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Cross-depth analysis of marine bacterial networks
suggests downward propagation of temporal
changes

Jacob A Cram, Li C Xia, David M Needham, Rohan Sachdeva, Fengzhu Sun and
Jed A Fuhrman
Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA

Interactions among microbes and stratification across depths are both believed to be important
drivers of microbial communities, though little is known about how microbial associations differ
between and across depths. We have monitored the free-living microbial community at the San Pedro
Ocean Time-series station, monthly, for a decade, at five different depths: 5m, the deep chlorophyll
maximum layer, 150m, 500m and 890m (just above the sea floor). Here, we introduce microbial
association networks that combine data from multiple ocean depths to investigate both within- and
between-depth relationships, sometimes time-lagged, among microbes and environmental para-
meters. The euphotic zone, deep chlorophyll maximum and 890m depth each contain two negatively
correlated ‘modules’ (groups of many inter-correlated bacteria and environmental conditions)
suggesting regular transitions between two contrasting environmental states. Two-thirds of pairwise
correlations of bacterial taxa between depths lagged such that changes in the abundance of
deeper organisms followed changes in shallower organisms. Taken in conjunction with previous
observations of seasonality at 890m, these trends suggest that planktonic microbial communities
throughout the water column are linked to environmental conditions and/or microbial communities in
overlying waters. Poorly understood groups including Marine Group A, Nitrospina and AEGEAN-169
clades contained taxa that showed diverse association patterns, suggesting these groups contain
multiple ecological species, each shaped by different factors, which we have started to delineate.
These observations build upon previous work at this location, lending further credence to the
hypothesis that sinking particles and vertically migrating animals transport materials that
significantly shape the time-varying patterns of microbial community composition.
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Introduction

Microbial communities throughout the water col-
umn show long-term, seasonal and short-term
dynamics that relate to various biological, chemical
and physical environmental parameters (Gilbert
et al., 2012; Giovannoni and Vergin, 2012; Chow
et al., 2013; Hatosy et al., 2013; Needham et al., 2013;
Cram et al., 2014a; Fuhrman et al., 2015). Microbial
interactions have been observed experimentally
(Jurgens et al., 1999; Miller and Bassler, 2001;
Jürgens and Matz, 2002; Bonilla-Findji et al., 2009)
through physical attachment (Malfatti and Azam,
2009; Malfatti et al., 2009) and inferred through
genomic and physiological information (for example,
Bothe et al., 2010). Analysis of statistical association
networks enables exploration of correlated dynamics

of taxa that either directly interact or respond
similarly to environmental variation (Steele et al.,
2011; Chow et al., 2014). Interactions (such as
predator–prey, mutualisms, parasitism and competi-
tion) appear to be major drivers of the ecological
dynamics of many marine bacterioplankton (see
Strom, 2008).

Pairwise association analysis techniques
(reviewed in Faust and Raes, 2012; Cram et al.,
2014b) have proven to be valuable tools in looking
at trends in the many statistical associations in
microbial communities in a variety of environments
including lake systems (Eiler et al., 2012; Kara et al.,
2012), soil (Zhou et al., 2010; Barberán et al., 2011),
the human microbiome (Arumugam et al., 2011;
Faust et al., 2012) and globally through meta-
analysis across diverse sampling sites (Chaffron
et al., 2010; Freilich et al., 2010). In marine surface
waters, studies using pairwise association analysis
over time have suggested that the abundance of
particular bacteria tend to be best predicted by the
abundance of other microorganisms, rather than
variability of measured parameters (Fuhrman and
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Steele, 2008; Steele et al., 2011; Chow et al., 2013,
2014). Network analysis has identified many asso-
ciations between marine microorganisms that are
driven by seasonal variability, especially at locations
where seasonality is strong (Gilbert et al., 2012), and
this seasonal pattern has been de-convoluted in lake
environments to show different inter-organismal
associations independent of seasonality (Kara et al.,
2012). Seasonality has also been seen just above the
sea floor and suggests surface influences on deeper
depths by way of sinking particle flux and/or
migrating zooplankton (see Cram et al., 2014a).

Previously, Chow et al. (2013) examined simila-
rities between association networks in the surface
and deep chlorophyll maximum (DCM) at the San
Pedro Ocean Time-series (SPOT) and observed some
associations that were consistent between depths,
specifically associations between operational taxo-
nomic units (OTUs) from the SAR11 clade and other
OTUs. Other associations differed between depths
such as the relationships between temperature,
salinity and nutrient concentrations to the abun-
dances of many OTUs. Time scale appears to be an
important determinant of organismal associations.
We previously reported that members of the SAR11
cluster were correlated on a daily time scale but not
monthly (Fuhrman and Steele, 2008; Steele et al.,
2011; Needham et al., 2013; Fuhrman et al., 2015),
reflecting patterns of temporal variability in network
structure seen in other systems (Alarcón et al., 2008).
A common feature of networks is the presence of
modules, that is, highly interconnected groups of
nodes (Newman, 2006; Olesen et al., 2007; Ings et al.,
2009) and microbial networks are no exception
(Steele et al., 2011; Chow et al., 2013). Modules in
other studies have been shown to represent groups of
organisms that have similar seasonal patterns
(Gilbert et al., 2012) that sometimes occur indepen-
dently of environmental parameters and may repre-
sent organisms that are associated with each other
through symbiosis, allelopathy, common niches or
through other means (Steele et al., 2011; Chow et al.,
2013). Here, we extend these prior network analyses
of euphotic zone depths to the rest of the water
column. The dynamics of microbial communities
throughout the entire deep (900m) water column at
SPOT were recently described, and one of the most
notable results was the discovery of seasonality at
the bottom of the water column (Cram et al., 2014a).
We aim to elucidate how organisms interact with
each other and are shaped by the flux of particles in
different water column depths by investigating
associations between organisms at different water
column depths. Particles take time to sink; at SPOT,
they have been reported to sink at an average rate of
about 83m per day or faster (Collins et al., 2011),
which suggests that it should take an average of
about 11 days to travel from the surface to the bottom
of the water column. As this is an average for all
particles, it is likely that smaller and less dense
particles sink more slowly, while denser and larger

particles sink more quickly. Particles take time to
decompose or be consumed by microorganisms, and
it has been suggested that particles take longer to
decompose in deeper waters than in the mixed layer
(Kiørboe, 2001). Furthermore, as microbes metabo-
lize sinking particles, it takes time for their abun-
dance to respond in a detectable way. Slow sinking
times and delays in particle decomposition mean
that particle flux, if it links surface and bottom
environments, likely does so with a temporal delay.

Given the complexity of marine microbial net-
works and our need to quantitatively compare
multiple networks, particularly those describing
associations at different depths, we leverage various
network statistics that are common in social, biolo-
gical (Albert and Barabási, 2002) and ecological
networks (Dunne et al., 2002; Montoya et al., 2006;
Olesen et al., 2007; Suweis and D’Odorico, 2014),
including microbial ecological ones (Chaffron et al.,
2010; Zhou et al., 2010; Kara et al., 2012), but less
common in marine microbial ecology. Network
topological statistics are used to describe ‘global’
network properties, and we utilize three related
properties to comparatively and globally describe
networks: network density, average clustering coeffi-
cients and average path length. The definitions and
implications of these quantities are given in the
methods section or in the Supplementary Materials.

This paper aims to identify patterns of associations
between microbes within and between depths,
especially time-lagged associations, to identify links
between ecosystems at different depths. It also aims
to elucidate the ecology of less studied groups of
marine organisms, especially those that are abundant
in the deep water column.

Methods

Data source
This project applies a novel perspective to data
analyzed by Cram et al. (2014a). These data are
publicly available at BCO-DMO ohttp://www.
bco-dmo.org/dataset/5371374 (physical and chemi-
cal data) and ohttp://www.bco-dmo.org/dataset/
5359154 (biological data).

Briefly, the samples analyzed here were collected
monthly from the San Pedro Ocean Time-series
station between August 2003 and January 2011 from
five depths: 5m, the Deep Chlorophyll Maximum
Layer (between 5m and 40m), 150m, 500m and
890m. DNA collection, processing and analysis
procedures were described previously (Cram et al.,
2014a) (see also Brown et al., 2005; Chow et al.,
2013). Relative abundance of bacterial OTUs were
identified by automated ribosomal intergenic spacer
analysis (ARISA) and identities of ARISA peaks were
ascertained using clone libraries, again as described
previously (Cram et al., 2014a). These clones are
from several depths throughout the water column,
but OTUs are identified only once in the data set
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using the previously published priority scheme
(Cram et al., 2014a). Environmental parameters (from
Beman et al., 2008; Cram et al., 2014a) are summar-
ized in Supplementary Table S1.

Network analysis
Networks were generated using the extended local
similarity analysis (eLSA) program (Ruan et al.,
2006; Xia et al., 2013) which implements the local
similarity analysis with latest improvements for
high-throughput data. We used eLSA to identify
global, time-lagged, Spearman correlations between
bacterial and environmental nodes at all depths.
Previous analysis at SPOT have used ‘local similarity
analysis’, which identifies time-lagged associations
as well as ‘local’ associations, which are those that
only occur over a portion of the data set. In contrast,
in this study, we were most interested in relation-
ships that were consistent throughout the study
period, so we identified possibly shifted ‘global’
Spearman correlations that identify correlations that
are present throughout the entire time span. eLSA
returned a P-value (calculated permutation test
value) for each correlation, which is the probability
that a correlation between two OTUs is at least as
high as the observed value if they are not associated.
From the P-values, false discovery rates or Q-values
were calculated using the qvalue package (Dabney
and Storey, 2004) in R (Team RDC, 2011). The
Q-value measures the proportion of false positives
incurred for a given P-value threshold. The eLSA
metric that we used allowed 1 month time lags;
meaning that correlations were considered between
samples taken approximately 1 month apart in time
(additional details in Supplementary Information;
Network analysis).

We imported our eLSA networks as well as metadata
about variables including variable names, and for
bacterial nodes, mean abundance and taxonomic data
into Cytoscape 2.8.3 (Smoot et al., 2011). Subnetworks
containing nodes from individual depths, or bacterial
nodes only, were generated by filtering one master
network (Supplementary Information; Organization of
networks). Different associations were visualized as
edges (lines) connecting nodes (shapes) that repre-
sented the parameters (Figure 1).

Network statistics

Directionality. ’Directionality’, defined for the first
time in this paper, quantifies whether changes in
shallower depths generally happened before asso-
ciated changes in deeper depths. We investigated the
‘bacterial all-vs-all’, ‘positive bacterial all-vs-all’
(containing only positive associations), the ‘bacterial
between depth networks’ and the ‘positive bacterial
between depth networks’. In all cases, we examined
the edges that connected nodes from different depths
and asked what fraction of those edges were time-

lagged. Of the time-lagged edges, we asked what
fraction of those edges were time-lagged such that
the changes in the node that was at the shallower
depth in the water column preceded correlated
changes in the node that was deeper in the water
column. These edges were referred to as ‘downward’
lagged. Conversely, ‘upward’ lagged edges are those
in which changes in the deeper node lead changes in
the shallower node.

Density. Network density quantifies how highly
connected a network is, given its size (Coleman and
Moré, 1983) (Supplementary Information; Density).
It is essentially the probability that two OTUs or
environmental factors are statistically associated
either through direct interactions or some intermedi-
ates. The density metric was applied to investigate
edges both within depths and between depths
(Supplement Information; Application of density
measurement).

Intra-depth density is defined as density within
a network between nodes from the same depth.
Inter-depth density is defined as density of edges
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Figure 1 An example of a time-lagged correlation between OTUs
at different depths. I. Three hypothetical organisms that change in
abundance over time. Note that (B), located at 150m, leads both
OTUs A (at 5m) and C (at 890m). The correlation between A and B
is ‘upward’ because the deeper node, leads the shallower node.
The correlation between B and C is ‘downward’ because the
shallower node leads the deeper node. The correlations between
A and C is ‘unlagged’ because both changes happen at the same
time. II. A network showing correlations between all pairs of
parameters.
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connecting nodes from different depths within a
network. The ‘density ratio’ for each depth is intra-
depth density of nodes from that depth, divided by
the inter-depth density of edges connecting nodes
from that depth to nodes at other depths. Density
ratio for each pair of depths is the density of the
edges connecting nodes within each depth divided
by the density of edges connecting nodes from one
depth to nodes at the other depth. This value
quantifies how much more common connections
are within a depth vs between depths.

Clustering coefficient and path length. Average
clustering coefficient (Cl) describes whether the
network associates into clumps of highly intercon-
nected organisms, where high values suggest greater
modularity. Highly clustered networks are those that
contain groups of statistically associated organisms,
which may result from physical association such as
symbiosis or shared habitats among particular
groups of organisms. Average path length (L) is the
average shortest path (fewest number of inter-
mediate connections) between each pair of nodes.
Low path length indicates that most organisms
can be connected through a few intermediates.
Clustering coefficient, path length and the associated
statistical significance (P-values) were calculated
(Supplementary Information; Calculation of cluster-
ing and path length). Because both clustering
coefficient and path length are dependent partially
on network size, we normalized these values to the
clustering coefficient and path length of random
networks. To do this, we determined Cl/ClR and L/
LR, the ratios of observed to random network
clustering coefficient and path length for each of
the thousand random networks, respectively, and
determined the median value. A network is referred
to as highly clustered if the Cl of an observed
network is at least as high as the 95% percentile of
ClR for the 1000 randomized networks. Similarly, a
network is referred to as highly connected if the path
length L of an observed network is at most the lower
5% of the path length LR for the 1000 randomized
networks.

Modularity. Modularity was determined qualita-
tively, by visually inspecting networks. We identi-
fied groups of nodes that were connected by
enriched positive correlations. Although we identi-
fied negative associations connecting different mod-
ules, these negative correlations were not considered
in defining modules, as we were looking for groups
of positively associated organisms.

Hub and spoke networks
We created hub and spoke networks (as seen in
Fuhrman and Steele, 2008; Steele et al., 2011; Chow
et al., 2014) around nodes from particular taxonomic
groups. To generate these networks from the ‘all-vs-
all’ network, we first filtered this network to reduce

complexity and highlight the strongest correlations.
Specifically, we included only bacterial nodes that
occurred at least 36 times in the dataset and had a
mean relative abundance of at least 1%. We kept
only edges with Spearman’s absolute ρ values greater
than 0.57. These filter cutoff values were chosen to
allow us to focus our networks on the strongest
correlations and most commonly occurring OTUs.
We then selected OTUs of particular interest,
specifically from the SAR11, Aegean-169, Deltapro-
teobacteria, Flavobacteria and Marine Group A
(MGA) taxa, which were previously shown to be
abundant and ecologically important in the SPOT
water column (Cram et al., 2014a), and created sub-
networks from those nodes and their nearest neigh-
bors along with immediate adjoining edges.

Results

Association networks identified a prevalence of
‘downward’ time-lagged interactions between nodes
and parameters at different depths (Figures 1 and 2).
By downward we mean that changes in shallower
environments preceded changes in deeper environ-
ments. Furthermore, we observed modular structures
in networks in the euphotic zone and the bottom
of the water column (Figure 3, Supplementary
Figures S1 and S2). Patterns for positive correlations
(Tables 1 and 2) reflect patterns for both positive
and negative correlations together (Supplementary
Tables S2 and S3), meaning both positive and
negative associations propagate in a similar down-
ward manner.

Patterns between OTUs at different depths
Analysis of statistical connections between nodes
from different depths revealed that many pairs of
bacterial OTUs, including ones from different
depths, were correlated in a time-lagged manner.
Figure 1 provides a theoretical example of time-
lagged relationships between bacterial OTUs at
different depths.

The ‘all-vs-all bacterial network’ (Figure 2) shows
the grand summary of pairwise associations between
bacteria at each depth. In this network, more than
half of the correlations between bacteria at different
depths were time-lagged by 1 month such that
changes in the OTU in the shallower depth led
changes in the abundance of the OTU in the deeper
depth by 1 month (Figure 2, Table 1). Some pairs of
depths have particularly high fractions of downward
lagged edges (for example, DCM and 890 and 150m
and 890m both had 76% of their edges downward
lagged) whereas the surface and nearby DCM had
a high fraction of unlagged edges. Significantly, the
overwhelming majority (1097 out of 1180 edges, see
the key of Figure 2 and Table 1) of the lagged
connections between depths were ‘downward’.
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Patterns within individual depths
Networks examining correlations (Spearman’s |ρ|
40.5, Qo0.01) between bacterial OTUs at each
depth (Supplementary Figures S1 and S2) as well as
networks showing correlations among bacterial
OTUs and environmental parameters (Figure 3)
showed different overall association patterns
between depths. When we looked only at connec-
tions between bacterial OTUs, several patterns were
immediately apparent. At 890m, when we
examined only positive associations between bac-
teria, the network formed two ‘modules’ or highly
interconnected groups of organisms (Figure 3e,
Supplementary Figure S1E). If we also examine
negative associations, it is clear that there are also
many negative correlations between these modules
(Figure 1e, Supplementary Figure S2E). The net-
works at 5m and the DCM (Figures 3a and b,
Supplementary Figure S1A and B, S2A and B) show
two large modules, but neither of these is as highly
interconnected as the network at 890m (Table 2).

In all cases, one module had many positively
associated nodes while the other had a few nodes
that were positively associated in a more diffuse
pattern (most nodes only connected to one or two
other nodes). Both of these networks had pairs of
organisms that associated only with each other but
not with other OTUs. As at 890m, there were
negative correlations between nodes in different
modules. Nodes at 150m and 500m (Figures 3c
and d, Supplementary Figures S1C and D, S2C and
D), in contrast, appeared to lack a discernable
structure, both when negative correlations were
included (Figures 3c and d, Supplementary Figure
S1C and D) and when they were not (Supplementary
Figure S2C and D).

Topological analysis of the bacterial networks
showed that 890m has the highest edge density,
the 5m, the DCM and 890m have higher clustering
than intermediate depths, and that the path lengths
of all depths are similar to those of random networks
(Table 2, Supplementary Table S3).
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Density. The network density at 890m, relative to
the other depths (Table 2), indicated that, for the
number of nodes present in this depth, there was
a higher probability of any two nodes being

correlated than at other depths. There were just
as many bacterial OTUs at 890m that occurred at
least 25 times as there were at other depths. While
more than half of the OTU nodes at 890m were
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associated with several other nodes, just under half
of the nodes did not correlate in abundance with any
other nodes at 890m. The networks at the other
depths all had similar densities indicating intra-
depth density is roughly even across depths.
Network density was lowest at 500m. When only
positive associations between nodes were consid-
ered (Supplementary Table S3), similar patterns
emerged.

At all depths, nodes were about twice as likely to
correlate with another node at that same depth (intra-
depth density) as they were to connect to a node at
another depth (inter-depth density), relative to the
number of possible edges that could occur within or
across depths (Table 2, Supplementary Table S3).
Compared with other depths, nodes at 890m had the
highest density of connections both to other nodes
at 890m as well as to nodes at other depths.
Meanwhile, both 5m and 890m depths had high
intra-depth edge density relative to inter-depth edge
density, while the DCM, 150m and especially 500m
depths had the lower edge densities relative to intra-
depth edge density.

Clustering and path length. At all depths, networks
were more clustered than the same size Erdos-Renyi
random networks (Po0.01). DCM, 5m and 890m
have higher clustering coefficients than other depths
(Table 2). However, only 5m and DCM but not the
890m depth has a high clustering coefficient ratio
(clustering coefficient divided by the coefficient of a
similarly sized random network; Cl/ClR). This is
because a same-sized random network as the 890m
network would also be more clustered than other
networks. When only positive associations were
considered, similar clustering patterns were seen
suggesting that the positive and negative associations
show similar patterns (Supplementary Table S3).
Mean path lengths between nodes at all depths were
shorter than in randomly generated networks, when
depths were considered individually (Table 2). How-
ever, for networks that considered at all depths
together at once, path lengths were longer than for
random networks, indicating that nodes were more
connected within depths than between depths.

Environmental parameters in within depth networks
Networks at each depth that also included environ-
mental parameters (Figure 3) generally showed
that most OTUs associated with other OTUs
rather than the environmental parameters that
we measured. Many environmental parameters,

predictably, associated with each other. Usually
there were a few OTU nodes among highly inter-
connected modules that associated with environ-
mental parameters, and we suggest that these
associations generally suggest loose relationships
between that module and the noted environmental
parameters. At 5m, DCM and 890m, two modules of
positively correlated nodes were evident; in all
cases, one of these modules contained several nodes
that corresponded to increasing day length (DDL)
and high levels of surface chlorophyll, conditions
indicating that the community was most abundant in
the spring. At each depth, we refer to this module as
‘Mod I’. The other module, which we call ‘Mod II’,
was comprised of OTUs that associated negatively
with the parameters in Mod I.

At 5m and DCM, Mod II had more nodes than Mod
I. In the DCM, several nodes in Mod II associate
positively with the abundance of the archaeal
ammonia monooxygenase gene (Beman et al.,
2011). However, this variable was not measured at
the other depths. At 5m, Mod II appeared to divide
into two sub-modules, one of which had a number of
OTUs that correlated positively with the bacterial
diversity measures Inverse Simpson index and
Pielou’s evenness index. At 890m, Mod I had more
nodes than Mod II, in contrast to 5m and the DCM.
Many nodes in Mod I were associated with high
Inverse Simpson, Richness and Pelou’s evenness,
and associated with a 1 month lag with the
concentration of nitrate and nitrite.

Example networks
Hub and spoke networks, focusing on particular
bacterial taxonomic groups reflected the trends seen
in Figure 4, but illustrated that different related OTUs
associated with different factors. As an example of
how these figures suggest inter-depth associations,
Figure 4 shows the four OTUs, from the Deltaproteo-
bacteria class, that were found at 890m, which were
present in the dataset at least 36 times and which
associated statistically with other nodes. It is apparent
that the Nitrospina OTUs with intergenic spacer
length 650 bp associated both positively and nega-
tively, with a time lag of 1 month, with a number of
OTUs and parameters from 5m, the DCM and 890m.
This Nitrospina also correlated without lag to a
number of OTUs and parameters at 500m and
890m. In contrast, a SAR324 OTU (770 bp) associated
only with two OTUs from the DCM and not from
other depths. Two other Nitrospina OTUs associated
each with a number of parameters, only some of

Figure 3 Association network showing statistically significant, time-lagged and non-time-lagged correlations between bacterial and
environmental nodes at each depth (a, 5 m; b, DCM; c, 150m; d, 500m; e, 890m). Nodes represent bacterial OTUs (circles) and
environmental parameters (squares) at each depth. Shown are bacteria that occur at least 25 times and associations that have lagged
Spearman correlations such that |ρ|40.55, Po0.01, Qo0.05. Node identities are indicated in Supplementary Table S1. Modules, clusters
of highly connected nodes, are circled. In all cases, Mod I corresponds to the module with nodes connected to high surface chlorophyll_a
and increasing daylight (spring bloom) and Mod II corresponds to nodes that are correlated positively to each other and negatively to
nodes in Mod I.
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which they shared with the more connected Nitros-
pina OTU (650 bp). Deltaproteobacterial OTUs from
150m and 500m showed different patterns at
different depths and followed a general pattern where
changes in various parameters in shallower depths
preceded changes in deeper depths, cascading
through the water column (Supplementary Figure S3).

A similar pattern was seen for the Marine Group A
OTUs and the parameters and OTUs that associated
with them (Figure 5). As with the Deltaproteobac-
teria, changes at shallower depths led changes at
deeper depths. Also as with Deltaproteobacteria,
OTUs related to different parameters at different
depths. One MGA OTU (653 bp), at 150m for
instance, correlated positively with the abundance
of phosphate, and some surface conditions, but not
nitrite or nitrate. At 500m, the same OTU correlated
negatively with a 1 month lag to nitrite concentra-
tion. At 890m, it correlated positively, with a
1 month lag to nitrate, nitrite and phosphate.
Furthermore, this OTU correlated to the abundances
of different sets of bacteria at each depth. Further
similar patterns were seen among the different OTUs
of the AEGEAN-169 and SAR11 Surface 1 clades
throughout the water column (Supplementary
Figures S4 and S5).T
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Table 2 Topological statistics for networks of bacteria at each
depth (Figure 1), and for a network of OTUs at all depths (Figure 2)

5m DCM 150m 500m 890m AllvAll

Eligible nodes 110 102 113 106 106 537
Nodes (N) 73 77 83 82 57 463
Edges (E) 112 112 141 124 154 2301
Cl 0.34 0.33 0.23 0.21 0.34 0.17
L 2.37 2.02 2.33 2.37 2.14 3.46
ClR 0.04 0.04 0.04 0.04 0.09 0.02
LR 3.73 3.92 3.61 3.88 2.54 2.91
Cl/ClR 8.33 8.78 5.75 6.02 3.59 8.10
L/LR 0.63 0.51 0.65 0.61 0.84 1.19
Intra-depth density 4.3% 3.8% 4.1% 3.7% 9.6% 2.2%
Inter-depth density 1.6% 2.1% 1.7% 1.8% 2.8% NA
Density ratio 2.71 1.82 2.47 2.12 3.43 NA

Abbreviation: DCM, deep chlorophyll maximum. This table
complements Supplementary Figure S1 which visually depicts the
network described here. These networks include only nodes for
bacteria that are present at 40.01% abundance greater than 25 times
(eligible nodes) and edges that have a possibly time-lagged, global,
absolute Spearman ρ value of greater than 0.5 or less than − 0.5. Nodes
are the bacterial OTUs that are connected by at least one edge to
another node. Edges are the number of correlations between bacterial
OTUs. Density is the number of edges (E) divided by the number of
possible edges {N*(N-1)/2} such that {Density =E/(N*(N-1)/2)}. Cl is the
clustering coefficient for the network. L is the mean path length for the
network. ClR and LR are the median clustering coefficients and path
lengths of 1000 equivalently sized (same number of nodes and edges)
randomly distributed networks. Cl/ClR is the ratio of the clustering
coefficient to the median random network's clustering coefficient.
Permutation tests suggest that clustering and path length coefficients
are statistically significantly different than those for random
(Po0.001). It is apparent that 890m has higher density than the other
depths. Clustering coefficient relative to random networks (Cl/ClR) is
highest in the DCM. Like the DCM, 890 m has a high level of absolute
clustering, which reflects as several highly connected groups in
Supplementary Figure S1E.
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Discussion

Time-lagged statistical associations suggest links
between depths
The presence of correlations between different bacter-
ial OTUs at different depths implies one or more
mechanisms linking these depths. Owing to the
absence of mixing between depths, it is most likely
that sinking particles (Collins et al., 2011) and/or
migrating organisms (Steinberg et al., 2000, 2002;
Wilson and Steinberg, 2010; Schnetzer et al., 2011)
link microbial communities at different depths. Given
that the vast majority of lagged correlations between
depths are ‘downward’, a likely mechanism would be
that sinking particles transport nutrients from the
surface, which are in turn utilized by the commu-
nities at depth. Note that as our data refer only to the
free-living bacteria, the ‘recipient’ organisms either
use dissolved materials released from the particles or,
in some cases, may be shed directly from particles
themselves. This is consistent with the long-standing
paradigm in biological oceanography that productiv-
ity in the euphotic zone drives most of what happens
at depth, and, in this case, it is the deep microbial
community composition being driven indirectly by
the surface environments and communities.

We hypothesized that we would find higher
network density within depths than between depths
as we would expect OTUs that are in the same
location to have more direct associations with each
other than we would with OTUs at a remote
location, and our data support this. In fact, while
OTUs at the same location can be related by way of
symbiosis, shared resources, competition or other
direct means (Fuhrman and Steele, 2008; Steele
et al., 2011), OTUs at different depths can only be
related by way of some linking environmental
parameter, likely one that was not measured in
our dataset such as the particle flux and its
decomposition described above.

Negative correlations within and between depths.
Just under half of the correlations seen, both
between variables from the same depth and
between variables from different depths are nega-
tive correlations (Tables 1 and 2, Supplementary
Table S2 and S3). The time-lagged negative correla-
tions between depths indicate that some change in
conditions in the shallower water (that cause an
increase of an OTU or other parameter) lead to a
decrease in relative abundance of an organism in
the deeper water. This could be from sinking
particles encouraging the growth of competitors or
predators of this organism, or by otherwise chan-
ging the deeper environment in a way that is less
suitable to that organism (for example, by reduction
of processes that had supported growth of that
organism in the past). Negative correlations within
(or sometimes between) depths may indicate any of
a number of interactions between organisms such as

competition (Chow et al., 2014) or allelopathy (see
Strom, 2008).

Interaction patterns vary between depths
Our results suggest that microbial interactions at
each depth show patterns that are common across
depths, with key differences between depths. Speci-
fically, all depths show qualitative modular patterns
in which there are co-occurring groups of organisms,
and that these modules are negatively correlated
with other modules reminiscent of alternate states.

We can confirm these qualitative results with
quantitative network topography statistics, which
show that networks are more highly clustered than
random networks, but have path lengths that are short
(Table 2). These two conditions together indicate that
the networks, by definition, have ‘nonrandom small
world’ properties (Watts and Strogatz, 1998). The
nonrandomness of these networks suggests that the
clustering patterns we observed are real and that the
short path length is not merely an artifact of the
networks being random, as truly random networks also
have short path lengths (Watts and Strogatz, 1998). The
short path lengths of between two and three mean that
most nodes were connected to most other nodes by
way of only a few species. This short path length may
suggest that although most pairs of OTUs are not
directly correlated to each other, they are usually
indirectly correlated by way of one or two intermediate
OTUs. Thus, changes to OTUs in one part of the
network are more likely to affect OTUs throughout the
network by way of intermediate variables. This ‘small
world’ topology is a common feature of microbial
association in time series between bacteria, protists
and viruses in marine systems (Steele et al., 2011;
Chow et al., 2014) lake environments in all seasons
(Kara et al., 2012) and many other biological and
nonbiological systems (Humphries and Gurney, 2008).
The relationship of groups of co-occurring bacteria to
one or more environmental parameters suggests that
community variability is likely driven by varying
environmental conditions, both directly and in a way
which may affect the community by cascading inter-
microbial interactions. Also apparent are differences in
the overall network structures at different depths.
DCM, 5 m and especially 890m appear to be highly
modular, perhaps with seasonality in part driving this
modularity, as some OTUs in each network are
associated with the rate of change of day length. This
pattern reflects findings that the surface depths and
890m are the most seasonal depths (Cram et al., 2014a)
and expands these observations to show that only a
few species are highly correlated with season itself,
while the remaining OTUs are highly correlated with
other species, only some of which are particularly
seasonal. Thus, while Cram et al. (2014a) observed
several species that were statistically significantly
seasonal, our findings here expand that observation
to suggest that these seasonal organisms may be
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extending the effect of seasonality to much of the rest
of the microbial community.

One interpretation of the defined modules of
bacteria at 5m, DCM and 890m, which are corre-
lated with biotic and environmental parameters
(growth rates and dissolved nutrients at DCM, and
temperature and dissolved nutrients at 890m), is that
communities at these depths tend to have two
competing states. In this interpretation, microbial
communities seem to have a see-saw like dynamic in
which the community could be dominated by one
module, dominated by the other module or existing
in some intermediate state; however, it would be
uncommon for subsets of organisms from each
module to be particularly abundant at the same
time. Some of the OTUs in these modules correlate
with environmental parameters, suggesting the state
of the environment is likely related to environmental
variability and seasonality. However, as most of the
connections in these modules are between OTUs, it
is likely that ecological interactions between organ-
isms, or else between organisms and unmeasured
parameters, play an important role in determining
community state. That 150m and 500m lack the
modular structure identified at other depths suggests
these environments have more complicated patterns
of interactions, with different OTUs each responding
to different environmental or biological stimulus.
These findings dovetail with previous findings that
there is pronounced seasonality at 5m, the DCM and
890m but not at 150 or 500m, suggesting that
seasonal patterns may be the ultimate drivers of the
two-module pattern at the euphotic and bottom
communities, while more subtle differences shape
community structure in the mid-water column
depths (Cram et al., 2014a).

Ecological niches of specific organisms
Related organisms, such as different strains of
Prochlorococcus marinus (Johnson, 2006), or sub-
types of SAR11 (Brown et al., 2012) have been
shown to have different ecological niches and
spatiotemporal distributions. Less is known about
the ecology of many abundant deep water organisms.
Our networks provide novel insight into the ecology
of a number of little known OTUs. Two of our hub
and spoke type networks focus on Gammaproteo-
bacteria, and Marine Group A, both of which have
previously been shown to be seasonal in the mid-
water column (Cram et al., 2014a) and biogeochemi-
cally important (Swan et al., 2011; Allers et al., 2013;
Wright et al., 2013). Further networks examine
AEGEAN-169 and SAR11, which are particularly
abundant throughout the water column (Alonso-Sáez
et al., 2007; Carlson et al., 2009; Brown et al., 2012;
Cram et al., 2014a). These networks illustrated that
previously poorly characterized subgroups such as
the species of Nitrospina and clades of Marine Group
A divide into multiple OTUs that associate very
differently from each other, suggesting they are each

made up of many different ‘ecological species’
(Fuhrman, 2009) (Figure 5). That many of these
OTUs associate with surface parameters different
from other of these OTUs suggests that there must be
more than one way that OTUs respond to changes in
surface waters. We can envision a number of ways
that there could be diverse linkages to surface
variability; most of which in some way involve
particle flux and migrating organisms.

For instance, rather than many organisms in the
deep water column responding only to the magni-
tude of particle flux, OTUs might respond to the
molecular composition of those particles. Some
organisms could even be adapted to respond to the
flux of particular kinds of particles with particular
chemical signatures. In this case, there are a number
of hypothetical ways that one could see pairwise
correlations between OTUs in different depths;
especially time-lagged ones.

For one hypothetical example, suppose that some
species of phytoplankton (let us call it phytoplank-
ton X) sometimes varies in its activity or abundance
in surface waters. Thus, at some times of year, it both
releases more of some kind of dissolved organic
matter (through processes reviewed by Thornton,
2014) and forms sinking aggregates (such as in
Kiørboe and Hansen, 1993). Surface bacteria that
are adapted to break down dissolved organic matter
released by plankton X will increase in relative
abundance. Meanwhile, bacteria that are adapted to
consuming particles produced by this organism
(or perhaps material released from the fecal pellets
of grazers eating this organism) would increase in
abundance deeper in the water column, possibly
with a lag related both to the sinking speed of the
aggregate and the growth rate of the bacterial species.
These bacteria would likely be adapted to deep water
environments and would thus be different to the
bacteria which respond at the surface. This pattern
could happen for many different phytoplankton each
of which might produce different suites of dissolved
organic matter and promote production of different
kinds of aggregates and sinking particles. Together a
diverse phytoplankton community, with different
plankton OTUs releasing different kinds of dissolved
organic matter and producing different particles
would produce many pairs of connections between
bacteria. Other possibilities that might also produce
numerous links by way of sinking particles include
the bacteria in the shallower water changing the
chemistry of surface-dissolved organic matter and
altering the chemical composition of sinking parti-
cles. Changes in the concentration of trace nutrients
such as vitamins might select for small numbers of
surface bacteria and have influences on small
subsets of sinking particles.

Beyond these more general trends, more specific
patterns are evident within the groups observed and
tell us about niches of a number of organisms; both
how they relate to surface environments and factors
at their own depth.
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Marine Group A. The observation that at 890m one
OTU, MGA_653.1, was positively correlated, with
a 1 month lag to several nitrogen species and
phosphate (Figure 5), suggests it might be adapted
to take advantage of relatively nutrient-rich condi-
tions, but slow growing enough that it takes some
time to respond to these conditions. MGA_762.8
correlated with a 1 month lag to biodiversity and
high salinity in the DCM which suggests it might
respond to particles that originate from the DCM
during conditions which favor high biodiversity
there. Other MGA found from 150 to 500m lagged
the abundance of specific OTUs and environmental
conditions in shallower depths likely owing to
factors outlined in the previous section. It is
generally evident that most MGA found at 150m
and 500m and below lag changes in parameters
shallower in the water column. The exception to this
is MGA_712.4 which, at 150m, is positively corre-
lated to nitrogen species at 500 and 890m and
temperature at 890m. It is unlikely that this OTU is
responding to deep water nitrogen directly, as it is
hundreds of meters above the nitrogen with which it
is covarying. This OTU’s relationship to deep water
nitrogen may suggest that its abundance lags some
unmeasured factor that contributes to high nitrogen
abundance deeper in the water column. Alterna-
tively, as with other upward lags, perhaps it
responds to zooplankton that migrate up from those
deeper depths, or even buoyant particles that float
up from those depths.

Deltaproteobacteria. As for the MGA, various
OTUs from the Nitrospina genus at 890m
(Figure 4), have multiple connections to nitrogen
species concentration and surface communities,
many of them lagged. That two Nitrospina are
connected to many species throughout the water
column while other species show fewer connections
might suggest that those Nitrospina may respond to
nutrients released by a kind of particle that also
affects many other organisms, whereas the less
connected Nitrospina and SAR324 might be adapted
to nutrients released by particles to which fewer
other OTUs are adapted. Genomic work has pro-
vided some recent insight about these organisms
potential. Nitrospina, for instance, are thought to be
autotrophic nitrite oxidizers (Lücker et al., 2013),
and SAR324 are likely particle-associated chemoau-
totrophs (Swan et al., 2011). However, until now,
little had been known about the ecology of these
organisms. These data suggest complex niches,
beyond what was shown previously.

Alphaproteobacteria. Alphaproteobacterial groups
such as SAR11 Surface-1 and AEGEAN-169 like the
aforementioned groups show complex ecological
interactions with very different patterns shown
between different OTUs. The finding that the abun-
dance of SAR11 Surface 1 OTUs from the surface tend
to be related to fewer environmental factors than

OTUs from deeper in the water column where they
are less abundant (Supplementary Figure S4), sug-
gests that although they are able to consistently
dominate surface waters, they are more dependent
on environmental and community structure variabil-
ity in deeper waters. Differences in association
patterns between different OTUs suggest that even
closely related groups of organisms have different
ecological niches. This pattern seems to hold for
organisms of several different phyla. That many of
these association patterns are related to different
changes in the surface community suggests impacts
of sinking particles are complex and that different
surface changes cause different changes to particle
flux and manifest in a number of ways in deeper
waters.

Pairwise correlations show different patterns than
overall seasonality
It is paradoxical that every pair of depths show
correlations between them even though only the
surface and the bottom show strong seasonal
variability (Cram et al., 2014a). One might expect
that if all depths are connected, seasonal changes at
5m should drive seasonality at every other depth
and that 890m, with fewer connections to 5m than
other depths (Figure 2), should be the least seasonal.
One possibility is that the seasonality at 5m and
890m is driven primarily by dominant organisms,
while the connections shown here are often between
rarer OTUs whose abundance may not have a strong
cumulative effect on overall community structure.
Alternatively, non-correlated organisms may change
so much in nonseasonal ways that they overwhelm
any seasonality from the connections seen here.
A final possibility is that the specific correlations are
driven by the release of specific nutrients by
particles, as described above, whereas the season-
ality is driven by a massive flux of diverse, perhaps
less labile particles, which are seasonally variable in
their magnitude. As productivity in the surface
through 150m is highest in April and productivity
at 890m is highest in August (Cram et al., 2014a),
there could be a deposition of particles in the Spring,
followed by seasonal succession in response to these
particles. This succession would be less dependent
on specific characteristics of the dissolved organic
matter that are deposited, and lag times might be
longer than 1 month; hence, our method would not
pick up these correlations.

Conclusions

Our results illustrate that long-term time-series
reveal very complex dynamics between bacterial
OTUs and their environment; however, high level
analysis reveals simple underlying patterns, and
more explicit interrogation of particular taxa allows
partial description of the niches of basically
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unknown bacterial types. Our findings are the first,
to our knowledge, to show concurrent and lagged
changes in community structure between depths
in a time series, throughout the ocean water column.
In agreement with previous recent findings
(Cram et al., 2014a), our data support the inference
that community structures of various depths are not
isolated from each other but rather are linked.
Because vertical profiles suggest that the depth of
deepest mixing is ~ 40m (Chow et al., 2013), mixing
is likely not a viable mechanism for uniting these
depths. We hypothesize that sinking particles and/or
migrating organisms link the environments by
transporting nutrients through the otherwise strati-
fied water column. We furthermore show many
associations among bacteria and environmental
parameters that help delineate potential interactions
and niche characteristics of many previously ecolo-
gically undefined, though very abundant, organisms.
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