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Viral assemblage composition in Yellowstone acidic
hot springs assessed by network analysis
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Understanding of viral assemblage structure in natural environments remains a daunting task. Total
viral assemblage sequencing (for example, viral metagenomics) provides a tractable approach.
However, even with the availability of next-generation sequencing technology it is usually only
possible to obtain a fragmented view of viral assemblages in natural ecosystems. In this study, we
applied a network-based approach in combination with viral metagenomics to investigate viral
assemblage structure in the high temperature, acidic hot springs of Yellowstone National Park, USA.
Our results show that this approach can identify distinct viral groups and provide insights into the
viral assemblage structure. We identified 110 viral groups in the hot springs environment, with each
viral group likely representing a viral family at the sub-family taxonomic level. Most of these viral
groups are previously unknown DNA viruses likely infecting archaeal hosts. Overall, this study
demonstrates the utility of combining viral assemblage sequencing approaches with network
analysis to gain insights into viral assemblage structure in natural ecosystems.
The ISME Journal (2015) 9, 2162–2177; doi:10.1038/ismej.2015.28; published online 30 June 2015

Introduction

Viral metagenomics has rapidly expanded our
understanding of viral diversity. More than 40 viral
metagenomics studies have been published in the
past decade ranging from marine, freshwater, arctic,
soil, human feces, gut and oral cavity environments
(Rosario and Breitbart, 2011; Fancello et al., 2012;
Mokili et al., 2012). Each study reveals not only new
insights into the interplay between viruses and their
hosts, but expands our understanding of the
‘unknown virosphere.’ A common trend emerging
from these studies is the enormous viral diversity,
both in terms of the number of virus types and their
gene content. More than 1031 virus particles are
estimated to exist in the oceans (Wilhelm and Suttle,
1999) with 41.2 × 105 different genotypes (Angly
et al., 2006). Like cellular metagenomics analysis,
the current challenge with viral metagenomics
analysis is to move beyond the ‘who-is-there’
analysis to a more functional analysis of the role of
the vast viral diversity in ecology and evolution in
natural environments. As a step toward this long-
term goal, there is an immediate need to improve our
ability to define viral assemblage structure.

Despite the increasing number of environments
examined, few studies have addressed the composi-
tion and interconnectivity of these viral assemblages
as a whole. A variety of bioinformatic tools have
been developed to analyze the structure and/or
diversity of viral assemblages from metagenomics
data sets (reviewed extensively in Fancello et al.,
2012; Mokili et al., 2012). Although these tools
provide taxonomic classification, functional assign-
ment and estimates of virus community structure
and diversity, they are frequently dependent on
sequence comparisons against databases of known
sequences or function, and do not account well for
the large variation in sequences and functions
typically associated with viral families. One promis-
ing direction is the use of protein-clustering techni-
ques to organize the viral sequence space
(Williamson et al., 2008; Hurwitz and Sullivan,
2013; Solonenko et al., 2013). These studies use
protein clustering not only to aid in organizing the
‘unknown’ sequences constituting the majority of
many metaviromes, but offers a means to measure
viral assemblage diversity (Hurwitz et al., 2012).
Although this approach represents a significant
advance forward, it is somewhat dependent on
having assembled large contigs from metagenomic
data sets and limited sequence variation within a
virus population (Ojosnegros et al., 2011). In natural
environments, viruses may not exist as a single
genotype, but instead as a cloud of highly related
genotypes. When this natural sequence variation is
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combined with the inherent sequencing errors of
current sequencing technologies, complex viral
assemblages producing large data sets and assembly
algorithms not optimized for the variation, fragments
of assembled genomes often result.

The acidic hot springs in Yellowstone National
Park, USA (YNP) provide relatively simple, low-
complexity environments that are dominated by a
relatively few microbial species (Inskeep et al.,
2010). High temperatures (480C), low pH (pHo3)
conditions generally favor Archaea-dominated com-
munities (Bolduc et al., 2012). Bacteria and eukar-
yotes are few or in many cases, absent (Reysenbach
et al., 1994; Blank et al., 2002; Kozubal et al., 2012;
Macur et al., 2012; Jay et al., 2013). These extreme
environmental conditions favor not only the
Archaea but also result in a relatively simplified
microbial community structure. A number of
viruses, exclusively archaeal, have been isolated
out of these environments (Rice et al., 2001;
Mochizuki et al., 2011; Pina et al., 2011;
Prangishvili, 2013). These conditions offer a tract-
able system to study virus–host relationships, as well
as viral and host community structure and stability.

We have investigated the viral assemblage struc-
ture and stability of a YNP high temperature acidic
hot spring using a network-based approach. We find
that this approach allows us to define the viral
assemblage structure and to determine that it is
relatively stable over a 5-year sampling period.

Materials and methods
Sample sites
A YNP high temperature (72–93 °C), acidic (pH 2.0–4.5)
hot spring was selected for this study based on
previous work (Bolduc et al., 2012). The Nymph
Lake hot spring site 10 (NL10: 44.7536°N, 110.7237°W)
was sampled at 10 different time points over a 5-year
period (Table 1). NL10 is located in a relatively new
thermal basin that has developed over the past
15 years (Lowenstern et al., 2005).

Sample collection for pyrosequencing data sets
Hot spring samples for viral sequencing were
collected by two different methods. The first method
involved filtering 100ml of hot spring water through
two successive 0.8/0.2 μm filters (Pall Corporation,
Port Washington, NY, USA) directly into four sterile
23ml ultracentrifuge tubes, transported at ambient
temperature back to the lab within 4 h and immedi-
ately centrifuged at 100 000× g for 2 h. The super-
natant was removed and the resulting virus-enriched
pellet resuspended in a small volume (0.25–1.0ml)
of sterile water. In the second method, approxi-
mately 1.2-l of hot spring water was filtered as above.
The filtrate was then spin concentrated (100 000
molecular weight cutoff) to a volume of 500 μl.
Previous analysis had shown that free nucleic acids
were not stable in these high temperature acidic
environments, so prior treatment of samples with
nucleases was not required to reduce this source of
non-virion packaged DNA. Total nucleic acids from
the viral pellet (method 1) and the concentrate
(method 2) were extracted using DNA/RNA Viral
Extraction Kit (Invitrogen by Life Technologies,
Carlsbad, CA, USA) and eluted to a final volume of
60 μl. Extracted nucleic acids were RNase-treated
with RNase ONE (Promega, Madison, WI, USA; 1U
over 30min) and re-extracted. These viral nucleic
acids were amplified before sequencing by multiple
displacement amplification (New England Biolabs,
Ipswich, MA, USA) or whole-genome amplification
(Sigma-Aldrich, St Louis, MO, USA). All viral
samples from Sept 2008 to Sept 2009 were
sequenced by the University of Illinois sequencing
center using GS FLX 454 sequencing. The remaining
samples were sequenced by the Broad Institute
(Massachusetts Institute of Technology) using GS
FLX 454 sequencing. Potential cellular DNA con-
tamination was removed through a bioinformatic
approach described below.

Sample collection for Illumina data sets
Approximately 60-l of hot spring water was collected
and transported at ambient temperatures back to the

Table 1 Study site sampling points and characteristics

Date Metagenome Amplification method Temperature (°C) pH

September 2008 NL10 0809 90 4
January 2009 NL10 0901 92 4.3
March 2009 NL10 0903 MDA 84 5.1
April 2009 NL10 0904 92 4.5
August 2009 NL10 0908 90 4
September 2009 NL10 0909 92 4
October 2009 NL10 0910 83 3
February 2010 NL10 1002 WGA 87 3.1
June 2010 NL10 1006 89 4.5
December 2012 1.3 g cm− 3 Ovation 88 3

1.4 g cm− 3

1.5 g cm− 3

Abbreviations: MDA, multiple displacement amplification; WGA, whole-genome amplification.
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lab and immediately filtered using a 0.4-μm filter
(Millipore, Billerica, MA, USA) to remove cells and
other debris. To concentrate the viruses, a previously
described method for chemical flocculation of ocean
viruses using FeCl3 was modified (John et al., 2010).
Owing to the already low pH and high Fe3+

concentration, it was unnecessary to add additional
FeCl3. Instead, the filtered sample was pH adjusted
to between pH 4.5 and 5.0 using NaOH, causing a
visible orange-tint during precipitation. This floccu-
late was re-filtered onto fresh 0.4-μm filters and
subsequently resuspended in a 5mM citrate buffer
(pH 3.0). This Fe-concentrated viral fraction was
then centrifuged at 4000× g for 10min to remove
residual debris from the solution and the supernatant
pelleted by centrifugation at 100 000× g for 2 h. The
pellet was resuspended in 1000-μl RNase/DNase-free
H2O (Zymo Research, Irvine, CA, USA) and applied
as an overlay onto a preformed cesium chloride
density step gradient with steps at 1.3, 1.4 and 1.5 g/
ml. Based on previous research (Thurber et al.,
2009), it was believed that most viruses would fall
within one of these interfaces. The gradient was spun
at 15 000 r.p.m. in a Beckman MLS50 rotor (Beckman
Coulter, Brea, CA, USA) for 2-h and separated in
500-μl fractions, taking each of the four interfaces.
Following fractionation, each sample was dialyzed
against citrate buffer in SLIDE-A-LYZER mini dia-
lysis units (Thermo Fisher Scientific, Waltham, MA,
USA).

Samples were extracted using ZR viral RNA/DNA
kit (Zymo Research) according to the manufacturer’s
instructions. Extracted nucleic acids were RNase-
treated with RNase ONE (Promega; 1U over 30min)
and re-extracted. Extracted viral DNA was then
amplified using the Ovation Ultralow library system
(NuGEN Technologies, San Carlos, CA, USA) accord-
ing to the manufacturer’s instructions. The amplified
nucleic acids were sequenced by the University of
Illinois sequencing center using the Illumina MiSeq
v3 system (Illumina, San Diego, CA, USA) with
paired-end reads (2 x 300 nt).

Processing and assembly of 454 reads from viral
metagenomes
Briefly outlined, adapter and primer sequences were
trimmed from individual sequencing reads using
Tagcleaner (http://tagcleaner.sourceforge.net/) and
subsequently filtered for quality using a python
script that used a sliding quality window with
average read quality of 25 across 50 bp (all custom
python scripts are available on github.com/). To aid
assembly, highly duplicated sequencing reads were
identified using CD-HIT-454 (Niu et al., 2010) at 99%
identity and reduced to the single largest, represen-
tative read. Preliminary analysis also revealed a
proportion of sequence reads from the viral sets that
overlapped with sequence reads from a correspond-
ing cellular fraction. As it was not evident if these
overlapping reads represented viral sequences

present in the cellular fraction or contaminating
cellular DNA in the viral fraction, it was decided to
remove these reads from the data set before assem-
bly. These reads were removed by aligning
sequences using Newbler gsMapper version 2.7
(Roche 454 Life Sciences, Branford, CT, USA) at
70% identity over 50 bp.

Remaining reads from each time point were
assembled using the 454 gsAssembler software
program version 2.7 (Roche 454 Life Sciences) with
default parameters, except for the minimum identity
between sequences (98%) and the minimum overlap
(50 bp; sequencing and assembly statistics are pre-
sented in Supplementary Table S1). These stringent
assembly conditions were used to prevent mis-
assembly between reads of different viruses
(Breitbart et al., 2002). An additional assembly was
generated that cross-assembled the filtered reads
(briefly described in Bolduc et al., 2012) of the entire
DNA data set (hereafter referred to as cross-assem-
blies). This cross-assembly was used for analysis by
the Virome pipeline (described below).

Processing and assembly of Illumina reads from viral
metagenomes
Reads were pre-binned according to their sequencing
barcodes. Standard MiSeq V3 adapter sequences
were trimmed from individual sequencing reads
using Trimmomatic V0.32 (http://www.usadellab.
org/cms/?page = trimmomatic) and quality checked
with FastQC (http://www.bioinformatics.babraham.
ac.uk/projects/fastqc/). Primers used in the Ovation
Ultralow library system amplification were identi-
fied as over-represented k-mers. To remove these
sequences, Jellyfish (Marcais and Kingsford, 2011)
was used to identify all over-represented k-mers
between the range of 16 and 32 and then a python
script compared all identified k-mers common with
the viral metaviromes. The common k-mers were
assembled using Minimo from the amos package
(version 1.5; http://sourceforge.net/ projects/amos/
and Treangen et al., 2002) at 100% nucleotide
identity and an overlap length of 50% and the
adapter sequences were trimmed with Trimmomatic.
Following trimming, DNA sequences were
assembled using IDBA-UD (Peng et al., 2011,2012)
using a k-mer range of 28–124 and default
parameters.

Analysis of viral alpha diversity and taxonomic
identification
Viral reads were analyzed using a combination of
GAAS (version 0.17; http://sourceforge.net/projects/
gaas; Angly et al., 2009), Circonspect (version 0.2.6;
http://sourceforge.net/projects/circonspect/) and
PHACCS (version 1.1.3; http://sourceforget.net/pro
jects/phaccs/; Angly et al., 2005). Community struc-
ture for individual, mixed (that is, averaged), and
cross-assembled samples were modeled using
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PHACCS based on the contig spectra and average
genome sizes using available models. Cross-
assembly generated contigs over 300 bp, which were
uploaded to the VIROME web server and analyzed as
previously described (Wommack et al., 2012).

Analysis of viral diversity of Illumina data sets
Rarefaction curves were constructed by an in-house
version analogous to Metavir (Roux et al., 2011).
Briefly, 250 000 paired-end, trimmed reads are
randomly selected from each metagenome and
rarified in 12 500 sequence increments, for a total
of 20 rarified sets. These sets are clustered with
Uclust (Edgar, 2010) at 97%, 90% and 75% nucleo-
tide identities. The resulting clusters and input
sequences are plotted using the matplotlib library
for python (Hunter, 2007).

Network analysis: optimization
To determine the optimum parameters for use in the
final network, the number of viral groups and data
represented were evaluated as a function of both
high-scoring pair (HSP) length and minimum e-value
cutoff, as these two parameters were the most
influential in changing the network topology. For
this optimization, the HSP-lengths were varied
between 50 and 500 in 25-bp increments and
e-values varied from e− 10 to e− 50. In addition, the
minimum number of contig members in each viral
assembly group was evaluated using 50 and 100
contig thresholds. Overall, these optimization runs
evaluated 162 total variations (Supplementary
Figure S1).

Network analysis
Contigs from each viral assemblage were compared
through an ‘all-verses-all’ comparison using
BLASTN with default parameters (except that the
max target sequences were set to 10 000 and an
e-value cutoff minimum of 10− 5). HSPs were filtered
to remove those below a 50-bp minimum alignment
length, 75% nucleotide identity and e-value of 10− 10.
Filtered HSPs were subsequently converted to a
directed graph, with contigs as graph nodes, their
HSP connecting them (the query-target relationship)
as graph edges and their e-value stored as the edge
property, weight. The weight serves as a measure of
strength connecting two contigs to each other. The
community detection algorithm (the Louvain
method; Blondel et al., 2008) was then applied to
the graph. This method utilizes both edge weight and
edge numbers connecting contigs to maximize
cluster modularity within the network. The effect is
contigs separated into partitions, more highly related
within a partition than between them. In this work,
we refer to these viral partitions as viral groups. Viral
groups containing o50 contigs were removed from
downstream analyses because of their relatively

minor impact on the results and disproportional
computational requirements. Graph networks were
visualized using Gephi (Bastian et al., 2009) using
the OpenOrd layout (developed from the force-
directed Fruchterman-Reingold; Fruchterman and
Reingold, 1991) and optimized using Gephi’s Force
Atlas 2 plugin. Both of these force-directed graph-
drawing algorithms assign forces to both nodes
(contigs) and their connecting edges (HSPs). Nodes
are repulsed from each other as if electrically
charged, while their edges are springs serving as an
attractive force. The strength of the spring is
correlated to the edge weight. Network statistics
and topological properties, such as modularity,
clustering coefficient and degree were calculated
using Gephi. In the case of modularity, the Louvain
method calculates its own modularity internally,
which is not accessible by the user. The contribu-
tions of each viral assemblage’s contigs and reads to
each group were calculated during the network
analysis. These contributions provide a snapshot of
the viral populations over time. As controls, all
viruses, including the 67 archaeal viruses and the
Illumina loading control (bacteriophage ϕX174) in
the NCBI RefSeq database (including the Illumina
loading control, bacteriophage ϕX174) were seeded
as full-length nucleotide sequences alongside the
initial BLAST and the network analysis repeated. In
addition to the use of full-length sequences, virus
reference sequences were fragmented into 1000-bp
segments with 250-bp overlaps between segments.
These fragmented genomes were compared against
the established network as an alternative approach to
using full-length sequences. A list of the archaeal
viruses used in the seeding is in Supplementary
Table S2.

Network analysis controls: creation of synthetic
networks consisting of both random and artificial
metagenomes
To establish the fundamental biological nature of the
viral groups, two artificial networks were con-
structed. In the first network, random sequence
contigs were generated from the initial contigs using
python’s random module, which uses the Mersenne
Twister algorithm (Matsumoto and Nishimura, 1998)
as its pseudorandom number generator. These ran-
dom contig sequences had similar characteristics
(contig length, abundance and known error rate of
the sequencing technology used) as the experimental
viral metagenomic data sets. The randomized contigs
were then subjected to the identical network analysis
as described above, including the additional virus-
based ‘seeding’.

The second artificial network was constructed
from a known set of viruses from the Podoviridae
family. Briefly, 228 Podoviridae were downloaded
from NCBI by using the NCBI’s taxonomy browser,
selecting the Podoviridae taxon. The GI numbers
associated with each virus were then used to identify

Metavirome network analysis of Yellowstone hot springs
B Bolduc et al

2165

The ISME Journal



their full taxonomic lineage. Lineage information was
used to select 85 viral species from the list; a minimum
of five members from each sub-family was randomly
selected after which members from the remaining
species were randomly selected. To these viruses,
three archaeal viruses were added; Sulfolobus turreted
icosahedral virus 1 (STIV-1), Aeropyrum coil-shaped
virus (ACV) and Acidianus two-tailed virus (ATV).
The 88 viral genomes were then fragmented using
Grinder (Angly et al., 2012) with the following
parameters to match the NL10 viral metagenomes:
total reads, 175 000; read distribution, 500 normal
100; mutation distribution, uniform; homopolymer
distribution, Balzer; abundance model, powerlaw;
quality levels, 30 10, mutational distribution, 1.45;
chimeric percentage, 5. These parameters were found
through an exhaustive approach, varying each para-
meter and evaluating all permutations (264 combina-
tions; Supplementary Figure S1) through assembly
with gsAssembler and selecting for the inferred read
error, quality-passing reads and contig statistics (total
contigs, large contigs, average total contig length and
average large contig length) best matching the NL10
viral assemblages. Following assembly with gsAssem-
bler (as above), the resulting contigs were subjected to
the above network analysis and analyzed under the
same conditions.

Reassembly of viral contigs based on network clusters
Owing to a high network-clustering coefficient and
the number of viral group-exclusive viral reference
matches, it was believed each viral group could be
reduced to a set of ‘representative’ pan-genomes.
Contigs within each viral group were re-assembled
using the Cap3 assembler (Huang and Madan, 1999)

with a 50-bp minimum contig overlap length and
98% minimum overlap identity (identical to the
initial assembly conditions). Assembly characteris-
tics (number of new contigs, average lengths and so
on) were analyzed using a custom python script,
which also handled running the Cap3 assembler
program.

Network comparison of NL10 to another high
temperature, acidic YNP hot spring
BLASTN was used to compare contigs generated
from a previous viral metagenomic study from
another high temperature, acidic hot spring in the
Crater Hills region of YNP (CH041) and the viral
groups present in the NL10 viral assemblages. Viral
contigs from CH041 were compared with each of
NL10 viral group’s contigs with an e-value cutoff of
10−10 and minimum identity of 70%. Matches to any
contig were added to its viral group count total.

Analysis of minimum sampling to describe viral
assemblages through network analysis
Contigs from each metagenome were added in
stepwise, time-forward manner, adding contigs to
the each previous sampling point (beginning with
only NL10 0901 contigs) and performing the network
analysis before the addition of the next time point.
This continued until all sampling points were used.
The same process was repeated but in a reversed
‘direction’, starting with NL10 1006 and moving
backward in time. This resulted in 18 additional
networks that were parsed as above. Network
statistics and topological properties for each network
were calculated using Gephi (Table 2).

Table 2 Network analysis on stepwise-added metagenomes

# Metagenomes 1a 2b 3c 4d 5e 6f 7g 8h 9i

Contigs 211 2202 6148 9963 14 741 19 977 24 527 28 134 30 132
Edges 942 10 012 36 665 68 197 121 704 186 584 237 728 277 340 304 585
Average degree 8.929 9.094 11.927 13.690 16.512 18.680 19.385 19.716 20.217
Modularity 0.682 0.923 0.946 0.957 0.956 0.956 0.956 0.959 0.959
Viral groups 8 28 55 68 81 84 92 103 105
Avg. clustering coefficient 0.688 0.720 0.750 0.765 0.770 0.768 0.766 0.766 0.766

# Metagenomes 1j 2k 3l 4m 5n 6o 7p 8q 9r

Contigs 509 3583 9120 13 995 17 776 22 889 26 618 30 132
Edges 1344 12 711 39 773 78 338 115 037 178 631 238 101 304 585
Average degree 5.281 7.095 8.722 11.195 12.943 15608 17.89 20.217
Modularity 0.900 0.962 0.969 0.962 0.965 0.962 0.961 0.958
Viral groups 19 51 86 94 106 108 105 105
Avg. clustering coefficient 0.650 0.712 0.730 0.742 0.751 0.758 0.764 0.766

a0809. b0809-0901. c0809-0903. d0809-0904. e0809-0908. f0809-0909. g0809-0910. h0809-1002. i0809-1006. jDid not have a major population.
k1006-1002. l1006-0910. m1006-0909. n1006-0908. o1006-0904. p1006-0903. q1006-0901. r1006-0809.
The 9 454 metagenomes were added one-by-one successively to the previous metagenome (1, 1+2, 1+2+3, etc.) and analyzed using the network-
based analysis. The number of contigs present in the network is given under ‘Contigs’ with the number of connections between all contigs as
‘Edges.’ Average degree refers to the average number of connections incoming/outgoing from each contig and denotes relative connectivity between
contigs. Modularity is a measure of separation and distinction of viral groups. The greater the value (approaches 1) the more connections tend to
exist between members within a viral group than between members of differing viral groups. This also serves as a measure of the overall
organizational level of the network, with values 40.3 indicating community structure. The average clustering coefficient measures how well
contigs tend to associate with each other.
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Scripts and data availability
Scripts used in the network analysis are available at
Github (https://github.com/bolduc/blast2network).
The nine 454 and three Illumina viral metagenomes
have been deposited in the NCBI database under
Bioproject PRJNA273640.

Results

Analysis of the viral content of single YNP hot spring
was evaluated over a 5-year time period. A total of 10
viral-enriched samples were collected and analyzed
by community sequencing technology over the
course of a 5-year period. Nine viral metagenomes
were generated during a 2-year period, which were
subjected to DNA sequencing using 454 technology,
whereas the 10th sample (taken 3 years after the last
454 sample) was performed using virus samples
further enriched on CsCl gradients and sequenced
using Illumina technology (Table 1). Although the
pH and temperature of the site is relatively stable,
there is a seasonal variation in the pH of the hot
spring based on the amount of surface water mixing
with water coming up from the deep subsurface. The
influx of more neutral water likely affects the pH and
geochemical composition of the site, with larger
variations possible throughout the year.

Read processing and assemblies
In order to assemble high confidence viral assem-
blies, low-quality reads, cellular carry-over reads and
highly duplicated reads were removed and subse-
quently assembled with high stringency parameters.
Initial assembly of these reads using the 454
gsAssembler software program (version 2.7) was
unable to assemble several of the viral metagenomes
until the ‘large and complex genome’ option was
enabled. This option is generally evoked during
processing of large prokaryote or eukaryotic genomes
and skips the assembly of high-copy (4500) repeats
and the last level of detangling. The detangling phase
is responsible for resolving complex graph structures
created when contig ends overlap between multiple
contigs, often the result of repeats. Resulting assem-
blies resulted in a large number of small contigs
with an average contig length less than the average
read length. Aligning these contigs against viral
sequences known to exist in the NL10 site revealed
complete genome coverage with a wide range of
sequencing coverage. Such uneven sequencing
coverage often prevents optimal assembly (Li and
Godzik, 2006) and we suspected these uneven
regions resulted in premature breaking of the contigs.
To reduce the hyper-deep coverage regions, highly
duplicated reads were removed at 99% identity
with CD-HIT-454, reducing the number of reads
by 14% (on average) for the viral metagenomes
(Supplementary Table S1). Viral reads were subse-
quently filtered against potential cellular carry-over

sequences further reducing the number of reads for
the viral metagenomes by an additional 1%. This
resulted in a reduction from ~1.61 million reads (620
Mbp) to ~ 1.44 million reads (521 Mbp) for the viral
metagenomes. Similar processing of Illumina reads
removed ~9% of reads, reducing the total raw reads
from ~6.08 million (3.6 Gb) to 5.53 million (2.0 Gb).

Our assembly strategy improved the number and
length of assembled contigs of the nine 454 data sets.
The initial assembly of sequences from NL10 hot
springs resulted in a large number of viral contigs
under stringent conditions. Separate assemblies of
the nine 454 viral metagenomes generated 50 735
total contigs (average contig length of 565 bp),
assembling 81.8% of the reads, with 16.1% single-
tons (the remaining classified as repeats, chimeric or
too short). The cross-assembly of all nine metagen-
omes reads produced fewer overall contigs (27 608),
maintained the average contig length of 562 bp and
increased the number of reads assembling into
contigs (86.6% with 10.2% singletons) as compared
with the individual assemblies. Assembly of the
Illumina data sets generated 118 261 contigs, assem-
bling 19% of the reads. Cross-assembling the three
Illumina data sets resulted in a 65.1% overall
reduction in contigs (41 332), revealing a large
number of duplicated sequences between samples.
To further support the concept that viral groups
(described below) are representative of common
and/or related viral types, each group was re-
assembled using similar assembly parameters
(Supplementary Table S3). In nearly all cases,
assemblies of viral groups resulted in the creation
of fewer and larger contigs. For example, viral group
29 contains 391 contigs, representing 0.8% of all
contigs and 0.26% of the total read-bp. Reassembly
reduced the number of contigs by 53.2% (183
contigs) and increased the average contig length by
42.9%. It is suspected these reductions are due to the
presence of the same sequence at multiple time
points, as well as overlap between sequences that are
not sequenced at all time points because of insuffi-
cient sequencing depth at any individual time point,
isolation or amplification biases or stochastic
effects during sequencing. Overall, viral group re-
assemblies resulted in a 54% decrease in contig
numbers, a 28% increase in average contig size and a
30% increase in the largest contig length.

Taxonomic analysis
To reduce the computational cost associated with
analyzing the nine 454 generated metaviromes, only
the cross-assembled metagenome was taxonomically
classified using the VIROME pipeline. Briefly,
VIROME is an annotation system developed to
characterize viral sequences. Sequences are first
filtered for quality, the presence of ribosomal RNA
and false duplicate sequences and other known
contaminants such as vector sequences. Sequences
are subsequently analyzed for the presence of
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transfer RNA sequences and compared against UniRef,
and MetaGenomes Online. Sequences not assigned to
these collections have their open reading frames
(ORFs) predicted and compared against five annotated
protein databases (ACLAME, COG, GO, KEGG and
SEED). VIROME then annotates each sequence based
on best-matches against each database (Wommack
et al., 2012). Analysis of contigs ≥300 bp revealed
more than half were unable to be assigned. Those
sequences that were assigned were almost exclusively
archaeal viruses (97.8% of all ORFs). The remaining
2.2% were to temperate phage of the order Caudovir-
ales. Archaeal virus homologs matched to families
known to infect hyperthermophilic Archaea; spread
between the Rudiviridae (32%), including Sulfolobus
islandicus rod-shaped virus 1 and 2 (SIRV-1, 2),
Acidianus rod-shaped virus (ARV) and the Lipo-
thrixviridae (31%), which include nearly all the
Acidianus filamentous virus strains (AFV) and
Sulfolobus islandicus filamentous virus (SIFV). The
remaining matches were spread evenly between the
Fuselloviridae, Bicaudaviridae and the proposed
Turriviridae, including STIV-1 and 2, and hyperther-
mophilic archaeal viruses 1 and 2. It is unclear if the
taxonomic assignment of the phage ORFs found in
the viral fractions is due to the presence of phage
through contamination or actual presence of phage
within the hot springs or viral ORFs with their
closest known paralogs found in cellular genomes.
However, these results support previous analysis
that archaeal viruses and their archaeal hosts
dominate high temperature acidic hot springs.

Community composition
The community composition was modeled using
PHACCS, including viral genotype richness, most
abundant genotype, evenness and diversity
(Supplementary Table S4). The PHACCS-analyzed
metaviromes were significantly lower diversity and
genotype compared with freshwater and marine
metaviromes (Tamaki et al., 2011; McDaniel et al.,
2013; Tseng et al., 2013) and slightly lower than
those of other springs in YNP (Schoenfeld et al.,
2008). The number of estimated genotypes varied
between 192 and 1342 although the different
estimators separate the samples into a low richness
and moderate–low richness with ranges of 192 to
494, and 1145 to 1342, respectively. This is lower
than the number of genotypes seen in marine (53
000; McDaniel et al., 2013) and freshwater (352–22
000; Tseng et al., 2013) but on par with a study in a
wastewater treatment plant (423–560; Tamaki et al.,
2011) and lower than a neutral, boiling spring in
YNP (1310–1440; Schoenfeld et al., 2008). The most
abundant genotypes were inversely related to the
number of genotypes, ranging from 3% to 7% for the
low richness and 2% to 4% for the moderate–low
richness NL10 groups, in agreement with the com-
munity evenness, which was stable between 0.87
and 0.94. This is similar to the YNP hot spring and

significantly lower than the wastewater treatment
plant and freshwater marine studies. Cross-contig
spectra from PHACCS showed 129 genotypes com-
mon to all time points with high evenness (0.94) and
low Shannon-Wiener diversity of 4.5. GAAS (Angly
et al., 2009) was also used to estimate the viral
genome complexity. GAAS, which estimates the
average size of genomes in assemblages, was unable
to find enough similarities when compared against
the NCBI reference viral genomes with a percent
similarity above 50% and a length of 20% of the viral
read. In order to estimate the average genome size,
viral reads were recruited against the NCBI viral
genomes using gsMapper at 90%, 80% and 70%
identity across a 50-bp overlap. A weighted average
was calculated based on the number of reads
aligning to a reference genome and the size of the
genome relative to other reference genomes also
containing matches.

Rarefaction curves were used to assess species
richness for the Illumina data sets. An in-house script
mirroring the methodology of Metavir (Roux et al.,
2011) was applied to each of the metaviromes. In
order to balance the computational demands and time
of sampling all reads, a subsampling of 250 000 reads
from each data set was selected. The rarefaction
analysis showed curves approaching a plateau in the
Illumina sample (Supplementary Figure S2), suggest-
ing a more complete sampling of the viral sequence
space in the Illumina data and support low genotype
richness. In support of this analysis, electronmicro-
graphs of each step gradient fraction showed a
correlation between the morphological diversity seen
by transmission electron microscope analysis and the
estimated richness (data not shown).

Network analysis
Owing to the temporal nature of the samples, it was
hypothesized that a network-based approach would
reveal patterns of viral assemblage composition
and dynamics. To this end, an all-versus-all BLAST
was performed on all contigs (4100 bp) from the
viral metagenomes. Roughly, 70% of all contigs
(35 215 out of 50 735) were found to have a
significant match of 75% identity across a 200-bp
minimum length to another metagenome contig. To
estimate the number of distinct viral groups within
the large BLAST-based viral network, the Louvain
method was applied. This method has been used in
modeling disease outbreaks and identifying and
containing computer viruses within social (Lee and
Cunningham, 2013) and peer-to-peer networks
(Ruehrup et al., 2013). A total of 947 viral groups
(that is, an individual cluster of sequences defined
by their division between other clusters based on
maximizing their modularity, where stronger and
more frequent connections within a cluster exist
than between members of differing clusters) contain-
ing ≥ 2 contig members were detected (for the
purposes of this analysis, remaining singleton
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contigs (15 520) were not considered). The viral
group membership-based rank abundance curve is
shown in Figure 1. The most dominant population
for the viral networks represents 3.2% of the contigs
in the network and 0.2% of its reads (a read-based
rank abundance is shown in Supplementary Figure
S3). This agrees well with the numbers estimated by
PHACCS, considering each viral group can represent
multiple species simultaneously (discussed below).
The network shows a large number of low popula-
tion groups, with 726 viral groups in the network
containing o10 members (comprising only 4.8% of
all contigs ando0.01% of reads) and 113 viral
groups between 10 and 49 members (4.5% of all
contigs), suggesting insufficient sequencing. For the
purposes of this study, a viral network was defined
has having ≥ 50 contig members. Even with a
minimum membership of ≥50 contigs, 460% of
the contigs and 94% of unique reads-bp are
represented in the network (Supplementary Figures
S4 and S5), strongly suggesting the largest popula-
tions represent the dominant viral assemblage’s
members. For this work and subsequent visualiza-
tions, we defined the major viral populations as
those groups within the viral assemblages containing
≥50 contigs. Under this threshold, 110 viral
groups comprise the Nymph Lake viral assemblage
(Figure 2).

Network visualization
Figure 2 visualizes the NL10 viral network and
provides a non-metric view of how viral groups are
organized. Points represent contigs and connecting
lines (edges) are colored by their source contig.
Clusters of sequences represent viral groups; each
viral group is uniquely, but randomly colored (110
different color variants) to better distinguish groups.
Edge length between contigs is inversely

proportional to their weight (defined as the -log(e-
value)) with strongly connected contigs closer to
each other. Except where viral groups are connected
(by edges between their members), viral group
positions are random and have no BLAST-level
relationship to surrounding groups. Long edges
connecting distant groups (charged points) result
from balancing edge weights (springs) and minimiz-
ing interactions between other groups, which can
result in underestimation of the true relationship
strength between distally connected viral groups.

Owing to the network-based nature of this
approach, topographical properties can be calculated
to more precisely define the network and to describe
the biological organization within and between viral
groups. As a whole, members within each viral
group are more strongly related to each other than
they are to members of other viral groups within the
network. A network metric measuring this property
is known as modularity, which measures the
separation strength of individual groups within the
larger community (Newman and Girvan, 2004).
Networks with higher modularity values have more
densely connected vertices and are separated from
other dense groups through fewer, sparser connec-
tions. Generally, in real-world applications, network
modularites 40.3 are considered structured and
rarely exceed 0.7 (Newman, 2006). The modularity
index was exceedingly high (0.96) for the NL10 viral
network. A second metric, known as the clustering
coefficient, measures how well connected nodes are
with their neighbors. The clustering coefficient was
also very high (0.764) for the viral network. These
two values together provide overwhelmingly that
well-supported and highly connected groups defin-
ing the viral assemblages. Despite the densely
connected viral groups, there were only 17 con-
nected components in the network, suggesting that
few viral groups are entirely isolated from
each other.

Sampling effect on network topology
In order to better understand the minimum sampling
required of the viral assemblages to define the
network with high confidence, network analyses
were performed by sequentially adding metagen-
omes and their network topologies evaluated with
the same criteria as above. Using the clustering
coefficient, modularity and the number of popula-
tions as a measure of ‘completeness’ compared with
the final network, five metagenomes were required
to achieve sufficient sampling (Table 2).

Network viral groups: what they represent
To evaluate how well the network clusters (popula-
tions predicted known virus families) all viruses in
NCBI’s database were ‘seeded’ in a parallel network
analysis, including 67 archaeal virus genomes, both
as full-length genome sequences and as fragmented

Figure 1 Viral group membership rank abundance curve. Viral
groups are ranked according to the number of contigs present
within the group. Those with 450 contigs members are included
in the NL10 network are blue, with thoseo50, are red. For brevity,
singletons (those without a match during the BLAST analysis or
those not included in a viral group by the partitioning algorithm)
are excluded.
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genomes (Supplementary Table S2). These archaeal
viruses comprise members originally isolated from
high temperature environments (37 of the 67 viruses)
and viruses not expected to be present in hot spring
environments (30 mostly halophile viruses from
mesophilic environments), such as those infecting
members of the Euryarchaeota (for a review of
archaeal viruses, see Prangishvili, 2013; Dellas
et al., 2014). The vast majority of known viral
genomes did not map to any of the network clusters
(1786/1812). As expected, this included all viruses
infecting Bacteria and Eukarya or archaeal halo-
viruses (30 viruses) not expected to be present in
previously in acidic, thermophilic environments.
Only 26 of the 1812 total viruses, all of which were
exclusively archaeal viruses commonly found in
thermophilic environments, representing 6 families
were found associated with 7 network-defined viral
assemblages, representing 6.6% of all contigs
(Figure 2). Of these 26 viruses, all of the Fusellovir-
idae (9/9) and nearly all Lipothrixviridae (7/9) were
found associated with single viral groups (AFV-1
was found in its own group). Of the four

characterized Rudiviridae, SIRV-1 and SIRV-2
(Prangishvili et al., 1999) were found associated
together within their own distinct groups (ARV-1
and SRV are described below). Spherical viruses
STIV-1 and STIV-2 (from the proposed ‘Turrivir-
idae’; Rice et al., 2004; Happonen et al., 2010) were
also found tightly centered within a single group as
well. The largest viral group in the seeded network
was the SIRV-1 and 2 group, comprising 3.2% of the
network contigs (0.15% of reads) and 1.9% of all
contigs. The only viral group containing members
from differing families involved the Rudiviridae
viruses ARV-1 and SRV, and the unclassified fusi-
form viruses STSV-1 and STSV-2 (Xiang et al., 2005;
Erdmann et al., 2013). A number of other archaeal
viruses were found exclusively in single clusters,
including ATV; 1.4% network contigs (Prangishvili
et al., 2006b) and AFV-1 (1.3% network contigs;
Bettstetter et al., 2003). A number of thermophilic
viruses were not detected. These include Acidianus
bottle-shaped virus (ABV), Aeropyrum pernix bacil-
liform virus 1 (APBV-1), coil-shaped virus (ACV) and
spindle-shaped virus 1 (APSV-1), Thermoproteus

Figure 2 Metavirome network. A visualization of the all-verses-all BLAST network. Viral groups are assigned a unique color and were
visualized in Gephi. Separation of the viral groups was accomplished using Gephi’s Force Atlas 2 plugin, a force-directed layout
algorithm. Ovals highlight viral groups whose members matched against seeded viruses in a parallel network analysis. Despite the large
number of seeded viruses (1812), only 26 viruses were assigned to viral groups. All 26 viruses were crenarchaeal viruses. Edge connections
are lines connecting members within a viral group and between members of differing viral groups. Care should be taken to not associate
distance between viral groups as indicative of sequence similarity. To enhance clarity and distinctions between viral groups, only those
containing 50 contigs or more are included in the figure. Viral groups numbering: group 0=SIRV-1,2; group 23=ASV-1, SSV-1-2, 4-9;
group 26=ATV; group 28=AFV-1; group 29=STIV-1,2; group 31=AFV2-3, 6-9, SIFV; group 32=STST-1,2 and ARSV-1, SRV.
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tenax spherical virus 1 (TTSV-1), Pyrococcus abyssi
virus 1 (PAV-1), Hyperthermophilic archaeal virus 1
(HAV-1), Thermococcus prieurii virus 1 (TPV-1) and
Pyrobaculum spherical virus (PSV). Further support-
ing these viruses’ absence from the network, all
metagenome reads were aligned against each of the
viral references, finding only PSV with reads align-
ing (3) at any significant (e-value cutoff of 10−5)
level. The thermophilic archaeal viruses not asso-
ciated with network clusters are more commonly
associated with more neutral thermophilic environ-
ments, providing a possible explanation for their
absence in this analysis.

A parallel analysis using fragmented versions of
the viral reference sequences found 1194 total
matches against the viral groups, with 95% (1133-
/1194) of these fragments associated with the same
viral groups as their full-length reference counter-
parts (Supplementary Table S5). The remaining 61
fragments were found associated with well-con-
nected, adjacent viral groups. This suggests these
fragments to be more distally related to the ‘core’
genome of the viral group (detailed below). Overall,
the association of the 26 seeded known archaeal
viruses isolated from thermophilic acidic environ-
ments defined network cluster supports the conclu-
sion the network clusters defined viral assemblages
represents a taxonomic unit at or below the
family level.

Network viral groups—synthetic networks
To establish the biological significance of the viral
groups in the network, two artificially generated
viral metagenomes were subjected to the same
network analysis. In the first metagenome, rando-
mized versions of the contigs from the original viral
assemblages were created. Approximately the same
GC% and length, these contigs did not generate
sufficient overlap during the BLAST to form a
viral group.

As one of the fundamental assumptions in the
network analysis is that viral groups correspond to a
sub-family to species-level organization, an artificial
metagenome using family members of the Podovir-
idae and three archaeal viruses (ATV, STIV and
ACV) was designed to test this hypothesis. Nine
synthetic metagenomes (each approximately 175 000
reads) was generated using Grinder and 88 Podovir-
idae and archaeal viruses as read-references, and
assembled using gsAssembler under the same con-
ditions as the original assemblies. The 19 968 contigs
were network analyzed as the NL10 viral network.
Nearly 95% of the contigs (18 910) had a BLAST
alignment (1058 singletons) and organized into 64
viral groups ranging in size between 87 and 813
contigs (Supplementary Figure S6). Eighty-seven of
the 88 (98.9%) were identified in the network
analysis, with 52 of the reference sequences (59%)
associated with a single viral group. During this
analysis it was noted that (a) although reference

sequences were associated with single groups, multi-
ple references would share that group and b) the
remaining ~ 40% of reference sequences were spread
amongst multiple viral groups, seemingly contrary to
the NL10 analysis. For example, Enterobacteria
phage N4 and IME11 are each associated with the
same two viral groups, whereas Pseudomonas phage
LUZ24, phiIBB-PAA2 and vB PaeP p2-10 Or1 are all
associated with the same three viral groups. This
suggests that closely related viruses associated with
multiple viral groups were maintaining their asso-
ciation. It was also noted that the Enterobacteria
phage were both members of the N4-like genus,
whereas the Pseudomonas phage were all members
of the Luz24-like genus. When examined at the sub-
family level, only 5 of the 64 viral groups contained
members from multiple references (Supplementary
Figure S7), supporting the initial hypothesis that the
network analysis grouped viruses corresponding at
the sub-family level. The size of the viral reference
sequence also corresponded to the number of viral
groups. The largest Podoviridae genome, Cellulo-
phaga phage phi4:1 was associated with five viral
groups and is approximately 146-kb. Mapping the
1076 contigs from these five viral groups against
their original sequence revealed 100% of the contigs
matched at 99% pairwise identity, although several
regions across the genome were of low coverage (~1).
Reassembly within these five viral groups resulted in
314 contigs and an average contig reduction (within
each group) of 70%. Impressively, the largest contig
sizes within each group increased from an average of
990 bp to 6.65 kb. Further assembly of the contigs
between viral groups revealed a single, 146-kb
genome spanning 99% of the original sequence at
99.4% identity. Reassembly between all contigs of
the five viral groups generated an identical sequence.
Furthermore, these five viral groups represent two
connected components, where contigs can be con-
nected to any other contig within the component
through in-between connections (Supplementary
Figure S8). These two components correspond to
the two sections of the phi4:1 genome separated by a
low coverage region. On average, reassembly of the
Podoviridae network viral groups reduced the total
contigs by 80% and increased the maximum contig
size by 143%.

The three archaeal viruses seeded alongside the
Podoviridae were each associated with single viral
groups in the network analysis and shared no other
contigs from other reference sequences. The number
of contigs associated with each virus ranged from
118 (ACV) to 412 (STIV) and roughly corresponds to
their relative read-based abundance from Grinder.
As above, reassembly of the viral groups resulted in a
dramatic reduction in contigs (82%) and increased
largest contig size (148%). Alignments of the contigs
against their references revealed complete coverage
of the genomes with all contigs aligning. As with the
Podoviridae, each alignment revealed low coverage
regions likely preventing full-length assemblies.
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Comparing the NL10 viral groups against
geochemically similar sites
To assess if these similar geochemical environments
(acidic, high temperature) would yield differing
community compositions, contigs from another hot
spring in YNP, CH041, were compared with contigs
of the viral groups present in the NL10 viral network.
Of the 12 922 contigs in the CH041 viral assemblages,
4259 (32.9%) had strong matches (e-value 10−30, HSP
length 50 bp, HSP identity 75%) to 100 of the 110
viral groups (92%). It is clear that many of the viral
groups in NL10 are shared in other environments of
similar geochemistry. Although there is a small
positive correlation (R2 = 0.42) between the size of
the viral groups size and the number of CH041
matches, a number of outliers exist.

Temporal stability of viral groups
We have examined the stability of the viral popula-
tions using the viral groups within the network as a
proxy for presence (Figure 3). Unlike traditional
measures of diversity and rank abundance plots, this
network-based approach can temporally discriminate
within and between viral groups. Twenty-seven of the
29 largest viral groups (based on contig membership)
contain members (contigs) from each sampling time
point (Figure 3). Typically, around 10% of the
members of a given viral group were detected at any
time point, though varying from near zero to 50%. We
hypothesize lower sequencing depth is responsible
for those time points where near zero members were
detected. A global analysis of all viral groups in the
network revealed that 76 of the 110 viral groups
(69%) were present at every sampling point. This
increases to 94 viral groups if only one time point is
excluded (86%) and 109 viral groups (499%) consist
of members spanning at least half of the sampling
points. Overall, these results indicate that each viral
group persists in the NL10 environment and the
majority of viruses are present at similar levels during
a 2-year sampling period of the 454 data sets. It also
suggests that at any given sampling point, the
sequencing depth was insufficient to detect a majority
of the viral contig members. However, by analyzing a
time series, the insufficient sequencing depth is
overcome through sequence accumulation and contig
coalescence of the viral groups.

In order to evaluate if sufficient sequencing depth
at a single time point could re-create the network and
provide long-term temporal dynamics, the network
analysis was repeated using Illumina sequencing
technology out of the same environment, 3 years
later. Improvements in virus isolation and nucleic
acid extraction and amplification were also incorpo-
rated. When applied to the Illumina-based contigs,
75.3% (89 088 of 118 259) were retained within the
network after filtering out viral groups containing
o50 members. This resulted in 184 well-defined
viral groups and represents approximately 76% of all
Illumina contigs.

Seeding of the Illumina-based network with
known viruses as described above revealed 26
archaeal viruses associated within seven viral
groups. Twenty-five of these 26 were also found in
the 454 based, time course network. As expected, all
26 viruses infected members of the Crenarchaeota, as
seen in the network analysis out of the same spring.
The largest group (5042 members) represents 4.3% of
all contigs (5.7% of the network) and includes all of
the recognized Fuselloviridae. Not included in this
viral group is Aeropyrum pernix spindle-shaped
virus (APSV-1), not found previously. The seventh
largest group (1455 members; 1.2%) matches to
the proposed Turriviridae, STIV-1 and STIV-2.
One recently described virus, initially found through
in silico identification of proviral sequences
(Mochizuki et al., 2011), is APSV-1. Although
A. pernix has not been seen in this environment,
its presence (499 members; 0.4%) indicates that an
A. pernix-like organism may be a low abundance
member of the cellular population or that a potential
new host for the APSV-1-like exists in the springs.
All the Lipothrixviridae sequences were found
within a single group, including Acidianus’ AFV-2-
3, 6-9 and SIFV. The two Rudiviridae viruses found
previously were also found within a single group,
SIRV-1 and 2 (777 members, 0.66%). It is extra-
ordinary that alignments using the major capsid
proteins of these linear double-stranded DNA viruses
group AFV-3, 6-9 and SIFV into a distinct phylo-
genetic group (Prangishvili and Krupovic, 2012),
which is in excellent agreement with the separation
in the viral network.

Discussion

The overall objective of this study was to determine
the viral assemblage structure and stability in a
Yellowstone hot spring by applying a network
approach to a time series of viral metagenomic data.
We found that the NL10 hot springs contained 110
well-supported viral groups that were persistent over
a 5-year time period (Figure 3). The known archaeal
viruses represent only 6.3% of the viral groups. Only
7 out of 110 viral groups had members matching to
26 known viruses from acidic hot spring environ-
ments. This suggests that the remaining 103 viral
clusters represent novel archaeal viruses and pro-
vides a rationale for a directed search for these
unknown viruses.

A network-based approach was designed and
applied to nine viral metagenomic data sets created
using 454 based sequencing technology over a 2-year
sampling period and one viral metagenomic data set
created using Illumina sequencing technology 3
years later. The network approach provides an
additional tool for viral assemblage analysis by
using BLAST-level relationships and applying a
partitioning algorithm to organize viral sequence
space. BLAST HSPs connect contigs and the Louvain

Metavirome network analysis of Yellowstone hot springs
B Bolduc et al

2172

The ISME Journal



Figure 3 Temporal dynamics of NL10 viral groups. Columns represent time points and rows, viral groups. The percentage of contigs
contributed to the viral group from each time point is indicated by the color bar (shown to the right). Viral groups are ordered by their
overall rank (number of contigs they contain), with identification of viruses associated with that viral group indicated. All 110 viral groups
in the network are included. A read-based version of this figure is included in Supplementary Material.
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method partitions contigs into clusters of high
relatedness. Both significance and number of rela-
tionships between contigs influence the probability a
contig will be placed into one viral cluster (referred
to as a viral group) over another. This is due to the
fact that the Louvain method seeks to maximize
modularity by maximizing the number of connec-
tions within a viral group and minimizing the
connections between groups. These relationships
can represent shared gene content (frequently the
case in horizontal gene transfer between viruses),
overlapping regions on the ends of contigs that were
unable to be assembled or highly related fragments of
a viral genome sequenced at multiple time points. In
addition, sequence data can be annotated with time
series information in order to track the contribution
of specific sampling points to the viral group. Read
recruitment from each of the metagenomes onto the
viral groups show a correlation between the number
of members in the group and the number of reads
aligning to the group. As the length of a contig
generally corresponds to the number of reads
assembling to it, larger contigs that overlap other
large contigs likely have a greater number of reads
represented in the community and could serve as a
proxy for relative abundance.

The validity of the network approach was sup-
ported by three lines of evidence. First, seeding the
viral network with known archaeal, bacterial and
eukaryotic viruses (a total of 1812 viral genomes)
resulted in only 26 archaeal viruses previously
identified from acidic hot spring environments
mapped to viral clusters generated from the NL10
viral metagenomic data sets. Furthermore, fragmen-
tation of these 26 archaeal virus genomes mapped to
the same network viral clusters as the non-
fragmented genomes. Examination of the network
clusters to which the 26 archaeal viruses mapped
made biological sense. For example, the highly
related archaeal viruses STIV and STIV-2 mapped
to the same single network cluster. Similarly, the
nine related Fuselloviridae viruses all mapped to the
same single network cluster. Second, an identical
network analysis was performed on a synthetic viral
metagenomic data set derived from 85 Podoviridae
genomes and 3 archaeal viruses having properties
similar to the NL10 viral metagenome data sets.
Analysis of the resulting viral assemblies also made
biological sense. Closely related Podoviridae mem-
bers formed a single network cluster, whereas
distantly related Podoviridae members formed their
own individual network clusters. Finally, network
analysis of synthetic metagenomic data sets of
randomized sequences, but having the overall
properties of the NL10 viral metagenomic data sets,
failed to generate any network clusters.

We believe the individual network viral groups
represent the sequence cloud of highly related
viruses, at least at the sub-family taxonomic level.
Of the subset of viral groups to which known
archaeal viruses are members, most match to virus

families (that is, Lipothrixviridae, Fuselloviridae,
‘Turriviridae’) or single viruses (that is, AFV-1,
ATV). It is tempting to speculate that those groups
with few members represent virus types/families
with smaller pan viral genome sizes as compared
with those with larger contig membership. Although
is not possible to eliminate the possibility that
contaminating cellular or other non-viral sequences
are present in the network clusters, we believe that
they are relatively minor. This is because we
produced the viral metagenomes from samples
greatly enriched in virions and because we were
able to extensively filter the viral metagenomic data
sets before assembly and network analysis against
known cellular genome sequences in the public
databases and cellular metagenomes produced from
the same environmental samples.

The success of this network approach to create
biologically meaningful groupings of viral assem-
blages is likely due to the inherent imperfect nature
of metagenomic data sets. Most assembly programs
are dependent on having high quality, accurate,
even deep sequence coverage created from nearly
homogenous template sources. This is unlikely the
case for environmental viral sources that comprise
complex mixtures of different virus types, each of
which likely exists as heterogeneous mixtures of
sequences. The result of traditional assembly of
such mixtures is usually only fragments (contigs).
Network analysis allows grouping of these fragments
based on sequences relationships less stringent than
common assembly algorithms. The network analysis
described here provides a complementary approach
to protein-clustering analysis to organize viral group-
ings using metagenomic data sets. However, it has
the advantage of not being dependent on having
large (410 kb) contigs for the analysis.

The 110 identified viral groups likely represent the
upper bound for number of major viral groups
present in this hot spring environment. Although
somewhat lower than the PHACCS richness esti-
mates, the overall number of populations and their
size give only a relative abundance of their repre-
sented members and genome completeness, and thus
care must be taken to not equate network rank
abundance with species abundance. This is compli-
cated by the fact that PHACCS estimates richness in
terms of genotypes at 98% identity and the network
analysis does not make such assumptions. Taxo-
nomic classification of the cross-assembled temporal
metavirome revealed roughly half of ORFs were
unable to be classified, following the trend of what
other groups have reported (Prangishvili et al.,
2006a; Yoshida et al., 2013). Of the classifiable
ORFs, most matched to previously characterized
archaeal viruses (~97%), providing confidence that
our viral metagenomic data sets were accessing the
archaeal viral assemblages thought to dominate these
types of hot spring environments. ORFs lacking
homology suggests an unexplored large community
of archaeal viruses that remains to be explored.
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The viral groups provide a roadmap to explore these
unknown viruses. PCR primers can be designed
against members in viral groups lacking identifica-
tion in order to quantify uncharacterized viruses in
environmental samples and to aid in their identifica-
tion and isolation.

Although viral groups can be used to identify viral
taxonomic groups, incorporation of time series
information expands the analytical power of the
network analysis. The heat map in Figure 3 shows
the contribution of contigs from each time point for
each viral group in the network. Nearly 70% of viral
groups contain contigs from all sampling points,
suggesting that many of the viruses present in the hot
spring are persistent through time. This result is the
same when a read-based version of the viral groups is
examined (Supplementary Figure S9). If viral groups
represent virus species or sub-families, then this
organizational scheme can be combined with a read-
based proxy for abundance to estimate persistence
and relative stability of viruses within the environ-
ment. Read-based abundance methods suffer the
drawback of being unable to represent an entire
genome, even when combined with clustered
sequence data associated with a particular viral
species. Abundances of reads corresponding to one
region of a viral genome may differ from another
leading to an uneven representation of that viral type.
Similarly, reads from multiple segments of a genome
may not be known to be from the same virus, inflating
the number of virus species. The network’s viral
groupings provide a pan-genome platform, specific
for closely related viruses that avoid these limitations.

The variations in contig and read-based contribu-
tions of the viral groups can be influenced by a
number of factors, including the amplification
methods and sequencing technologies used to gen-
erate the metagenomes. As the smaller metagenomes
are more likely to contribute fewer contigs and reads
to a viral group, their contribution may be under-
estimated. Although this is true for many of the viral
groups, notable exceptions exist, such as viral groups
3–6, 8, 10, 12 and the Rudiviridae/STSV group. More
reads and contigs are contributed for the second
smallest assembly, NL10 0809. The same can be said
for NL10 1006, with group 92, 99 and 102 having their
largest contributions. These exceptions can result from
biases in amplification and sequencing or represent
changes in the viral assemblage. We believe this is
likely the latter and that methodological biases have a
diminished influence on the network analysis.

Analysis of the same site 3 years after the 454
metaviromes using Illumina sequencing addresses
the abundance and persistent of viruses in the hot
spring. Twenty-five of the 26 known archaeal viruses
are present in the same six viral groups between both
networks. The composition of the associated mem-
bers is also the same between the networks, strongly
suggesting that the same viruses (or highly related
relatives) are maintained in the hot spring on a long-
term basis. This is significant because of the length of

time passed (3 years) and the radically different
methodologies (FeCl3 precipitation, ovation amplifi-
cation, Illumina sequencing) used to generate the
sequence data. Most striking is the overall similarity
between the two networks, considering the metagen-
omes created using 454 based sequencing technology
were subjected to simple physical filtration, whereas
the Illumina samples were further purified on
cesium chloride gradients. As only 19% of the
Illumina data assembled, compared with 82% of
the 454 data, and 2.3x more contigs were generated
(than the 454 based metagenomic data sets com-
bined), it is reasonable to assume the Illumina data
are more fragmented. Despite this, over 75% of the
contigs were present in the Illumina-based network.
With a cutoff of 50 members, 184 viral groups exist.
However, we believe the more fragmented data set
contributes to a larger number of smaller viral groups
that would be merged with larger groups if more
overlaps existed. Considering such a small percen-
tage of reads assembled and the vast majority of
contigs were included in the network, we believe
that as more contigs assemble and are included, the
overall number of viral groups will collapse toward
110 viral groups. Continuing efforts in assembling
Illumina-based viral metagenomes is an area of
active research and will provide powerful support-
ing evidence toward this hypothesis.

Our network approach is distinct from previous
viral network analysis (Emerson et al., 2012). The
objective of this work was not to assemble full-length
genomes—although it can organize viral sequence
space and aid in assembly, as seen in the reassembly
of full-length genomes in the Podoviridae network.
In contrast, our goal was to gain a better under-
standing of viral assemblages’ structures and stabi-
lities. The high stringency assemblies ensure that
each contig corresponds to a single viral genotype
rather than a consensus sequence. This allows for
much greater discriminatory power when analyzing
the connections between contigs within and between
viral groups underlying the network structure.
Depending on the homogeneity of each viral gen-
ome’s sequence space, the Louvain method can
detect those subtle differences lost when composite
genome fragments are utilized.

Overall, this work provides a more comprehensive
picture of the underlying virus community structure
and stability that should be generally applicable to
diverse natural environments. For example, mapping
contigs generated from a second YNP hot spring
(CH041), with similar temperature and pH, revealed
a high number of major populations to be present in
both environments. Nearly 92% of the viral groups
present in NL10 were found in CH041, indicating
common viral populations in hot spring environ-
ments sharing common geochemical features.
It will be interesting to apply a similar network
analysis approach to examine more complex viral
assemblages from ocean to human microbiome
communities.
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