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Anaerobic oxidation of methane associated with
sulfate reduction in a natural freshwater gas source
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The occurrence of anaerobic oxidation of methane (AOM) and trace methane oxidation (TMO) was
investigated in a freshwater natural gas source. Sediment samples were taken and analyzed for
potential electron acceptors coupled to AOM. Long-term incubations with 13C-labeled CH4 (13CH4) and
different electron acceptors showed that both AOM and TMO occurred. In most conditions,
13C-labeled CO2 (13CO2) simultaneously increased with methane formation, which is typical for
TMO. In the presence of nitrate, neither methane formation nor methane oxidation occurred. Net AOM
was measured only with sulfate as electron acceptor. Here, sulfide production occurred
simultaneously with 13CO2 production and no methanogenesis occurred, excluding TMO as a
possible source for 13CO2 production from 13CH4. Archaeal 16S rRNA gene analysis showed the
highest presence of ANME-2a/b (ANaerobic MEthane oxidizing archaea) and AAA (AOM Associated
Archaea) sequences in the incubations with methane and sulfate as compared with only methane
addition. Higher abundance of ANME-2a/b in incubations with methane and sulfate as compared with
only sulfate addition was shown by qPCR analysis. Bacterial 16S rRNA gene analysis showed the
presence of sulfate-reducing bacteria belonging to SEEP-SRB1. This is the first report that explicitly
shows that AOM is associated with sulfate reduction in an enrichment culture of ANME-2a/b and AAA
methanotrophs and SEEP-SRB1 sulfate reducers from a low-saline environment.
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Introduction

Anaerobic methane oxidation (AOM) coupled to
sulfate reduction (SR) was first discovered to occur
in marine sediments (Martens and Berner, 1974;
Reeburgh, 1976). The process was found to be
catalyzed by communities of anaerobic methano-
trophic archaea (ANME) and sulfate-reducing bac-
teria (SRB) of the Deltaproteobacteria (Hinrichs
et al., 1999; Boetius et al., 2000; Orphan et al.,
2001a,b). More recently, AOM was also reported to
be coupled to other electron acceptors besides
sulfate. In freshwater environments, AOM was
coupled to the reduction of nitrate and nitrite
(Raghoebarsing et al., 2006; Ettwig et al., 2008,
2009; Hu et al., 2009; Deutzmann and Schink 2011;
Haroon et al., 2013). Microbial methane oxidation
with iron and/or manganese reduction was
described in marine sediments (Beal et al., 2009;

Riedinger et al., 2014), brackish sediments (Egger
et al., 2015), a terrestrial mud volcano (Chang et al.,
2012) and also in freshwater environments (Crowe
et al., 2011; Sivan et al., 2011; Amos et al., 2012).
Recently, humic acids (HAs) were also hypothesized
to act as electron acceptor for AOM (Gupta et al.,
2013). AOM coupled to SR in freshwater is likely
limited by the low-sulfate concentrations, which are
around 10–500 μM (Holmer and Storkholm, 2001).

Sulfate-dependent AOM has been observed in
freshwater systems, but the involvement of other
electron acceptors could not be excluded. Moreover,
the responsible microorganisms were either not
analyzed nor conclusively identified (Grossman
et al., 2002; van Breukelen and Griffioen, 2004;
Eller et al., 2005; Schubert et al., 2011; Segarra et al.,
2015). ANME-1-related archaea have been found in a
terrestrial subsurface (Takeuchi et al., 2011), but
13C-labeled carbon dioxide (13CO2) formation from
13C-labeled methane (13CH4) also occurred in control
incubation where no electron acceptor was added.
This was also the case in other incubation studies
(Beal et al., 2009; Sivan et al., 2011; Egger et al.,
2015). These observations make it difficult to link
ongoing methane oxidation to a particular electron
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acceptor. Moreover, 13CO2 can also be produced
during methanogenesis in a process called trace
methane oxidation (TMO) (Zehnder and Brock,
1979). TMO was demonstrated to occur in pure
cultures of different methanogens (Zehnder
and Brock, 1979; Harder, 1997; Moran et al., 2005,
2007), in granular sludge (Zehnder and Brock 1980;
Harder 1997; Meulepas et al., 2010) and in fresh-
water and terrestrial environments (Zehnder and
Brock, 1980; Blazewicz et al., 2012). Differentiation
between AOM and TMO is difficult for several
reasons: (a) both processes can produce 13CO2 at
comparable rates; (b) at elevated methane partial
pressure, TMO rates increase (Zehnder and Brock,
1980; Smemo and Yavitt, 2007) while methanogen-
esis is repressed, which favors SR (Meulepas et al.,
2010); and (c) ferrous sulfate addition may result in
enhanced TMO rates (Zehnder and Brock, 1980).
This means that with elevated 13CH4 partial pressure
and presence of sulfate, an increase in 13CO2 and
sulfide production cannot be taken as evidence for
sulfate-dependent AOM unless net methane con-
sumption is demonstrated. Moreover, although there
is convincing evidence that anaerobic methane
oxidizing archaea (ANME) are capable of net AOM,
detecting ANME sequences or cells in mixed com-
munities that perform methanogenesis does not
prove that AOM takes place, since ANME could
perform methanogenesis as well (Lloyd et al., 2011;
Bertram et al., 2013) and as a consequence could
perform TMO.

In this study we used long-term incubations
(4168 days) with samples taken from a freshwater
natural gas source with added 13CH4 to investigate
the occurrence of both TMO during net methanogen-
esis and AOM. AOM was distinguished from TMO

by simultaneous detection of 13CH4, 12CH4 (produced
during methanogenesis) and 13CO2. We investigated
the effect of different electron acceptors that possibly
might be involved in AOM. Control incubations
without addition of methane were carried out to
accurately distinguish between net methane oxida-
tion and net methanogenesis. Archaeal community
analysis of long-term incubations with methane and
sulfate (CH4+SO4

2−), sulfate only (SO4
2−-only), and

methane only (CH4-only) was performed at 323 days
of incubation. Incubations with sulfate and with and
without methane were monitored for an extended
period of 728 days.

Materials and methods

Sampling
Samples were taken in spring of 2011 from two
natural gas sources in Berkhout, Noord-Holland, The
Netherlands (52°38′31″N, 4°59′49″E). These gas
sources were used for domestic purposes by captur-
ing natural gas from groundwater pockets, using a
30-m long pipe (Figure 1). Different locations were
sampled: the effluent of an active gas source (‘tank’)
and the sediment of the ditch where the effluent is
collected (‘ditch 1’), the sediment of the ditch where
the effluent of the storage tank is collected (‘ditch 2’)
and from the sediment inside a gas source that was
no longer in use (‘tank 2’, not in Figure 1). Sediment
samples were collected in nitrogen flushed bottles
with an inversed pump. In the laboratory, the gas
phase of the bottles was flushed with 100% 5.5
grade methane (99.999%) and stored at 4 °C for
± 21 months. All samples were pooled 1:1:1 (v/v/v)
in an anaerobic chamber prior to inoculation.

Figure 1 Schematic representation of the system that is used for capturing natural gas at Berkhout, Noord-Holland, The Netherlands
(adapted from Bartstra, 2003). A 30-m deep pipe reaches the pressurized groundwater pockets containing natural gas. Degasification
occurs at lower pressure inside the gas source tank where the sprinkler facilitates the process. Gas can be transported to the house or to a
storage tank floating on the water ditch. Sampling locations were inside an inactive tank (tank 2, not on picture), from the effluent of the
active gas source (tank) and the sediment of the ditch where the effluent is collected (ditch 1) and from the sediment of a ditch where the
effluent of the storage tank was collected (ditch 2).
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Media composition
Media were prepared as described previously (Stams
et al., 1993) using 1ml l−1 of the vitamin stock solution
(for composition, see Supplementary Table S1).

Experimental set-up
Fifteen milliliter aliquots of the pooled sediments
(0.07 g volatile suspended solids (gVSS)) were incu-
bated in triplicate in bicarbonate-buffered medium
(1:1 v/v) with sulfate (20mM), iron (as ferrihydrite,
10mM), humic acids (20 g l− 1), iron combined with
humic acids (iron as ferrihydrite, 10mM and humic
acids 2 g l− 1) and nitrate (20mM). Iron was combined
with humic acids to facilitate electron transfer from
insoluble iron to soluble humic acids that can act as
an electron shuttle (Kappler et al., 2004). A control
without electron acceptor was included. All tripli-
cate conditions were tested with and without 13CH4

in the headspace. All experiments were carried out
in 60ml serum bottles closed with butyl rubber
stoppers and aluminum caps. After 10 cycles of
exchanging the headspace gas with N2, it was
changed to N2/CO2 (1:1) to a pressure of 1.5 bar.
When 13CH4 was added, N2/CO2 was added to a
pressure of 1.3 bar and 99.99% 13CH4 gas (Campro
Scientific, Veenendaal, The Netherlands) was added
to a final pressure of 1.8 bar. The serum bottles were
incubated at 15 °C in the dark.

Preparation of ferrihydrite
Ferrihydrite (simplified as Fe(OH)3) was produced as
described for obtaining nanoparticle size (o10 nm)
minerals (Schwertmann and Cornell, 1991). After
preparing, the mineral was repeatedly washed and
centrifuged for three times and subsequently dia-
lyzed to remove electrolytes. The precipitate was
then freeze-dried to remove access water and
immediately added to the incubations.

Analytical measurements
Nitrate and sulfate were analyzed by an ion
chromatography system equipped with an Ionpac
AS9-SC column and an ED 40 electrochemical
detector (Dionex, Sunnyvale, CA, USA). The system
was operated at a column temperature of 35 °C, and a
flow rate of 1.2mlmin− 1. Eluent consisted of a
carbonate/bicarbonate solution (1.8 and 1.7mM,
respectively) in deionized water.

Headspace gas composition was measured on a gas
chromatograph-mass spectrometer composed of a
Trace GC Ultra (Thermo Fisher Scientific, Waltham,
MA, USA) equipped with a Rt-QPLOT column
(Restek, Bellefonte, PA, USA), and a DSQ MS
(Thermo Fisher Scientific). Helium was used as a
carrier gas with a flow rate of 120mlmin− 1 and a
split ratio of 60. The inlet temperature was 80 °C, the
column temperature was set at 40 °C and the ion
source temperature at 200 °C. CH4 and CO2 in the

headspace were quantified from the peak areas in the
gas chromatographs. The fractions of 13CO2, 13CH4

and 12CH4 were derived from the mass spectrum as
previously done (Shigematsu et al., 2004). Validation
of the method was carried out using standards with a
known mixture of 13CO2, 12CO2,

13CH4 and 12CH4. The
concentrations of total CO2, total CH4, 13CO2, 12CH4

(produced during methanogenesis in incubations
with 13CH4) and 13CH4 were calculated as described
previously (Timmers et al., 2015). Headspace CO2

and CH4 after 168 days of incubation was quantified
from the peak areas recorded with a CompactGC gas
chromatograph (Global Analyser Solutions, Breda,
The Netherlands) containing a Carboxen 1010
precolumn, followed by two lines: a Molsieve 5A
column (pressure: 200 kPa, split flow: 20mlmin− 1,
oven temperature: 80 °C and a PDD detector at
110 °C) and a RT-Q-bond column (pressure: 150 kPa,
split flow: 10mlmin− 1, oven temperature: 80 °C with
a TCD detector at 110 °C) with a carrier gas flow of
10mlmin− 1.

The concentrations of iron(II) and iron(III) were
measured with the ferrozine colorimetric method
(Stookey, 1970). Prior to analysis, samples were
acidified with 2 M HCl (1:1 v/v) and centrifuged for
5min at 15 700 r.c.f. to precipitate humic acids.
Absorbance at 562 nm was measured in a U-1500
spectrophotometer (Hitachi, Chiyoda, Tokyo, Japan).

Sulfide concentration was measured with the
methylene-blue colorimetric method. Samples were
directly diluted 1:1 (v/v) in a 5% (w/v) zinc acetate
solution to bind all sulfide. Deionized water was
added to a volume of 4.45ml and 500 μl of reagent A
(2 g l− 1 dimethylparaphenylenediamine and 200ml-
l− 1 H2SO4) and 50 μl of reagent B (1 g l− 1 Fe((NH4)
(SO4))2. 12 H2O and 0.2ml l− 1 H2SO4) were added
concurrently and mixed immediately. After 10min,
samples were measured with a Spectroquant Multy
colorimeter (Merck Millipore, Darmstadt, Germany)
at 660 nm.

Inductively coupled plasma-optical emission spec-
troscopy using a Vista-MPX CCD simultaneous
(Varian Inc., Palo Alto, CA, USA) was used to
quantify the elemental composition of all samples,
as previously done (Hageman et al., 2013). The
standard deviation in all measurements was p1.8%.

The pressure of the serum vials was determined
using a portable membrane pressure unit GMH
3150 (Greisinger electronic GmbH, Regenstauf,
Germany). The pH was checked by pH paper.
Conductivity was measured using a standard
electrode. The VSS contents were analyzed accord-
ing to the standard methods (Clesceri et al., 1995).

DNA extraction
Genomic DNA was extracted from samples after
323 days of incubation from the triplicate incuba-
tions with methane and sulfate (CH4+SO4

2−), sulfate
only (SO4

2−-only), and methane only (CH4-only) and
from the original sediment (BHori). DNA was
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extracted in triplicate for every separate incubation
using the Fast DNA Kit for Soil (MP Biomedicals,
Santa Ana, CA, USA) according to the manufac-
turer’s protocol with two 45-s beat beating steps
using a Fastprep Instrument (MP Biomedicals).
Triplicate extracted DNA for every separate incuba-
tion was pooled and DNA concentrations were
determined with the Qubit 2.0 fluorometer (Thermo
Fisher Scientific).

Bacterial community profiling
Extracted DNA was subjected to barcoded amplifica-
tion of the V1–V2 region of the 16S rRNA gene.
A PCR amplification replicate of BHori (BHoriA and
BHoriB) was carried out to correct for technical
biases. Barcoded amplification was carried out using
forward primer 27F-DegS (van den Bogert et al.,
2011) that was extended with the titanium adapter A
and an eight-base sample specific barcode (Hamady
et al., 2008) at the 5′-end, and an equimolar mix of
reverse primers 338R-I and 338R-II (Daims et al.,
1999) that were appended with the titanium adapter
B at the 5′-end. All primers are listed in
Supplementary Table S2. PCR amplification
was performed in a thermocycler GS0001 (Gene
Technologies, Braintree, UK) in a total volume of
100 μl containing 2 μl DNA (20 ng μl− 1), 500 nM of
barcoded forward primer and reverse primermix
(Biolegio BV, Nijmegen, The Netherlands), 2 U of
Phusion Hot start II High-Fidelity DNA polymerase
(Finnzymes, Vantaa, Finland), 20 μl of 5 × HF buffer,
2 μl PCR grade nucleotide mix (Roche Diagnostics
GmbH, Mannheim, Germany) and 65 μl nuclease-
free sterile water (Promega Corporation, Madison,
WI, USA). PCR amplification conditions consisted of
a pre-denaturing step of 3min at 98 °C followed by
30 cycles of 98 °C for 10 s, 56 °C for 20 s and 72 °C for
20 s. Lastly, a post-elongation step of 10min at 72 °C
was carried out. PCR products were purified using a
GeneJet PCR purification kit (Thermo Fisher Scientific)
and the concentration was determined using the
Qubit 2.0 fluorometer (Thermo Fisher Scientific). All
samples for pyrosequencing were mixed in equimo-
lar amounts. Pooled samples were loaded on a 1%
(v/v) agarose gel containing 1 × SYBR Safe (Invitro-
gen, Thermo Fisher Scientific) and bands of approxi-
mately 340 bp were excised and purified with the
GeneJet Gel Extraction Kit (Thermo Fisher Scientific)
using 25 μl elution buffer for collecting the amplified
DNA. Mixed samples were quantified using the
Qubit 2.0 fluorometer (Thermo Fisher Scientific)
and submitted for pyrosequencing on the 454 Life
Sciences GS-FLX platform using Titanium sequen-
cing chemistry (GATC Biotech AG, Konstanz,
Germany).

Archaea community profiling
Extracted DNA was subjected to barcoded amplifica-
tion of the 16S rRNA gene. A PCR amplification

replicate of BHori (BHoriA and BHoriB) was carried
out to correct for technical biases. A method adapted
from Jaeggi et al. (2014) was used. Barcoded
amplification of 16S rRNA genes was carried out
by using forward primer 340F (Gantner et al., 2011)
that was extended with the titanium adapter A and a
10-base sample specific barcode at the 5′-end, and
reverse primer 1000R (Gantner et al., 2011) that was
appended with the titanium adapter B at the 5′-end.
All primers are listed in Supplementary Table S2.
PCR amplification was performed in a total volume
of 50 μl containing 1 μl DNA, 200 nM of each forward
and reverse primer (Biolegio BV), 1 U of KOD Hot
Start DNA Polymerase (Merck Millipore), 5 μl of 10 ×
KOD-buffer, 3 μl MgSO4 (25mM), 5 μl dNTP mix
(2mM each) and 33 μl nuclease free sterile water.
PCR amplification conditions were a pre-denaturing
step at 95 °C for 2min followed by 35 cycles of 95 °C
for 20 s, 5 °C for 10s, and 70 °C for 15 s. The
approximately 660 bp PCR amplicon was subse-
quently purified using the MSB Spin PCR apace kit
(STRATEC Biomedical AG, Birkenfeld, Germany)
and the concentration was checked with a Nanodrop
1000 spectrophotometer (Thermo Fisher Scientific).
Purified PCR products were mixed in equimolar
amounts. The mixed sample was further purified
using the Purelink PCR Purification kit (Thermo
Fisher Scientific), with high-cutoff binding buffer B3,
and submitted for pyrosequencing on the 454 Life
Sciences GS-FLX platform using Titanium sequen-
cing chemistry (GATC Biotech AG).

Pyrosequencing analysis
The pyrosequencing data were analyzed with a
workflow based on Quantitative Insights Into Micro-
bial Ecology (QIIME) v1.2 (Caporaso et al., 2010), and
reads were filtered for chimeric sequences using the
USEARCH algorithm. Operational taxonomic unit
(OTU) clustering was performed with settings as
recommended in the QIIME newsletter of 17 Decem-
ber 2010 (http://qiime.wordpress.com/2010/12/17/
new-default-parameters-for-uclust-otu-pickers/) using
an identity threshold of 97%. The SILVA reference
database was used for taxonomic classification (Quast
et al., 2013). After picking representative OTUs, the
relative amount of reads of every OTU to the total
amount of reads per sample was quantified. After-
wards, the average relative amount of reads per
condition from the biological triplicate samples was
calculated. For analysis of the original sample BHori,
the average of the PCR duplicates (BHoriA and
BHoriB) was calculated. Then, the significant differ-
ences of every representative OTU between the
conditions CH4+SO4

2− and CH4-only and between
CH4+SO4

2− and SO4
2−-only were calculated separately,

using the Kruskal–Wallis test (Po0.05). For archaea,
we then selected only representative OTUs that were
significantly higher in conditions with CH4+SO4

2− as
separately compared with CH4-only and SO4

2−-only.
For bacteria, we selected only representative OTUs
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that were significantly higher in conditions with
CH4+SO4

2− as compared with both CH4-only and
SO4

2−-only.

Quantitative real-time PCR
Extracted genomic DNA was used for qPCR analysis.
The DNA was purified with the DNA clean and
concentrator-5 kit (Zymo Research, Irvine, CA, USA)
and the concentration was determined with the
Qubit 2.0 fluorometer (Thermo Fisher Scientific).
Amplifications with specific primers for ANME-2a/b
were carried out as described previously (Timmers
et al., 2015). Quantification was expressed as the
total number of 16S rRNA gene copies per gvss
extracted from the incubations.

Nucleotide sequences
Nucleotide sequence data reported are available in
the DDBJ/EMBL/GenBank databases under the
accession numbers LN795911–LN796465 for
archaeal sequences and LN796466–LN808676 for
bacterial sequences.

Results and discussion

Trace methane oxidation
Methane production was observed in most condi-
tions, but was negligible in the presence of sulfate
and did not occur in the presence of nitrate
(Figure 2). Methane production in conditions with
and without added methane showed a similar
pattern, but the amount of methane produced was
lower in incubations where methane was added
(Supplementary Figure S1A). This was probably
caused by the increase of TMO due to a higher
methane concentration (Zehnder and Brock, 1980;
Smemo and Yavitt, 2007). Production of 13CO2 was
apparent in all incubations with 13CH4 in the head-
space, except in the conditions with nitrate and HAs
(Figure 2 and Supplementary Figure S1B). Typical
for TMO, 13CO2 simultaneously increased with
methane formation in the conditions with ferrihy-
drite, ferrihydrite + HAs and the control without
electron acceptor (Figure 2). The 13CO2 production
was not substantially different between ferrihydrite,
ferrihydrite + HAs and the control conditions
(Wilcoxon rank-sum test, Po0.05; Table 1), indicat-
ing that TMO was not influenced by the electron

Figure 2 Percentage of methane (black lines) and percentage of 13CO2 of total CO2 (gray lines) during 168 days of incubation in bottles
with 100% 13CH4 in the headspace and with different electron acceptors. Standard deviations represent triplicate incubations. Note the
different scale in the condition with sulfate where one of the triplicates ‘1A-2’ highly increased in 13CO2.
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acceptors added. When ferrihydrite was added, the
13CO2 production continued when all iron was
reduced to Fe(II) after 300 days, without addition of
HAs (Supplementary Figure S2). Iron reduction did
occur faster in incubations with ferrihydrite + HAs
than in the incubations with only ferrihydrite. The
incubations with 20 g l− 1 HAs contained an average
of 28.8 (±1.0) mM acid soluble Fe(II) after 300 days of
incubation and did not show any detectable 13CO2

increase (Figure 2, Supplementary Figure S1B and
Table 1). The HAs batch used contained calcium
which could scavenge produced CO2 to form
calcium carbonate. After acidification of the sam-
ples, an increase in total CO2 was observed but the
percentage of 13CO2 did not increase. It was reported
that reduced methane emission after addition of HAs
to peat ecosystems could be caused by increased
methane oxidation (Blodau and Deppe, 2012). In
contrast, here we observed higher methane produc-
tion after addition of HAs but no methane oxidation.

Anaerobic methane oxidation
Only in the incubations with sulfate, an increase in
13CO2 with no increase in 12CH4 was observed
(Figure 2). The ratio of methane oxidized per
methane produced was only 41 for conditions with
sulfate, which is indicative for AOM (Table 1). In
previous studies, sulfate addition inhibited methane
formation and thus 13CO2 production from TMO in
freshwater sludge (Zehnder and Brock, 1980;
Meulepas et al., 2010) and in freshwater slurries
(Segarra et al., 2013) and only stimulated methane
oxidation in brackish water slurries (Segarra et al.,
2013). In our study, the pooled inoculum contained

an average of around 2mM sulfate (Supplementary
Table S3). All sulfate was reduced after 41 days of
incubation and methanogenesis continued in most
conditions, which was accompanied by continued
13CO2 production during TMO (Figure 2). Only
where sulfate was added, sulfate addition stimulated
methane oxidation and repressed methane produc-
tion, indicating AOM coupled to SR at low salinity.
AOM could not be coupled to any other electron
acceptor than sulfate. Inductively coupled plasma
measurements of all samples prior to mixing showed
that only sulfur and iron were present, which in
oxidized form could be possible electron acceptors
for AOM, whereas the amount of selenium and
manganese was not significant (Supplementary
Table S4). In incubations with nitrate and humic
acids, no 13CO2 was produced.

Reduction of the electron acceptors sulfate, ferri-
hydrite and nitrate occurred in all conditions with
and without addition of methane (Table 2). The
reduction rates of sulfate with and without
added methane in the first 168 days were similar
(two-tailed t-test with unequal variance, Po0.05),
which was probably due to endogenous SR masking
sulfate-dependent AOM. After 343 days of incuba-
tion, the SR rate in incubations with only sulfate had
substantially decreased due to endogenous substrate
depletion whereas in conditions with methane and
sulfate, there was no difference in SR rates. However,
in this time period AOM could not be linked to SR
and sulfide production as the abundant green sulfur
bacteria Chlorobiaceae (Supplementary Figure S3)

Table 1 CH4 oxidized per CH4 formed after 168 days of
incubation as calculated from the amount of 12CH4 formed and the
amount of 13CO2 formed in incubations with a headspace of 100%
13CH4 with different electron acceptors

Condition Bottle # Total CO2

formed
(μmol)

13CO2

formed
(μmol)

12CH4

formed
(μmol)

CH4 oxi-
dized/CH4

formed

SO4
2− 1A-1 432.3 6.2 1.8 41

1A-2 108.9 20.3 1.5 41
1A-3 532.7 10.4 0.9 41

Fe(OH)3 2A-1 0 2.2 14.8 0.15
2A-2 209.4 4.8 34.5 0.14
2A-3 433.3 8.1 41.7 0.19

Fe(OH)3+HAs 3A-1 0 1.5 13.8 0.11
3A-2 23.0 2.5 19.6 0.13
3A-3 0 0 5.8 n/a

HAs 4A-1 0 0 51.4 n/a
4A-2 0 0 56.0 n/a
4A-3 0 0 47.4 n/a

NO3
− 5A-1 0 0 0.0 n/a

5A-2 0 0.2 0.0 n/a
5A-3 0 0 0.0 n/a

None 6A-1 283.0 6.8 33.0 0.21
6A-2 159.3 6.1 34.9 0.18
6A-3 36.2 4.3 37.5 0.11

n/a, not applicable.

Table 2 Reduction rates of the electron acceptors sulfate, iron in
the form of ferrihydrite with and without humic acids (HAs) and
nitrate in each incubation with and without methane in the
headspace during the first 168 days of incubation and sulfate
reduction rates in incubations with sulfate between 343 and
728 days of incubation (in μmol gVSS− 1 day−1). Standard deviations
represent biological triplicates

Condition Reduction rates (μmol gVSS−1 day−1)

Sulfate
0–168 days
CH4+SO4

2− ac 5.14 (±3.04)
SO4

2− a 7.58 (±0.50)
CH4

b 0
343–728 days
CH4+SO4

2− ac 5.94 (±0.83)
SO4

2− c 5.02 (±0.16)

Iron
0–168 days
CH4+Ferrihydritea 0.12 (±0.01)
Ferrihydritea 0.15 (±0.02)
CH4+Ferrihydrite+HAsb 10.58 (±1.95)
Ferrihydrite+HAsb 4.29 (±7.10)

Nitrate
CH4+NO3

− a 28.02 (±1.38)
NO3

− a 25.32 (±1.02)

Means with different letters in superscript are significant (independent
two-tailed t-test with unequal variance, Po0.05).
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could have caused the fluctuations in sulfide levels.
Growth and activity of Chlorobiaceae explained the
green coloration occurring specifically in incuba-
tions amended with sulfate, which derived from
the bacteriochlorophyll of green sulfur bacteria
(Gorlenko, 1970). Green sulfur bacteria are strictly
anaerobic autotrophic sulfide oxidizers and have
been found to be active when exposed to very little
light (Beatty et al., 2005; Manske et al., 2005), which
could explain activity even in the dark with limited
exposure to light during sampling of our incubations.
Their activity probably kept the sulfide concentra-
tion low. After maintaining complete darkness in the
slurries, the 13CO2 production continued throughout
incubation time and free sulfide was eventually
measured. In bottle 1A-2 that showed the highest
13CO2 production after 168 days of incubation
(Table 1), sulfide production increased simulta-
neously with 13CO2 production during the last period
between 343 and 728 days (Supplementary Figure
S4). This shows that at long term, net methane
oxidation accompanied sulfide production.

Microbial community profiling
Microbial community profiling was only carried out
on triplicates of the conditions CH4+SO4

2−, CH4-only,
SO4

2−-only, and the original sediment after 323 days
of incubation. For all samples that were analyzed,
the highest average percentage of 16S rRNA reads for
Archaea clustered within the Methanosarcinaceae,
Methanoregulaceae, Methanosaetaceae, Methano-
bacteriaceae, and the Miscellaneous Crenarchaeota
Group (MCG) (Supplementary Figure S5). Archaeal
OTUs that showed a significantly higher percentage
of reads (Kruskal–Wallis, Po0.05) in condition
CH4+SO4

2−, as compared with CH4-only (Figure 3a)
and SO4

2−-only (Figure 3b) make up less than 10% of
all reads. In condition CH4+SO4

2−, ANME-2a/b
sequences represented 0.16% of all reads and were
much more abundant than in the condition CH4-
only. Higher abundance of ANME-2a/b in conditions
CH4+SO4

2− compared with SO4
2− -only was shown by

qPCR analysis (Supplementary Figure S6). This
indicates the involvement of ANME-2a/b in AOM
coupled to SR, as shown before in marine

Figure 3 Archaeal 16S rDNA pyrosequencing results showing the representative OTUs that were significantly higher in the conditions
CH4+SO4

2− as compared with CH4-only (a) and SO4
−2-only (b) (Kruskall–Wallis, Po0.05). Also displayed is the original pooled sample

(BHori). Displayed is the average percentage of reads per representative OTU of the three biological triplicates per condition.
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environments (Orphan et al., 2001a). The ANME-2a/
b OTU showed 98% identity with ANME-2a/b from
both marine and non-marine environments and do
not form a monophyletic cluster with ANME-2a/b
found in other low-sulfate environments (Figure 4).
A marine enrichment of ANME-2a/b species that
share 98% identity was previously shown to be
completely inhibited in AOM activity at a salinity of
5‰ (Meulepas et al., 2009), indicating that the
ANME-2a/b detected in this study are adapted to
low salinity.

A higher percentage of reads was also found for 1
OTU of Methanosarcinales GOM Arc I (OTU 4) in
conditions CH4+SO4

2− compared with both CH4-only
and SO4

2− -only (Figure 3). This GOM Arc I group
was previously named ‘ANME-2d’ (Mills et al.,
2003) but was renamed to ‘GOM Arc I’ since it was
not monophyletic with other ANME-2 subtypes and
no AOM activity or aggregation with sulfate redu-
cers had been shown (Lloyd et al., 2006). Recently,
the name ANME-2d was re-adopted for a cluster
that harbors ‘Ca. Methanoperedens nitroreducens’,
which performed AOM coupled to nitrate reduction
(Haroon et al., 2013). This cluster was previously
identified in a nitrate-dependent AOM enrichment
(Raghoebarsing et al., 2006) and was named ‘AOM
associated archaea’ (AAA) (Knittel and Boetius, 2009).
The GOM Arc I related OTU 4 found in this study

was 97% identical to ‘Ca. M. nitroreducens’ and
was 99% identical to other AAA members that
were proposed to be responsible for freshwater
AOM coupled to SR in Lago di Cadagno sediments
(Schubert et al., 2011) (Figure 4). The AAA were
also found to be abundant in an aquifer where
methane and sulfate were present (Flynn et al., 2013).
It was already shown that ‘Ca. M. nitroreducens’
uses the complete reverse methanogenesis pathway
and it was suggested that the genes for nitrate
reduction were obtained from a bacterial donor
(Haroon et al., 2013). We did not find nitrate-
dependent AOM activity, which leaves open
the possibility that the AAA in this study could
perform AOM coupled to SR. Sulfate addition
in the presence of methane also had a positive
effect on other GOM Arc I related OTUs (Figures 3a
and 4), which makes a contribution of GoM
Arc I to AOM activity likely. The higher percentage
of reads of Methanolobus in conditions CH4+SO4

2−

compared with SO4
2− -only (Figure 3b) implied that

methane addition had an effect on Methanolobus
abundance. The reason for this effect is unclear,
since this genus is known to be able to utilize
methylated compounds (Zhang et al., 2008), but not
methane. However, Methanolobus was also found in
a marine methane-oxidizing bioreactor (Girguis
et al., 2003).

Figure 4 Phylogenetic tree of archaeal 16S rRNA gene sequences derived from the SILVA SSU Ref database (release 111). The tree was
constructed using the ARB neighbor-joining method with terminal filtering and the Jukes–Cantor correction using almost full-length 16S
rRNA sequences. Closed circles represent bootstrap values470% (1000 replicates). The scale bar represents the percentage of changes per
nucleotide position. Short length 16S rRNA sequences (o1000 bp) were afterwards added to the tree using the ARB parsimony method.
Color coding represents different sulfate concentrations (mM) of the environments where the sequences were found. Sequences in gray had
no clearly reported sulfate data. Sequences found in this study are depicted in black and bold.
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Bacterial diversity was high in all samples, with
the highest relative number of reads for all samples
clustering with the Deltaproteobacteria (Syntropho-
bacteriacaea and Desulfobacteraceae) and Gamma-
proteobacteria (Methylococcaceae), Bacteroidetes,
Chloroflexi, Firmicutes and Chlorobi (family
Chlorobiaceae) (Supplementary Figure S3). Bacterial
OTUs that showed a substantially higher percentage
of reads (Kruskal–Wallis, Po0.05) in condition
CH4+SO4

2− as compared with both CH4-only and
SO4

2−-only make up less than 0.5% of all reads
(Figure 5). These OTUs clustered with the Desulfo-
bacteraceae, Clostridiales and Planctomycetaceae.
The OTUs of Desulfobacteraceae belonged to the
Sva0081 sediment group, Desulfobacterium spp. and
the SEEP-SRB1 cluster. The latter OTU of SEEP-
SRB1 (AB630772) was only found in condition
CH4+SO4

2−. However, other SEEP-SRB1 OTUs that
were detected did not show a difference in read
abundance between the conditions CH4+SO4

2−, CH4-
only and SO4

2−-only. The SEEP-SRB1 clade has been
detected in several marine AOM-mediating environ-
ments (Orphan et al., 2001b; Knittel et al., 2003;
Lösekann et al., 2007; Pernthaler et al., 2008;
Harrison et al., 2009; Yanagawa et al., 2011;
Vigneron et al., 2013) and enrichments (Jagersma
et al., 2009; Zhang et al., 2011). The SEEP-SRB1
OTUs found in this study clustered in undefined
subgroups outside the marine SEEP-SRB1 subgroups
that were described previously (Figure 6), of which
SEEP-SRB1a was identified as the dominant bacter-
ial partner of ANME-2a/b in marine AOM-mediating
enrichments (Schreiber et al., 2010). From the other
OTUs that showed a higher percentage of reads in
condition CH4+SO4

2−, little is known about their role
in AOM coupled to SR. It has been shown before that
different SRB besides SEEP-SRB1 belonging to
Desulfobacteraceae form consortia with different
ANMEs (Orphan et al., 2002; Vigneron et al., 2013)

and even non-SRB were found to aggregate with
ANMEs (Pernthaler et al., 2008). We did not find any
sequences related to the NC10 phylum of bacteria,
harboring the nitrate-dependent methanotrophic
bacterium ‘Ca. Methylomirabilis oxyfera’ (Ettwig
et al., 2010), and we also did not obtain any PCR
product using specific primers for this clade (data
not shown), which is in line with the lack of AOM
coupled to denitrification.

AOM at low-sulfate concentrations
The sulfate concentration was 0.07mM in the gas
source effluent and about 2mM in the pooled
inoculum (Supplementary Table S3). The measured
conductivity and chloride concentration of the gas
source effluent and pooled inoculum samples
(Supplementary Table S3) indicate a somewhat
higher salinity than typical freshwater, but a much
lower salinity than typical brackish environments.
This could correspond to the historical marine
influence of the adjacent lake (Markermeer) that
was formed due to dike construction, as described
for proximal sites (van Diggelen et al., 2014). In
marine environments, the sulfate:chloride ratio is
around 1:19. The sulfate:chloride ratio of the lake
surface water was around 1:2.6, with 1.7mM sulfate
and 4.4mM chloride (Supplementary Table S3).
Therefore, marine influences cannot explain the
relatively high-sulfate concentrations. The sulfate
concentration in deeper layers of the gas source
could be even higher than measured in the gas
source effluent before AOM took place. In marine
systems, AOM rates started to be affected below
2–3mM sulfate (Meulepas et al., 2009; Wegener and
Boetius, 2009) but occurred even below 0.5mM of
sulfate (Beal et al., 2011; Yoshinaga et al., 2014). In
typical freshwater environments, the sulfate concen-
tration is generally lower than 0.5mM, making

Figure 5 Bacterial 16S rDNA pyrosequencing results showing the representative OTUs that were significantly higher in the conditions
CH4+SO4

2− as compared with both CH4-only and SO4
2−-only (Kruskall–Wallis, Po0.05). Also displayed is the original pooled sample

(BHori). Displayed is the average percentage of reads per representative OTU of the three biological triplicates per condition.
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AOM-SR feasible but at low rates. AOM in fresh-
water was recently shown to be a strong methane
sink at sulfate concentrations as low as 1.2–0.1mM

(Segarra et al., 2015). Our finding of AOM activity
only in conditions with methane and sulfate, and the
enrichment of ANME-2a/b and SEEP-SRB1, suggests
that these syntrophic clades are ubiquitously dis-
tributed in marine and in low-salinity environments
and perform AOM at low-sulfate concentrations.
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