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High coverage metabolomics analysis reveals
phage-specific alterations to Pseudomonas
aeruginosa physiology during infection
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Phage-mediated metabolic changes in bacteria are hypothesized to markedly alter global nutrient and
biogeochemical cycles. Despite their theoretic importance, experimental data on the net metabolic
impact of phage infection on the bacterial metabolism remains scarce. In this study, we tracked the
dynamics of intracellular metabolites using untargeted high coverage metabolomics in Pseudomo-
nas aeruginosa cells infected with lytic bacteriophages from six distinct phage genera. Analysis of
the metabolomics data indicates an active interference in the host metabolism. In general, phages
elicit an increase in pyrimidine and nucleotide sugar metabolism. Furthermore, clear phage-specific
and infection stage-specific responses are observed, ranging from extreme metabolite depletion (for
example, phage YuA) to complete reorganization of the metabolism (for example, phage phiKZ). As
expected, pathways targeted by the phage-encoded auxiliary metabolic genes (AMGs) were enriched
among the metabolites changing during infection. The effect on pyrimidine metabolism of phages
encoding AMGs capable of host genome degradation (for example, YuA and LUZ19) was distinct from
those lacking nuclease-encoding genes (for example, phiKZ), which demonstrates the link between
the encoded set of AMGs of a phage and its impact on host physiology. However, a large fraction of
the profound effect on host metabolism could not be attributed to the phage-encoded AMGs. We
suggest a potentially crucial role for small, ‘non-enzymatic’ peptides in metabolism take-over and
hypothesize on potential biotechnical applications for such peptides. The highly phage-specific
nature of the metabolic impact emphasizes the potential importance of the ‘phage diversity’
parameter when studying metabolic interactions in complex communities.
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Introduction

Ever since Bergh et al. (1989) published the numeric
abundance of viruses in aquatic environments,
viruses have been predicted to cause large fluctua-
tions in global nutrient and biogeochemical cycles
(Suttle, 2005; Danovaro et al., 2008; Falkowski
et al., 2008). These global effects are primarily
caused by microbial mortality following infection,
which impacts microbial abundance and diversity
(Suttle, 2005). As viruses are deprived of an own
metabolism, they have to exploit their host
cells’ resources to fuel viral replication during
infection. To overcome possible bottlenecks in this
process, many virus genomes have acquired
host-derived genes with metabolic functions, which

are hypothesized to reprogram the host’s metabolic
processes to favor virus replication and are termed
‘auxiliary metabolic genes’ (AMGs) (Breitbart et al.,
2007). The increased availability of metagenomic
sequencing data over the past decade enabled
identification of many AMGs in eukaryotic and
prokaryotic viruses, with intervening roles in
phosphate (Martiny et al., 2009) and nitrogen
metabolism (Sullivan et al., 2010), photosynthesis
(Lindell et al., 2005; Frank et al., 2013), the pentose
phosphate pathway (Thompson et al., 2011), nucleic
acid synthesis (Miller et al., 2003) and other metabolic
pathways (Sharon et al., 2011). Currently, AMGs are
known to be spread across nearly the entire central
carbon metabolism (Hurwitz et al., 2013). In an
attempt to organize the expanding list of AMGs,
Hurwitz et al. (2015) proposed a subdivision into
two classes. Class I contains annotations present in
KEGG metabolic pathways, whereas Class II are all
genes annotated only with a general metabolic
function or absent from KEGG metabolic pathways
(for example, transport functions).
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Another feature of viral genomes is the high
number of encoded open reading frames with no
similarity to any known sequence (approximately
60% in marine viruses) (Paul and Sullivan, 2005),
often referred to as the biological ‘dark matter’
(Rohwer and Youle, 2011). Especially early in
infection, these small gene products of unknown
function can influence the host metabolism through
specific, often uncharacterized interactions, which
are impossible to predict (Hatfull, 2008; Roucourt
and Lavigne, 2009; Hargreaves et al., 2014).
The identification of such viral–host interactions,
and the viral genes involved, has proven to be labor-
intensive research. However, recent advances in
-omics techniques provide us with the tools to obtain
novel insights into the host take-over process and to
identify the affected host metabolic pathways
(Van den Bossche et al., 2014; Sanchez et al., 2015).

In contrast to the increasing knowledge concern-
ing the genetic potential of phages for host meta-
bolism take-over, experimental data on the host
metabolic changes caused by the phage infection
and the influence of encoded AMGs on these
changes are extremely scarce. Current advances in
the field of metabolomics, triggered by the progress
in mass spectrometry (Rabinowitz, 2007), allow
analysis of multiple time points during infection
with high metabolite coverage (Timischl et al., 2008).
Ankrah et al. (2014) were the first to apply these
approaches to investigate the phage infection
of an environmentally relevant bacterium. Their
results showed significant physiological differences
between phage-infected and non-infected cells and
raised the question if this response could be general-
ized to different phage–host systems. Furthermore,
metabolomics has proven to be a valuable tool in
functional genomics to characterize unknown pro-
teins (Ehebauer et al., 2015). As enzyme inactivation
leads to upstream accumulation of metabolites
(Fendt et al., 2010), whereas protein activity mod-
ulation through post-translational modification or
protein interaction also impacts metabolism
(Oliveira et al., 2012; Schulz et al., 2014).

In this study, we selected the ubiquitous, Gram-
negative bacterial pathogen, Pseudomonas aerugi-
nosa, as a host system to investigate the phage–host
metabolome interaction. This bacterium has an
extreme metabolic versatility, allowing it to survive

in diverse habitats ranging from coastal marine
habitats over soil to even human tissue, making
it an ideal model organism (Stover et al., 2000).
Using flow injection analysis time-of-flight mass
spectrometry (Fuhrer et al., 2011), we studied the
metabolite dynamics in P. aeruginosa, during differ-
ent stages of infection by diverse well-characterized
lytic double-stranded DNA phages (Table 1,
Ceyssens and Lavigne, 2010). The goal was to
determine if phage infection results in a metabolic,
‘universal’ host response or if different phage species
will yield distinguishable responses, a question that,
to our knowledge, has never been addressed to date.

Materials and methods

P. aeruginosa strain and phage isolates
P. aeruginosa strain PAO1 (genotype 0002) was
chosen as bacterial host system in view of its
extensive genetic and phenotypic characterization.
First isolated in 1955 in Melbourne, Australia from
an infected wound (Holloway, 1955), it was the first
fully sequenced P. aeruginosa strain (Stover et al.,
2000). Six different lytic phages were selected to
represent a diverse set of Pseudomonas bacterio-
phages (Table 1). Phage stocks were grown on their
original P. aeruginosa propagation strain, that is,
PAO1 (LUZ19, PEV2, 14-1, YuA and phiKZ) or Li010
(LUZ24) using standard soft agar overlay followed by
PEG8000 precipitation, as previously described
(Ceyssens et al., 2008), and stored in phage buffer
(10mM Tris-HCl, pH 7.5, 10mM MgSO4, 150mM

NaCl) at 4 °C.

Construction of the virus population network
To illustrate the genome-based relationship between
the selected phages, the predicted protein sequences
representing the genomes of LUZ24, LUZ19, 14-1,
PEV2, phiKZ and YuA, as well as their potentially
relevant bacteriophages were clustered using the
ACLAME database, version 0.4 (http://aclame.ulb.ac.
be) with the database of ‘Viruses’ and E-value cutoff of
0.001 and all-to-all BLASTp searches with a cutoff
E-value of 10−4 (Leplae et al., 2004). The degree of
similarity between phages was calculated as
the minus logarithmic score by multiplying

Table 1 Main characteristics of the phages used in this study

Phage Family Genus Genome
(bp)

#
ORFs

GC
%

Infection
cycle

Start viral
replication

Burst size
(# particles)

Reference

LUZ19 Podoviridae Phikmvlikevirus 43 548 54 62.2 24 min 14 min ND Lammens et al., 2009
LUZ24 Podoviridae Luz24likevirus 45 625 68 52 45 min ND 60 Ceyssens et al., 2008
PEV2 Podoviridae N4likevirus 72 543 90 54.9 35 min ND 60 Ceyssens et al., 2010
14-1 Myoviridae Pbunalikevirus 66 238 90 55.6 15 min ND ND Ceyssens et al., 2009
phiKZ Myoviridae Phikzlikevirus 280 334 306 36 60–65 min ND ND Mesyanzhinov et al., 2002
YuA Siphoviridae YuAlikevirus 58 663 78 64.3 80 min ND ND Ceyssens et al., 2008

Abbreviations: GC, genomic GC content; ND, not determined; ORF, open reading frame.
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hypergeometric similarity P-value by the total number
of pairwise comparisons. Afterward, a protein-sharing
network was generated with the Cytoscape software
platform, version 3.1.1, using an edge-weighted spring
embedded model (Shannon et al., 2003).

Medium and infection parameters characterization
All growth experiments were performed in minimal
medium Pseudomonas (30mM Na2HPO4, 14mM

KH2PO4, 20mM (NH4)2SO4, 20mM glucose, 1mM

MgSO4, 4 μM FeSO4). Infection curves were deter-
mined by following the OD600nm of a bacterial culture
(OD600nm = 0.3) every 5min during infection until cell
lyses was observed. Different multiplicity of infec-
tion (MOI) were used for all phages to ensure
synchronized bacterial cell lysis and the optimal
MOI was chosen (data not shown). Owing to
differences in adsorption efficiency, the selected
MOI varies between phages (Supplementary Figure S1).
As the excess of phages is removed during the
metabolome extraction, these differences will not
impact the comparison between phages. During sam-
pling, infection curves were made to assure infection of
the entire culture (Supplementary Figure S1).

To check the efficiency of infection, cell counts of
the infected culture were done before and 5min after
infection for all sampling and the obtained cell counts
were compared. The efficiency of infection was495%
for phiKZ and 14-1, 490% for LUZ19 and YuA,
475% for PEV2 and 465% for LUZ24. Although
there are differences in the efficiency of infection, they
do not affect the comparison of metabolic alterations
induced by the phages. As increasing the MOI did not
affect the efficiency of infection, nor did it alter the
infection curves, which show a synchronous infection
(Supplementary Figure S1).

Metabolite extraction and analysis
Bacteria, grown in 75ml of minimal medium
Pseudomonas, were infected with phages at OD600 =
0.3 (1.25 × 108 CFUml–1) and sampled for metabolite
profiling by fast filtration (Link et al., 2013) at
different time points during phage infection
(Supplementary Figure S1). At each time point, the
biomass quantity was measured by following the
OD600 and the sampling volumes were adjusted to a
volume corresponding to a biomass of a 1ml culture
at OD600 = 1.0 (approximately 4× 108 CFU). The
samples were vacuum filtered through a 0.45 μm
pore size nitrocellulose filter (Millipore, Billerica,
MA, USA) and washed with 2ml ammoniumcarbo-
nate solution (75mM, pH 7.0). The filters containing
the captured cells were incubated in 3ml ethanol
(60%) at 78 °C for 2min, and subsequently snap
frozen in liquid nitrogen and stored at –80 °C until
further processing. Metabolite extracts were dried at
30 °C under vacuum and re-suspended in 100 μl
water. The samples were profiled using negative
mode flow injection-time-of-flight mass spectrome-
try and detected ions were annotated as previously

reported (Fuhrer et al., 2011). For each phage
infection, four biological replicates were sampled
and two technical repeats were made of each
independent biological sample.

Metabolite data analysis
A genome-scale metabolic model of P. aeruginosa
(Oberhardt et al., 2008) and KEGG database were
used to compile a metabolite reference list, accord-
ing to which ions were assigned to metabolites
applying a mass tolerance of 1mDa and an intensity
cutoff of 1500 counts. For each ion, only the
metabolites with the highest annotation score were
used, and for each metabolite, the best annotation
was kept. Metabolite annotation and statistical
analysis was performed using Matlab R2013b (Math-
works, Natick, MA, USA). A detailed description of
these statistical analyses can be found in the
Supplemental Materials and methods.

Results and Discussion

The selected Pseudomonas phages are highly diverse
representatives within a broad virus population network
To investigate the occurrence of phage-specific
effects on host metabolism, we aimed at selecting
phages with possibly diverse infection phenotypes.
To illustrate this, we constructed a virus population
network, which includes the known (lytic) Pseudo-
monas phages, based on protein sequence simila-
rities using the ACLAME database. The selected
phages: LUZ19, LUZ24, PEV2, 14-1, phiKZ and YuA
represent different branches within this network
(Figure 1). Phages PEV2 and phiKZ are restricted to
two components corresponding to the N4- and
phiKZ-related groups, respectively; separated from
the largest connected component. These individual
components, attributable to their distinct shared core
proteins, support the taxonomic descriptions as
evolutionary distinct branches. In addition, phages
LUZ24, 14-1 and LUZ19 fall into interconnected
regions comprising the 7 LUZ24-like phages, 13 PB1-
like phages and 3 phiKMV-like phages within the
Autographivirinae clade, respectively. Each region
contains one or more phage groups, implying their
close evolutionary relationships. YuA shares pro-
teins with multiple groups, with M6 as its closest
relative. Collectively, as these phages belong to
individual genera, the six studied phages provide
an important basis for the understanding of the
diversity of Pseudomonas phages in various viral
lineages. Table 1 further illustrates that these phages
differ strongly in genome size, GC-content and the
duration of their infection cycle.

Phage infection disrupts the metabolic steady state in
exponentially growing cells
To investigate the dynamic response of the host
metabolism to infection with different phages, we
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performed a time-course experiment, infecting
P. aeruginosa with each of the six selected phages
and sampling the metabolic content at different
stages of infection. To ensure synchronized infection
and sample uniformity during the experiment, the
MOI was adjusted and killing curves were made for
individual phages to confirm synchronized infection
(Supplementary Figure S1, Materials and methods).
Samples were analyzed with untargeted flow injec-
tion analysis time-of-flight mass spectrometry, which
allowed high coverage measurements of the meta-
bolome. A total of 6006 ions were detected, of which
918 could be assigned to P. aeruginosa metabolites.
After stringent filtering of ion adducts, 375 unique
ions corresponding to 518 metabolites, including
mass isomers, were retained.

To compare the metabolite dynamics, metabolite
fold changes were determined for each time point

relative to time point zero of each infection. Without
infection, metabolite levels remained stable, indeed
only a small fraction of metabolites (3.2%) showed a
(slight) increase after 45min (log2(fold change)o0.5)
(Figure 2a). Compared with the metabolic steady-
state of the non-infected samples, phage infection
was found to induce significant alterations (P-value
⩽0.05 and abs(log2(fold change) 40.5) in up to
24.5% of the detected metabolites, as the sum of
increased (19.7%) and decreased (4.8%) metabolites
(PEV2, 25min after infection, Figure 2a). This is
consistent with the results observed for the lytic
roseophage (Φ2047B) infection in Sulfitobacter sp.
2047, where approximately 25% of the 82 measured
metabolites were altered after a single infection cycle
(60–120min; Ankrah et al., 2014), confirming that
host physiology is significantly altered upon phage
infection in different host systems.

Figure 1 Virus population network reveals distinct clusters within the Pseudomonas phage universe. The network consists of 498 phages
belonging to the Myoviridae, Siphoviridae, Podoviridae, or uncharacterized and other phages, and 6953 relationships between them. The
nodes in the network are linked by edges indicating the significant relationships between viruses, in terms of shared gene (protein)
contents. The viruses with a stringency similarity score of ⩾1, which is estimated using the hypergeometric formula, are shown. The
network was visualized with an edge-weighted spring embedded layout using Cytoscape software platform (version 3.1.1), which places
the viral genomes sharing more protein families closer in the display. Selected phages are shown in circle and named in bold.
Orange=Myoviridae, teal =Siphoviridae, purple =Podoviridae, gray=uncharacterized.
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A ‘universal’ metabolic host response to Pseudomonas
phage infection does not occur
To identify potentially common metabolic responses
to phage infection, changes in all annotated meta-
bolites were compared among the different phages.
In total, 56% of the metabolites were significantly
altered by at least one phage (P-value o0.05 and abs
(log2(fold change) 40.5). However, only 2.4% of the
metabolites were changed upon infection with each
of the six phages, indicating the absence of a general
response to phage infection (Figure 2b). In contrast,
17.30% of the metabolites were found to be
significantly increased/decreased by a single phage,
whereas staying stable in all others (Figure 2b,
Supplementary Table S1).

The small percentage of changing metabolites
(2.4%, nine metabolites) shared between all phages
are involved in nucleotide and nucleotide sugar
metabolism (Supplementary Table S2). Nucleotide
metabolism produces the required nucleotides for
viral genome replication, which was shown to be
crucial during T7 infection (Qimron et al., 2006).
UDP-glucose and UDP-galactose are key intermedi-
ates for the production of oligo- and polysaccharides
(Bosco et al., 2009; Ebrecht et al., 2015). For example,
the nucleotide sugars (UDP-glucose, UDP-alpha-D-
ManNAc3NAcA and UDP-alpha-D-GlcNAc3NAcA)

are precursors for lipopolysaccharide biosynthesis
(Westman et al., 2009).

Hierarchical clustering of the metabolites and
phages based on the metabolite fold changes relative
to the uninfected state confirms the absence of a
‘universal’ host response (Figure 3). For each phage,
the time point responses form a closely related
cluster branch, and the metabolite groups that
attribute to the branch separation are shown on the
top of the figure and will be discussed in later
paragraphs.

A comparative pathway analysis between phages
reveals a central role for pyrimidine metabolism and
accumulation of nucleotide/amino sugars
To assess whether specific metabolic pathways are
targeted during phage infection, metabolite set
enrichment analysis was performed to identify
pathways enriched for accumulated or depleted
metabolites. All significantly affected pathways have
been summarized in Supplementary Figure S2.
Aside from a gradual change over time in pathways
involved in nucleotide and amino-acid metabolism
(for example, PEV2), only limited temporal variation
was found for the different phages. To facilitate
visual comparison between phages, the enrichment

Figure 2 (a) Percentage of altered Pseudomonas metabolites during the course of infection of P. aeruginosa with six different phage
clades (P-value ⩽ 0.05 and log2(fold change) ⩽−0.5 or ⩾0.5). Fold changes were determined by comparison of metabolite levels before
infection against the mentioned time point during infection. (b) Percentage of metabolites changed in multiple phage infections,
metabolites were considered significantly changed when P-value ⩽0.05 and log2(fold change) ⩽−0.5 or ⩾0.5.
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analyses over the different time points were com-
bined (Figure 4).

Most of the enriched pathways can be linked to
specific requirements during phage replication.
First, most negatively impacted pathways are related
to amino-acid metabolism, with a decrease in the
metabolism of 14/20, 11/20, 10/20, 4/20 and 3/20
amino acids (and precursors) during the infection of
YuA, 14-1, PEV2, LUZ19 and LUZ24, respectively
(Figure 4). This decrease can be explained by either a
decreased production or an increased incorporation

of these amino acids in proteins, not compensated by
increased production. An increased consumption of
amino acids during phage particle formation seems
the most logical hypothesis. However, not all phages
deplete amino acids to an equal extent, whereas the
giant phage phiKZ does not even exhibit this
decrease. This observation indicates different levels
of dependency on the host cell resources, as
discussed later.

Second, multiple pathways involved in nucleotide
metabolism have been influenced. The pyrimidine

Figure 3 Hierarchical clustering based on correlations between mean metabolite fold change vectors reveals phage-specific changes in
host metabolism. Color bar indicates the fold change of different metabolites (columns) for the different samples (rows). On the left is the
hierarchical tree showing the relation between the different samples. On the right is the different time points and infecting phage are
indicated for each row of metabolite fold changes. On the top is the corresponding pathways are shown for clusters of metabolites. AA,
amino acids; nucl, nucleotide; pant, Panthotenate; PPP, pentose phosphate pathway.

Figure 4 Metabolic pathway enrichment for different phages. The results for the enrichment analysis are shown for all six phages
(columns) and for all respectably significantly decreased and increased pathways (rows). The color scale indicates the cutoff for the
P-values. Note, pathways are only shown if at least one time point shows an enrichment P-value o0.05.
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pathway, which produces the required pyrimidine
nucleotides for DNA replication, is enriched for
increased metabolites for all analyzed phages, except
for 14-1 (Figure 4). Using a Venn diagram, the
overlap in changed metabolites between phages
was visualized (Supplementary Figure S3). Most of
the final pyrimidine nucleotides are increased in all
infections, whereas the intermediates only increase
for phiKZ and even decrease for PEV2, LUZ24 and
YuA (Supplementary Figure S3). Interestingly, the
purine metabolism was only enriched for increased
metabolites during infection by YuA. This hints at a
difference in the need/consumption of pyrimidine
versus purine nucleotides during phage infection.
Metabolite levels of glutathione metabolism are
decreased by both LUZ19 and YuA (Supplementary
Figure S2). Glutathione is essential for oxidative
stress protection and increased activity of ribonu-
cleotide reductases in nucleotide metabolism (Masip
et al., 2006). These enzymes catalyze the formation
of deoxyribonucleotides from ribonucleotides, an
essential step for phage DNA replication.

Metabolites of panthotenate and coenzyme A
(CoA) metabolism are decreased in all phages, except
phiKZ (Figure 4). CoA has an important role in many
host pathways that supply essential components and
energy to the cell (Leonardi et al., 2005). The
enrichment of the pantothenate and CoA pathway
among decreased metabolites would slow down the
host metabolism. This may be explained by the
phage-induced host metabolism take-over or shut-
down. However, although the metabolite levels of
pantoate and aspartate levels are indeed decreased,
some intermediate metabolites and CoA levels are
even increased by certain phages, for example, PEV2,
LUZ24 and YuA (Supplementary Figure S4). In these
cases, the observed decrease in CoA metabolism
could also be caused by increased CoA consumption.

The third pathway affected for all phages, except
YuA, is the amino sugar and nucleotide sugar
metabolism (Supplementary Figure S5). Nucleotide
sugars are the building blocks for peptidoglycan and
lipopolysaccharides, required for cell growth and
division. Multiple examples exist of phage proteins
that inhibit cell division or cell wall biosynthesis,
such as lysis protein E of phiX174 (Bernhardt et al.,
2001) or the kil proteins in phages Mu (Waggoner
et al., 1989), P22 (Semerjian et al., 1989), lambda
(Sergueev et al., 2001) and Sf6 (Casjens et al., 2004).
Homologs of these proteins share only low levels of
sequence similarity (Sau et al., 2008), and have not
yet been identified in these Pseudomonas phages.
However, the increased levels in the nucleotide
sugars appears to be indicative of the presence of
phage proteins inhibiting cell division or cell wall
biosynthesis. This is further illustrated by the
enrichment of peptidoglycan and lipopolysaccharide
biosynthesis during PEV2, LUZ24 and phiKZ infec-
tion. In fact, Phikzlikevirus members encode a
tubulin-like protein (Kraemer et al., 2012), which
positions the phage DNA in the center of the cell and

induces an arrest in host cell division during
infection (Ceyssens et al., 2014). Other cell division
inhibiting early proteins were also identified in
LUZ7, an N4likevirus like PEV2 (Wagemans et al.,
2014).

Most of the remaining pathways enriched for
increased metabolites are involved in host carbohy-
drate metabolism, which produces the required
building blocks for biomass production, however,
the affected carbon sources vary between phages
(Figure 4). Interestingly, none of the central carbon
metabolism pathways (for example, TCA cycle,
glycolysis) were enriched. To conclude, this path-
way enrichment analysis reveals a primarily phage-
specific impact on host physiology, a central need
for pyrimidine nucleotides and a widespread accu-
mulation of nucleotide sugars during phage
infection.

Host stress metabolites reveal phage-specific impact on
different stress responses
In response to different stresses, P. aeruginosa
produces secondary messenger molecules, which
enable cell-to-cell communication and coordinated
responses (Jimenez et al., 2012). To assess if phage
infection would trigger these host stress responses,
the detected metabolites were analyzed. Although
many of them were not detected (for example, AHLs,
c-di-GMP and cAMP), both ppGpp and Pseudomo-
nas quinolone signal (PQS) could be analyzed.

First, ppGpp controls the bacterial growth rate by
inhibiting the production of ribosomal RNA
(Potrykus and Cashel, 2008; Potrykus et al., 2011).
It also fine tunes the metabolism by transcriptional
regulation of enzymes involved in amino-acid
metabolism and binding of enzymes involved in
nucleotide metabolism (Gallant et al., 1971;
Hochstadt-Ozer and Cashel, 1972; Potrykus and
Cashel, 2008). High levels of this molecule are linked
to the stringent response, which occurs on exposure
to amino-acid starvation or heat shock (Traxler et al.,
2008; Hauryliuk et al., 2015). The level of this
molecule increases during LUZ19, 14-1 and YuA
infection, whereas it remains stable for phiKZ and
even decreases for LUZ24 and PEV2 (http://www.
biw.kuleuven.be/LoGTdb/phageBiosystems/Pathways.
aspx?cpd=C01228). This clear distinction between
the phages does not appear to be correlated to other
observed metabolic differences, such as the
decreased amino-acid levels in multiple phages
(YuA, 14-1, PEV2, LUZ19 and LUZ24). This seems
to indicate an active interference in the stringent
response during phage infection.

The second stress metabolite, the 'PQS', triggers
autolysis and DNA fragmentation, whereas simulta-
neously lowering the metabolic activity in unda-
maged bacteria and increasing the protection against
oxidative stress (D’Argenio et al., 2002). It has a
central selective role for the survival of the fittest
(Häussler and Becker, 2008). The PQS metabolite
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level increases during YuA, 14-1 and LUZ24
infection (http://www.biw.kuleuven.be/LoGTdb/
phageBiosystems/Pathways.aspx?cpd=C11848), which
hints at a host response aimed to protect the fittest
(uninfected) cells by slowing down metabolism and
killing the susceptible (infected) cells. Surprisingly,
PQS levels are not increased upon phiKZ, LUZ19
and PEV2 infection. Either the activation of the PQS
system is not a general host response or these phages
have evolved unknown mechanisms to block PQS
synthesis.

Observed correlations between the phage-specific
metabolic responses and predicted AMGs
To investigate what is causing the phage-specific
impact on host physiology, all phage genomes were
screened for potential AMGs using the bioinfor-
matics tool BLASTn (Table 2) (Altschul et al., 1990).
The number of potential AMGs identified was
limited in all phages (around 3% of all genes) and
most were Class I AMGs predicted to be involved in
nucleotide metabolism. Their presence likely
explains the common impact on pyrimidine meta-
bolism in most phages, corresponding to the central
need for nucleotides in viral genome replication. In
fact, the increased levels of metabolites in this
pathway, as well as the amino sugar and nucleotide
sugar metabolism, were also hypothesized from a

metagenomic screen for enriched viral auxiliary
genes from the Global Ocean Survey (Enav et al.,
2014). The authors hypothesized that viruses carry
these metabolic genes to expand the nucleotide pool
in two ways, by recycling the nucleotides of the
cellular genome and transcriptome (Powell et al.,
1992; Ueno and Yonesaki, 2004; Lavigne et al., 2013)
and/or by directing the host metabolism to provide
substrates for de novo synthesis (Thompson et al.,
2011).

Indeed, the giant myovirus phiKZ redirects the
host metabolism to provide substrates for de novo
synthesis (Figure 5). The genome of this giant virus
contains seven AMGs, which can be linked to the
pyrimidine pathway (Table 2). Directly after infec-
tion, the intermediates of de novo pyrimidine
synthesis show a clear increase (for example,
N-carbamoyl-L-aspartate, (S)-dihydroorotate), followed
by a slow increase in the nucleotide monopho-
sphates (Figure 5). Considering the coding potential
of this giant virus (280.3 kb) and its host-
independent transcriptional regulation scheme
(Ceyssens et al., 2014), it is tempting to rationalize
a similar independence of available host resources at
the metabolome level. Indeed, phiKZ appears to
have no influence on the cell’s metabolites during
early infection, but approximately 10% of all
annotated metabolites gradually accumulate during
late infection (Figure 2a).

Table 2 Predicted AMGs present in phage genomes as well as their class

Phage Host DNA
degradation?

tRNA in phage
genome

Predicted AMGs in phage genome (using blastN)

ORF Predicted function E-value
blast

Pathway Class

LUZ19 Yes — gp23 Endonuclease_7 5×10–10 Nucleotide Class II
LUZ24 Probable 2 gp19 L-glutamine-D-fructose-6-phosphate

amidotransferase
2×10–6 Amino acid/

carbohydrate
Class I

Pro Asn gp21 Glutathione synthase 2×10–3 Glutathione Class I
gp22 Gamma-glutamyl cyclotransferase 2×10–4 Glutathione Class I
gp35 Endonuclease_7 5×10–15 Nucleotide Class II

PEV2 ND — gp39 Deoxycytidylate deaminase 1×10–19 Nucleotide Class I
gp81 Deoxyuridinetriphosphatase 1×10–21 Nucleotide Class I

14-1 ND — gp57 PnkP, polynucleotide kinase 3×10–5 Amino acid Class II
gp59 FAD-dependent thymidylate synthase 8×10–21 Nucleotide Class I

phiKZ ND 6 gp4 Dihydrofolate reductase 5×10–22 Folate Class I
Pro Asn Asp Leu
Thr Met

gp188 Thymidilate kinase 6×10–12 Nucleotide Class I

gp214 Deoxycytidine triphosphate deaminase 4×10–51 Nucleotide Class I
gp235 Thymidilate synthase 4×10–26 Nucleotide Class I
gp260 dCMP deaminase 3×10–14 Nucleotide Class I
gp305 Ribonucleotide reductase β chain 2×10–16 Nucleotide/

glutathione
Class I

gp306 Ribonucleotide reductase α chain 2×10–99 Nucleotide/
glutathione

Class I

YuA ND — gp6 RecD exonuclease V, alpha subunit 1 × 10–98 Nucleotide Class II
gp7 Ribonucleotide reductase 9×10–150 Nucleotide/

glutathione
Class I

gp11 Threonine dehydratase 5×10–6 Amino acid Class I
gp17 Thymidilate synthase and pyrimidine

hydroxymethylase
2×10–83 Nucleotide Class I

gp23 dCMP deaminase 8×10–21 Nucleotide Class I

Abbreviations: AMG, auxiliary metabolic gene; ND, not determined; ORF, open reading frame; tRNA, transfer RNA.
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As the other phages contain smaller genomes, they
may lack the coding capacity to generate a function-
ing host metabolism and rely more on depletion of
the host resources. This may explain the immediate
increase in nucleotide monophosphates (for exam-
ple, dTMP and dCMP) in the pyrimidine metabolism
during the infection of siphovirus YuA. Most likely,
this is the result of host genome degradation, because
of unchanged levels of the above mentioned inter-
mediates (Figure 5) and the presence of a predicted
exonuclease (gp6) in the YuA genome (Table 2). In
comparison with phiKZ, the smaller phage YuA
(58.6 kb) uses a ‘leeching’ strategy, aimed at harvest-
ing metabolites from the host. In fact, after infection
an immediate negative effect on approximately 17%
of all measured metabolites is observed, which
results in a distinct metabolic effect for this phage
(Figure 3) and a high number of negatively impacted
pathways (Figure 4). However, the immediate degra-
dation of the host genome may also explain the
overall negative effect observed in YuA. This is a

clear example of how the presence of a single AMG,
in this case a nuclease, results in a distinct different
metabolic impact.

A second example of the role AMGs might have,
has been found when comparing the impact of
LUZ19 and LUZ24. At first sight, these two phages
show very similar percentages of metabolite increase
and decrease during infection (Figure 2a), which
may be explained by their relative close relationship
within the population network (Figure 1). Both
phages cause an increase in nucleotide levels after
the first third of infection (Supplementary Figure S6).
As they both encode an endonuclease, gp23 for
LUZ19 and gp35 for LUZ24 (Table 2), the observed
increase is likely caused by host genome degrada-
tion, which has already been experimentally shown
for LUZ19 (but not LUZ24) at the start of viral
genome replication (after the first third of infection)
(Lavigne et al., 2013). However, the hierarchical
clustering revealed more differences at the meta-
bolite level between LUZ24 and LUZ19 (Figure 3).

Figure 5 Both the strategy of recycling and de novo synthesis of pyrimidine nucleotides are present in the set of phages. Graphs show the
fold changes of metabolites in the pyrimidine pathway at different stages of infection (black-control, orange-YuA and blue-phiKZ). YuA
recycles nucleotides (orange shade), characterized by a rapid increase of nucleotides. PhiKZ showed an increased de novo synthesis (blue
shade), characterized by an increase in early building blocks. The y axis shows the fold change, x axis shows the time points during
infection (in minutes), annotated metabolite name and ion mass are shown above the graph. The colored squares indicate the enzymatic
reactions encoded by YuA (orange) and phiKZ (blue). The metabolites mentioned in the text are also highlighted.
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A comparison of the encoded AMG content revealed
three AMGs that are present in LUZ24, but absent in
LUZ19 (Table 2).

LUZ24 gp19 is a predicted L-glutamine-D-fructose-6-
phosphate amidotransferase (also called glucosamine-
6-phosphate synthase, glmS). This protein catalyzes
the rate-limiting enzymatic step in de novo biosynth-
esis of UDP-GlcNAc, the activated form of N-acet-
ylglucosamine (Milewski, 2002). This metabolite is
required for the biosynthesis of peptidoglycan and
lipopolysaccharide (Mirelman and Nuchamowitz,
1979; King et al., 2009). Late in LUZ24 infection, the
level of UDP-GlcNAc (C00043) is indeed significantly
increased (FC35 minutes = 1), which is not observed for
LUZ19. This indicates that LUZ24 gp19 is indeed a
novel functional glucosamine-6-phosphate synthase.
The presence of this AMG resulted in a lower
enrichment of the amino sugar metabolism for
increased metabolites in LUZ24, compared with
LUZ19 (Supplementary Figure S2). Most likely, this
is the result of a decreased accumulation of the
precursors before this rate limiting enzymatic step.
Although no stable lysogenic isolates could be
obtained for this phage (Ceyssens et al., 2008), it is
genetically homologous (71% sequence identity) to
the temperate phage PaP3 (Tan et al., 2007). This
AMG could be an artifact of its former temperate
nature, where it would yield a fitness benefit to the
host during lysogeny (Feiner et al., 2015). The two
other AMGs, solely present in LUZ24, are involved
in glutathione metabolism (Table 2). Metabolites of
this pathway are only decreased during LUZ19
infection, whereas they remain stable during
LUZ24 infection. This decrease is likely caused by
oxidative stress because of phage progeny produc-
tion, the AMGs in LUZ24 can compensate this drop
and thus reduce oxidative stress (Figure 4).

Phage 14-1 encodes two predicted AMGs, one
involved in pyrimidine metabolism and a homolog
to the T4 polynucleotide kinase (PnkP) (Table 2).
During infection, 14-1 exhibits both increased (7.2%)
and decreased (7.7%) metabolites (Figure 2a).
Despite the presence of this AMG, it is the only
phage where the pyrimidine pathway is not enriched
for increased metabolites (Figure 4). In T4, PnkP
repairs host-induced cleavage of host tRNAs (for
example, lysine) by ribotoxins to circumvent the
host’s attempt to block T4 protein synthesis (Amitsur
et al., 1987; Wang et al., 2015). Metabolites asso-
ciated with the amino-acid metabolism are
decreased early in the short 14-1 infection
(o15min), whereas towards the end of infection
this negative effect is less pronounced
(Supplementary Figure S2). These observations
indicate the presence of the PnkP homolog may
enable 14-1 to respond to a triggered host defense
and complete its rapid infection cycle.

The last phage, PEV2 belongs to the same genus
(N4likevirus) as roseophage Φ2047B, studied by
Ankrah et al. (2014). As both phages share a general
genome organization, similarity in the host response

was expected. Indeed, after one infection cycle, an
increase is observed for approximately 20% of the
detected metabolites, whereas only a small fraction
(4.8%) was significantly decreased (Figure 2a).
However, early in infection, up to 10% of measured
metabolites were decreased, something which was
not observed for the roseophage (Figure 2a). This is
due to a drop in amino-acid-related metabolites early
in infection, which is restored over time. PEV2
encodes only two predicted AMGs, which fail to
explain the observed effects on amino-acid meta-
bolism (Supplementary Figure S2).

Although the identified and described AMGs
already offer some explanations for the phage-
specific metabolic effects, many other effects cannot
be attributed to predicted AMGs at this time. Given
the high number of encoded viral genes that lack any
functional prediction in all of these phages, we can
speculate on the significant importance of unknown,
‘non-enzymatic’ peptides in metabolism take-over.
Such AMGs could technically be defined as Class II
AMGs, although they lack any direct metabolic
function. More and more of such peptides are being
identified, for example, the interaction of an early
protein of LUZ7 (gp30) with a protein involved in
polyamine metabolism (PA4114) (Wagemans et al.,
2014) or the early protein of phiKMV (gp9), which is
hypothesized to impact the TCA cycle (Roucourt
et al., 2009). These findings emphasize the need for
more efforts to characterize the function of such
small, unknown viral gene products.

An open access database enables straightforward
interpretation and interactive analysis of the
metabolomics data
Unfortunately, metabolomics data sets of phage–host
systems are scarce and hardly accessible, despite the
fact that the entire community could benefit from
such large data sets. For this reason, an interactive
database was set up providing open access to the
data and a straightforward to use, visual interface to
analyze and compare them (http://www.biw.kuleu
ven.be/LoGTdb/phageBiosystems/Home.aspx). The
data interpretation is possible at different levels:
comparative analysis between phages, phage-
specific interpretation and pathway/metabolite-
tailored visualization. These tools should enable
researchers to look at specific metabolites/responses
upon phage infection. Finally, this database is a first
step toward an online platform capable of integrating
proteomics, metabolomics and transcriptomics data
sets, which, because of the technological advances in
these fields, enables the study of phage infection at a
systems level.

Conclusions
Implications for phage biology
In this work, we provide a detailed insight into
the changing metabolic content of phage-infected
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P. aeruginosa cells, within a single infection cycle,
and conclude that the phage-specific alterations of
the host metabolism are more than a mere depletion
of the host metabolites. A clear distinction can be
made between ‘leeching’ phages, which take all
existing resources for viral replication (for example,
YuA), and phages that actively modulate the meta-
bolism, by redirecting the cell’s metabolism to
produce new resources, required for phage produc-
tion (for example, phiKZ). The great diversity in
genetic features of each individual phage is the
driver for this metabolic diversity. We further show
that specific metabolic pathways, targeted by the
AMGs, are statistically enriched in the set of
metabolites changing upon infection. Therefore,
each specific set of AMGs will result in a unique
metabolic phenotype after infection. From a more
philosophical perspective, this altered metabolic
state of the phage-infected cell is consistent with
the definition of viral life (virocell concept) (Forterre,
2013).

Implications for global ecosystem and fluxes studies
The presence of viruses in microbial communities
impacts nutrient fluxes. Recently, a model was
presented which demonstrated the impact of virus
infection on marine food webs and stressed the need
to take the viral presence into account (Weitz et al.,
2015). However, as the (current consensus is that the)
virome contains an almost unlimited source of
AMGs from which phages retain those beneficial
for their needs (Sharon et al., 2011), not only the
occurrence of phage infection but also the diversity
of the phages present will impact the net metabolic
effect of phage infections in complex bacterial
populations. This is an additional element that
should be considered when trying to understand
such complex systems and the role phages have in
them, such as in global nutrient fluxes.

Implications for biotechnology
Finally, this study provides a valuable resource to
investigate the link between the metabolic effects of a
phage and its encoded AMGs and the search for
unknown ‘non-enzymatic’ AMGs. To catalyze the
research, an interactive database (http://www.biw.
kuleuven.be/LoGTdb/phageBiosystems/Home.aspx)
was set up to allow fast visualization of the data
depending on the research question. In future, this
database could be expanded with data from single
phage gene expression, transcriptome and protein
interaction data to allow a thorough analysis of
phage infection at the systems’ biology level. With
the newly developed phenomics technique (Sanchez
et al., 2015), we expect the discovery of phage-
encoded AMGs to boom in the coming years. Such
‘metabolic modulators’ could provide key tools
toward novel biotechnological applications in the
advanced metabolic tailoring of bacteria.
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