport system
in Methylophaga aminisulfidivorans (Han et al.,
2011). Accessory gene candidate ‘GI:13475426’ is
annotated as a nickel–cobalt–cadmium resistance
protein in Mesorhizobium huakuii bv. loti and is
homologous to NccN, a nickel–cadmium–cobalt
resistance protein that contributes to nickel efflux
in Alcaligenes xylosoxydans (Schmidt and Schlegel,
1994). Genes in the ncc operon share close homology
with those in the cnr operon, a cobalt nickel efflux
system integral to nickel tolerance in Bradyrhizo-
bium from serpentine soil (Chaintreuil et al., 2007).
Candidate ‘denovo003135’is homologous to a puta-
tive nickel import ATP-binding protein, NikD, in
Methlyophaga thiooxydans DMS010 (Han et al.,
2011).

Three other candidates are annotated with func-
tions that suggest involvement in symbiosis and/or
environmental stress. Candidate ‘denovo003250’ is
homologous to iron superoxide dismutase protein
ChrC, which contributes to nickel tolerance in
C. metallidurans (Juhnke et al., 2002). Superoxide
dismutase scavenges superoxides produced during

oxidative damage and also confers nickel tolerance
in Escherichia coli (Macomber and Hausinger, 2011).
Candidate ‘denovo003265’ is annotated as an opine
dehydrogenase (Asano et al., 1989; Dairi and Asano,
1995). Opines, specialized bacterial metabolites
produced during symbiosis, have roles in host
colonization and communication (Denison, 2000;
Savka et al., 2002). As heavy metals can inhibit
symbiosis initiation (Mengoni et al., 2010), opines
might play a role in symbiotic adaptation to
serpentine soils. Finally, we find a well-supported
candidate SNP in the succinoglycan transport pro-
tein ExoP. The extracellular polysaccharide succi-
noglycan is involved in symbiosis (Jones et al., 2008)
and can also mediate biofilm formation, which could
contribute to nickel tolerance (Harrison et al., 2004);
extracellular polysaccharide molecules may also
bind metal directly and contribute to tolerance
(Gadd, 1990).

The evolutionary processes underlying environmental
adaptation
The focal Mesorhizobium population exhibits
environment-specific adaptive variants, yet lacks
strong genome-wide differentiation between envir-
onments, suggesting that gene flow across environ-
ments may maintain genomic cohesion within this
population. This is consistent with a population
classification of ‘stage 2’ in Shapiro and Polz’s
(2014) continuous speciation spectrum model.
The best supported adaptive variants are clustered
positionally within a 30 Kbp stretch in the Cluster
A region in the genomes of all serpentine-
origin strains. The ~ 86 Kbp Cluster A region
contains 32/33 Bonferroni-supported candidates,
fully assorts with serpentine soil and contains
nearly all of the candidates with annotations that
suggest a role in nickel adaptation. However, there
is evidence that two additional clusters of candi-
dates supported at the 10% FDR level occur in
subsets of the most nickel-tolerant strains, and 105
of the 202 candidate loci supported at the 10% FDR
level are not clustered by our metric. The fact that
serpentine-origin strains harbor at least one well-
supported cluster of adaptive variants within a
pan-genome otherwise mixed with non-serpentine
strains by migration and recombination is consis-
tent with at least one gene-specific sweep leading
to the prevalence of candidates in Cluster A in
nickel-adapted strains (Shapiro and Polz, 2014).
Our data also suggest that multiple adaptive regions
could act independently to confer nickel tolerance,
which could further support additional gene-
specific sweeps, though annotation-based support
for these regions' involvement in nickel adaptation
is less strong. Alternatively, historical genome-
wide sweeps (clonal sweeps) could occur via strong
selection in serpentine soils for adaptive variants in
the absence of recombination. The resulting wide-
spread clonal genotype could subsequently

Pangenomic perspective on microbial adaptive variation
SS Porter et al

258

The ISME Journal



diversify by neutral processes, leaving locally
adaptive regions under continued selection as
remnants of ancient clonal divergence (Shapiro
and Polz, 2014). These alternatives could be tested
by assessing the relative pattern of polymorphism
in candidate regions, and the level of synonymous
divergence between habitats would shed light on
which scenario is more likely (Shapiro and Polz,
2014).

Our findings support previous work showing that
the accessory genome acts as a reservoir that harbors
adaptive variation resulting from selection that
impacts microbial populations at local ecological
scales (Coleman and Chisholm, 2010; Doolittle and
Zhaxybayeva, 2010; Polz et al., 2013; Cordero and
Polz, 2014). While many of the candidates we
identify may be simply linked to adaptive variants,
the functional annotation of numerous candidates
suggests roles in nickel tolerance. Horizontal gene
transfer, by which lineages can acquire genetic
material from distantly related lineages, is one
process structuring accessory genome content (Polz
et al., 2013). Typically, rates of horizontal gene
transfer and recombination decline rapidly with
sequence divergence between strains of bacteria
(Polz et al., 2013), negative epistatic interactions
increase with divergence between source lineages
(Polz et al., 2013), and most horizontally transferred
genes in rhizobia appear to be somewhat deleterious
(Epstein et al., 2014) and subject to strong purifying
selection (Epstein et al., 2014). However, our find-
ings are consistent with a pattern by which selection
maintains horizontally acquired genes shared with
phylogenetically distant lineages. Strong, environ-
mentally dependent selection on nickel tolerance
could result in an excess of nickel-adaptive loci from
distant lineages. Future closed genome sequencing
would enable us to locate candidates within the
replicon structure, as heavy metal tolerance in
rhizobia can be conferred by plasmids (Lakzian
et al., 2002, 2007).

Our focal population shows adaptation to high-
nickel serpentine soil, but does not show the
pattern of reciprocal local adaptation found in
the larger set of 292 Mesorhizobium strains (Porter
and Rice, 2013). In the larger set, strains from
high-nickel serpentine soil outperformed those
from low-nickel non-serpentine soil in high-nickel
media, and non-serpentine strains outperformed
serpentine strains in low-nickel media. However,
in the subset of strains in the focal population, non-
serpentine ecotypes have no fitness advantage over
serpentine ecotypes in the absence of nickel. This
generalist population may have escaped the cost to
metal tolerance observed in the larger, more
phylogenetically diverse set of randomly selected
environmental mesorhizobia (Porter and Rice,
2013), which could be due to migration alleviating
the accumulation of environment-specific deleter-
ious mutations (Kawecki, 1994) and could simulta-
neously be key to ongoing gene flow that prevents

reproductive isolation across soil type boundaries
(Shapiro and Polz, 2014). This lack of non-
serpentine strain fitness advantage could have
alternative explanations, such as a maladaptation
load in non-serpentine strains due to recombina-
tion with serpentine strains. Future work could use
a phylogentically controlled method to investigate
how such trade-offs could result in varying patterns
of gene flow to influence patterns of diversity
(Gudelj et al., 2010).

Conclusion

We observe habitat specialization within an other-
wise genomically cohesive population of wild
mesorhizobia, rather than finding distinct, specia-
lized bacterial lineages in contrasting soil types.
Thus, heterogeneous environments can drive selec-
tion maintaining adaptive variants at a small
fraction of the genome. Our work proposes candi-
date genes for nickel adaptation, several of which
show homology to already-characterized genetic
systems for nickel tolerance, which validates
the general approach of ascribing habitat-assorting
genomic variation to the processes of ecotypic
adaptation.
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