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The rhizosphere is the infection court where soil-borne pathogens establish a parasitic relationship
with the plant. To infect root tissue, pathogens have to compete with members of the rhizosphere
microbiome for available nutrients and microsites. In disease-suppressive soils, pathogens are
strongly restricted in growth by the activities of specific rhizosphere microorganisms. Here, we
sequenced metagenomic DNA and RNA of the rhizosphere microbiome of sugar beet seedlings
grown in a soil suppressive to the fungal pathogen Rhizoctonia solani. rRNA-based analyses showed
that Oxalobacteraceae, Burkholderiaceae, Sphingobacteriaceae and Sphingomonadaceae were
significantly more abundant in the rhizosphere upon fungal invasion. Metatranscriptomics revealed
that stress-related genes (ppGpp metabolism and oxidative stress) were upregulated in these
bacterial families. We postulate that the invading pathogenic fungus induces, directly or via the plant,
stress responses in the rhizobacterial community that lead to shifts in microbiome composition and
to activation of antagonistic traits that restrict pathogen infection.
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Suppressive soils have been described for various soil-
borne pathogens and occur worldwide (Mazzola,
2007; Mendes et al., 2011; Berendsen et al., 2012;
Mendes et al., 2013). Disease suppressiveness to soil-
borne fungal pathogens is in many cases microbial in
origin and develops in the field after several disease
outbreaks (Mazzola, 2007). Hence, interactions
between the fungal pathogen, the plant and the rhizo-
sphere microbiome are key elements in shaping
a plant-protective microbiome. To date, however, the
responsible microbes and the underlying mechanisms
are largely unknown. To understand how pathogen
invasion affects the composition and activities of
rhizobacterial communities, we sequenced metage-
nomic DNA and RNA of the rhizosphere micro-
biome of sugar beet seedlings grown in a soil
suppressive to the fungal pathogen Rhizoctonia solani
(Supplementary Figure 1 and Supplementary Table 1).
The soil used in this study was described in Mendes
et al. (2011) and shown to be suppressive to R. solani.
Sugar beet seedlings were grown under controlled
conditions in suppressive soil without (S) or with
inoculation of R. solani (Sr). Whereas in conducive
soils disease incidence typically reaches levels above

60% (Mendes et al., 2011), disease incidence in the
pathogen-inoculated suppressive soils was 4.2%
(±7.2% s.d., N=3) in the bioassay used for the
metagenome analysis and 26.4% (±20% s.d., N=3)
in the bioassay used for the metatranscriptome
analyses. No R. solani-infected plants were observed
in the non-inoculated treatment (S) in both indepen-
dent bioassays. Analysis of the fungal rRNA reads
confirmed that the more abundant fungus in the
Sr treatment was R. solani (Thanatephorus cucumeris)
(Supplementary Figure 2). R. solani was thus able to
invade the rhizosphere of sugar beet seedlings growing
in the suppressive soil but caused little disease.

Comparative metagenomic DNA analysis of the
rhizobacterial family composition revealed no
significant differences between S and Sr. Taxonomic
assignment of the annotated rRNA and mRNA reads,
however, revealed significant differences between
S and Sr, with Oxalobacteraceae, Sphingobacteria-
ceae, Burkholderiaceae and Sphingomonadaceae as
the bacterial families that were consistently more
abundant in Sr than in S (Figures 1a and b). Among
the Oxalobacteraceae, members of the genera
Collimonas and Janthinobacterium are known for
their ability to inhibit fungal growth and protect
plant roots from fungal infection (Leveau et al., 2010;
Johnsen et al., 2010). Similarly, members of the
Burkholderiaceae are well studied for the production
of diverse metabolites with activity against fungi,
including R. solani (El-Banna and Winkelmann,
1998). Also, Sphingobacteria such as Chitinophaga
and Pedobacter are known to exhibit fungicidal
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activities or induce antagonistic traits in other
bacterial taxa (Garbeva et al., 2011).

To get a more in-depth understanding of the
functions activated in these abundant bacterial
families, we analyzed the annotated functions of
the mRNA sequence reads. The overall SEED
subsystem-based classification showed that protein,
RNA and DNA metabolism were the most repre-
sented categories, reflecting the active basal
cellular machinery of the rhizosphere microbiome
(Supplementary Figure 3). To uncover specific
functions induced by R. solani, the mRNA reads
that binned to the abundant bacterial families
described above were extracted from the Sr data set
and compared with the overall bacterial mRNA
dataset obtained for the S treatment (as an unchal-
lenged rhizosphere community) (Figure 1c). The

analysis was also performed in the reverse order by
using the functional classification as the starting
point before identifying the corresponding contribut-
ing bacterial families (Supplementary Figures 4A–C).
Both approaches showed that at least three functions
were significantly more expressed by the more
abundant bacterial families in Sr than in S: these
were HtrA/Sec secretion systems, Guanosine-3,5-bis-
pyrophosphate ((p)ppGpp) metabolism and oxida-
tive stress response (Figure 1c). The functional
analysis of the metagenomes confirmed that genes
associated with the stringent response (ppGpp
metabolism) and Htr/Sec secretion were more
abundant in Sr than in S (Supplementary Figure 5).

The Sec translocase proteic complex is essential
for secretion of virulence factors or extracellular lytic
enzymes in various bacteria. To our knowledge, no

Figure 1 Rhizosphere bacterial families and functions responding to the inoculation with the soil-borne fungal pathogen R. solani.
Bacterial family classifications based on (a) rRNA and (b) mRNA analyses. (c) Functional classification based on mRNA-annotated
sequences.
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information is available yet on the roles of the Sec
system in the more abundant bacterial families
detected here. (p)ppGpp metabolism, also referred
to as the ‘bacterial alarmone’, is a highly conserved
mechanism associated with stress perception and
stress response regulation. Initial work on ppGpp
metabolism in Escherichia coli focused on its role in
nutrient stress, but over the past decade it has
become evident that ppGpp metabolism has other
regulatory functions in different bacterial genera.
These include regulation of type III and type IV
secretion (Pizarro-Cerda and Tedin, 2004; Dozot
et al., 2006) as well as regulation of antagonistic
compound release (Manuel et al., 2012). Overrepre-
sentation of ppGpp metabolism in Sr suggests that
invasion of the rhizosphere by R. solani directly or
indirectly triggered a stress response in several of the
abundant rhizobacterial families. Potential triggers of
the ppGpp signaling pathway in these bacterial
families need to be elucidated, but we propose that
oxidative and/or acidic stress via oxalic and pheny-
lacetic acid produced by R. solani itself or by

compounds released from plant roots under attack
may be the key triggers. The abundant taxa and in
particular the Oxalobacteraceae and Burkholderia-
ceae are known to metabolize oxalate as a carbon
source. Evidence for oxalate catabolism (for exam-
ple, oxalyl-coA decarboxylase and glyoxylate
carboligase; Stewart et al., 2004) was found in the
metatranscriptome data in particular for members of
the α- and β-proteobacteria, with the Burkholderiaceae
and Oxalobacteraceae as differential contributors
to the function in Sr (Supplementary Figure 4D).
In the metatranscriptome, plant functional reads
represented 20% and 33% of the annotated
mRNA reads in the S and Sr data sets, respectively.
Several markers related to the plants’ response to
oxalic acid, including oxalate oxydase-like germins
(known as oxalate-detoxifying and peroxide-producing
enzymes; Livingstone et al., 2005) as well as
carbonic anhydrase and dihydrolipoamide dehydro-
genase (Liang et al., 2009), were only detected in the
rhizosphere of plants inoculated with R. solani
(Supplementary Table 2). Also, glycolate oxidase,

Figure 2 Model illustrating the proposed sequence of events (A thru E) taking place in the rhizosphere of plants grown in a disease
suppressive soil during fungal pathogen invasion. Depicted are the changes in microbial community composition and activities that
restrict fungal growth and plant infection.
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an enzyme implicated in reactive oxygen species-
mediated defenses (Rojas et al., 2012), was exclu-
sively found in Sr (Supplementary Table 2).

In light of our results, we propose a model
(Figure 2) in which R. solani, during hyphal growth
toward the plant root, produces oxalic and phenyla-
cetic acid that feed and activate specific rhizobacterial
families present in the suppressive rhizosphere
microbiome, and, directly or indirectly, exert oxida-
tive stress in specific rhizobacterial families and in
the plant (Figure 2). This stress in turn triggers a
response in these bacterial families via the ppGpp
signaling pathway, leading to the activation of
survival strategies such as motility, biofilm forma-
tion and the production of secondary metabolites
(Figure 2). These compositional and functional
changes: (i) adversely affect fungal growth;
(ii) induce a plant resistance response; and/or
(iii) co-activate other microorganisms in the rhizo-
sphere microbiome to ward off the fungal invader
(Figure 2). Future studies will focus on investigating
these hypotheses by, among others, re-constructing
dynamic rhizobacterial communities with the ulti-
mate goal to elucidate if and how these rhizobacteria
restrict fungal infection of the host plant.
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