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Bacterial community responses to a gradient of
alkaline mountaintop mine drainage in Central
Appalachian streams
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Microbial community composition and diversity change along chemical gradients, leading to the
expectation that microbial community information might provide new gradient characterizations.
Here we examine stream bacteria composition and diversity along a strong chemical gradient in
Central Appalachian streams. Coal mining in the region generates alkaline mine drainage (AlkMD),
causing dramatic increases in conductivity, alkalinity, sulfate and metals sufficient to degrade
stream macrobiota communities throughout the ecoregion. In this study, we examined the
relationship between water and biofilm chemistry and biofilm bacteria taxonomic composition in
streams where active and reclaimed surface coal mines occupied 0–96% of watershed surface area.
We incubated wood veneers in each stream site for 4 months to develop biofilms on similar
substrates. We sampled water chemistry at the time of deployment and collection, and after 1 month.
Following incubation, we collected biofilms for microbial and chemical characterization. Microbial
composition was determined by pyrosequencing 16S rRNA amplicons. Biofilm subsamples were
analyzed by inductively coupled plasma mass spectrometry to determine metal concentrations. Our
results show that microbial community composition differed significantly between AlkMD-exposed
and AlkMD-unexposed sites, and that compositional dissimilarity increased with AlkMD loading.
Diversity was not correlated with pH or extent of upstream mining, but instead correlated with
biofilm concentrations of Cd, Mn, Zn and Ni. Within mined sites, the extent of upstream mining was
negatively correlated with taxonomic richness. Despite major compositional shifts, functional
capacity predicted with PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of
Unobserved States) correlated with mining in only 3 of 43 level-2 KEGG (Kyoto Encyclopedia of
Genes and Genomes) Orthology groups.
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Introduction

Microbial diversity, abundance and composition
change along environmental gradients. Understanding
the nature of these changes may help us identify a
set of environmental conditions characteristic to
particular groups of taxa (Feris et al., 2009; Logares
et al., 2012). Ultimately, these relationships could be
used to develop microbial indicators (Feris et al.,
2009) and help predict microbial community
responses to environmental conditions (Paerl et al.,
2003; Sims et al., 2013). Communities of other
organisms including macroinvertebrates and per-
iphyton are widely and routinely used as bioindi-
cators of localized chemical and physical conditions
(Barbour et al., 1999; Hering et al., 2003; Solimini

et al., 2006). Microbial communities, with their great
genetic diversity and now rapid identification
process, also hold promise as bioindicators. There
is reason to believe that microbial community
indexes or indicator taxa could be developed, as a
variety of studies demonstrate that diversity and
composition shift considerably along gradients of
pH (Fierer and Jackson, 2006; Fierer et al., 2007;
Lauber et al., 2009; Lear et al., 2009; Rousk et al.,
2010; Griffiths et al., 2011), trace metal concentra-
tion (Baker and Banfield, 2003; Feris et al., 2003;
Giller et al., 2009; Lami et al., 2013), salinity
(Lozupone and Knight, 2007; Auguet et al., 2010)
and substrate carbon-to-nitrogen ratio (Bates et al.,
2011).

Because microbial composition can be affected
strongly by pH, salinity and metal concentrations,
we speculated that exposure to alkaline mine
drainage (AlkMD) would drive important shifts in
stream microbial assemblages. AlkMD results from
surface coal mining, the dominant form of land
cover change in Central Appalachia (Townsend
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et al., 2009). Effluent is produced during rock
weathering of surface coal mines that contain
carbonate rock strata in addition to coal layers
(Palmer et al., 2010; Bernhardt and Palmer , 2011).
The carbonate matrix buffers sulfuric acid produced
from weathered pyrite minerals, increasing base
cation (Ca2þ , Mg2þ and HCO3

–) and SO4
2- concentra-

tions in receiving waters (Rose and Cravotta, 1998;
Kirby and Cravotta, 2005). AlkMD is thus character-
ized by increased alkalinity, ionic strength and pH
and often has elevated metals that reflect parent
geology (Lindberg et al., 2011; USEPA, 2011; Griffith
et al., 2012). Recent regional analyses suggest that
AlkMD generated from surface mines led to sig-
nificant chemical and biological degradation of at
least 22% of southern West Virginia rivers
(Bernhardt et al., 2012).

AlkMD pollution offers an interesting contrast to
the large body of literature exploring responses to
acid mine drainage, as it increases salinity and trace
metals but enhances alkalinity rather than reduces
pH. In this study, we compared stream bacterial
communities between mined and unmined catch-
ments within the largest surface coal mine complex
in Central Appalachia. We asked the following
questions. (1) Does AlkMD significantly alter com-
munity composition and do these changes manifest
themselves as changes in a-diversity? (2) What
bacterial taxa are responsible for changes in com-
munity composition and can these taxa be used as
indicators of AlkMD? (3) What insight regarding
functional response can be gained by examining
taxa lost and gained because of the influence of
AlkMD?

We expected bacteria’s compositional response
to AlkMD would mirror that observed for macro-
organisms (Pond, 2010; Bernhardt et al., 2012).
Specifically, compositional shifts would be due to
both decreased a-diversity and decreased evenness
across the AlkMD gradient. We hypothesized that
many taxa found in the low solute waters of
unmined sites would be absent or rare in sites
downstream of surface mines and that taxa known to
metabolize ions released from mining would
increase downstream of mining. We anticipated that
taxa with distinct metabolic repertoires could
indicate sites exposed to AlkMD.

Materials and methods

Study site
Sampling sites are in Mud River, a Central Appa-
lachian surface coal mining region that lies in West
Virginia’s Lower Guyandotte watershed (Figure 1).
Mud River has two forks. Upper Mud River passes
through the Hobet Mine complex, the largest surface
coal mine in Central Appalachia and includes active
and reclaimed mines within 40 km2 of permitted
mines. Left Fork Mud River is unmined but has
similar geology and low-density residential housing.

Sampling locations spanned a gradient of AlkMD
contamination. Sites affected by mining included
9 along Upper Mud River’s mainstem and 8 within
tributaries draining mines (6 active and 2
reclaimed). Unmined sites were one in Upper Mud
River upstream of surface mines, one unimpaired
tributary and four Left Fork Mud River sites.

Water chemistry
Water chemistry and temperature at each site were
measured during deployment and collection of
biofilm substrates and 1 month later (December
2010 and April and May 2011). We measured
in-stream conductivity and pH and analyzed
samples for a suite of major and trace elements
(Supplementary Table S1). Water sampling followed
USGS protocols (USGS). See Lindberg et al. (2011)
for details.

Stream biofilms
Biofilms were grown on substrates suspended under
water near the shaded streambank at each sampling
site. To minimize variability (De Beer and Stoodley,
2006; Sabater et al., 2007) and use environmentally
relevant substrates, we used wood veneers cut from
the same tree (Acer saccharum) and enclosed
veneers in mesh aquaculture bags (Pentair Aquatic
Eco-Systems, Apopka, FL, USA). Four sterilized
veneers were deployed under water at each site and
incubated for 4 months. Veneers were removed in
April 2011; two were transported to the lab on dry
ice and stored at � 80 1C until DNA extraction. Two
remaining veneers were used for metal analysis and
carbon content.

Figure 1 Sample sites on Mud River and Left Fork Mud River in
Boone and Lincoln Counties, West Virginia (WV). Hydrologic unit
codes (HUCs) 12-050701020301 and 12-050701020104 are out-
lined in gray. Gray tributary streams run through mined areas,
whereas black tributaries are unmined. The mainstem of Mud
River and Left Fork Mud River shown in bold black from
headwaters to confluence. Arrows show flow direction. Inset of
US mid-Atlantic states shows Appalachian Coalfield Region as
gray-shaded area with relative location of study site in WV in red
(not to scale).
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Biofilm scraped from two veneers was oven-dried
at 78 1C, homogenized, digested with trace metal
grade HNO3 and heated at 80 1C. Samples were
analyzed for metal content with inductively coupled
plasma mass spectrometry as detailed in Lindberg
et al. (2011). Remaining biofilm was used for ash-
free dry mass via combustion at 500 1C. Then, 53%
of the difference between pre- and post- combusted
dry mass was calculated as carbon content (Wetzel,
1983).

Biofilm community 16S rRNA gene analysis
See detailed methods in Supplementary
Information. Briefly, we extracted DNA from homo-
genized biofilm using PowerBiofilm DNA isolation
kit (MO BIO, Carlsbad, CA, USA) and amplified the
27–338 region of 16S ribosomal RNA (rRNA).
Sequencing was unidirectional using Roche 454
Lib-L kit (Branford, CT, USA). Replicate PCR
samples were pooled, purified and normalized
before being sent to the Genome Sequencing and
Analysis Core Resource at Duke University (Dur-
ham, NC, USA) for pyrosequencing with a Roche
454 Life Sciences Genome Sequencer Flex Titanium
instrument.

Bacterial community analyses
QIIME 1.6.0 software pipeline (Caporaso et al., 2010)
was used for downstream sequence processing:
reverse primer and chimera removal, phylotype
binning, operational taxonomic unit (OTU) assign-
ment and 10-base MID (multiplex identifier) sample
grouping. USEARCH was used to filter noisy
sequences, chimera check and pick OTUs from
demultiplexed sequences (Edgar, 2010). OTUs con-
taining o3 sequences were removed. Remaining
OTUs were picked at 97% sequence similarity and
identified using the RDP (Ribosomal Database
Project) classifier retrained with Greengenes.
The NAST algorithm was used for alignment and
Greengenes (http://greengenes.secondgenome.com)
supplied core representative sequences (version
October 2012). Sequences were quality filtered and
rarefied to 1543 sequences per sample. To select
1543 sequences for analysis, each OTU’s abundance
at a site was divided by the total sequence count for
that site, and then multiplied by 1543 to retain the
relative abundance of that OTU out of 1543
sequences. The resulting decimals were floored
and remaining sequences needed for the site to
contain 1543 sequences were selected using the
distribution of OTUs at each site (Beevers, 2006).
One unmined site (MRUl2) had only 825 sequences.
Data from this site were used in environmental data
correlations, but excluded from diversity calcula-
tions. Rarefaction curves were generated for Chao1
richness (Chao, 1984), Margalef’s index, Shannon
diversity, Simpson’s index for evenness and
evenness.

Multivariate analysis was guided by Anderson
and Willis (2003), who advocate following these
approaches: (1) an ordination (robust and uncon-
strained), (2) statistical testing of the hypothesis
and (3) identification of taxa driving the observed
patterns. We visualized differences in OTU-based
community composition with nonmetric multi-
dimensional scaling (NMDS) ordinations based on
Bray–Curtis (Bray and Curtis, 1957) and generalized
UniFrac (GUniFrac) distance matrices (item 1).
GUniFrac distances measure community phyloge-
netic relatedness, but cover a series of distances
from weighted to unweighted by adjusting the
weight of the branches in the UPGMA tree (Chen
et al., 2012). Alpha controls the weight on lineages
with common taxa and was set to 0.5 to provide the
best overall power (Chen et al., 2012). For analysis,
we grouped mined sites in two different ways:
a priori (mainstem mined, active valley fill and
reclaimed valley fill) and post hoc, (Ward’s
method cluster analysis of Bray–Curtis distances
separated sites into group A and group B)
(Supplementary Figure S2). Finally, we partitioned
variation in our community distance matrix among
these a priori and post hoc groupings with permuta-
tional multivariate analysis of variance (item 3)
(Anderson, 2001). See detailed methods in
Supplementary Information.

Bacteria taxa and environmental analysis
To understand community composition and environ-
mental variable associations, we examined correla-
tions between NMDS ordination scores and the first
two component scores derived from a principal
components analysis (PCA) of transformed environ-
mental variables. We used correlation to look for
trends between relative abundance of all phyla and
classes and PCA axes, pH gradient and percent of
watershed area mined. Because examining linear
relationships between taxonomic groups at high
hierarchical levels can obscure taxa-specific
patterns at lower levels, we also used generalized
linear models (Quasi-Poisson regression; McCullagh
and Nelder, 1989) to identify genera with positive
(slope40, Po0.10), negative (slopeo0, Po0.10) and
no response (P40.1) across the gradient of area
mined. Finally, we characterized taxa driving multi-
variate patterns using indicator species analysis
(Dufrene and Legendre, 1997; De Cáceres and
Legendre, 2009; De Cáceres et al., 2010) with
PC-ORD software (McCune and Mefford, 2011)
(Supplementary Information).

Predicted functional profiles
To predict functional responses to the mining
gradient, we used PICRUSt (Phylogenetic Investiga-
tion of Communities by Reconstruction of Unob-
served States; http://picrust.github.com; Langille
et al., 2013) to generate a functional profile using
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our 16S rRNA data. We followed the suggested
methods for OTU picking with Greengenes 13.5
using Galaxy (http://huttenhower.sph.harvard.edu/
galaxy/). Predicted gene family abundances were
rarefied to 1078 sequences per site, analyzed at
KEGG (Kyoto Encyclopedia of Genes and Genomes)
Orthology group levels 2 and 3 and used in
correlation analysis (Pearson’s) with percent
watershed mined and the PCA axes. The mean
nearest sequenced taxon index was lower
(0.14±0.002) than that reported for soil commu-
nities (0.17±0.02) (Langille et al., 2013).

Results

Environmental characterization of streams
Our data set included sites that were unmined
(n¼ 5), Mud River tributaries draining active (n¼ 6)
and reclaimed (n¼ 2) mines and sites within the
mainstem of Mud River both upstream and down-
stream of mined tributaries (n¼ 9). All mined sites
had higher concentrations of typical AlkMD con-
stituents (SO4

2� , Ca2þ , Mg2þ , Se and Mn) than
unmined sites (Table 1 and Supplementary Figure
S1), leading to a distinct chemical composition in a
PCA (Figure 2). The majority of environmental
variables strongly correlated with component 1 are
classically associated with AlkMD, with SO4

2� , Ca2þ

and Mg2þ all highly correlated with this first axis
(Supplementary Table S3). Component 1 also
strongly correlated with landcover such that the

Figure 2 PCA of selected environmental variables. Component 1
and component 2 explain 56.8±3.8% and 16.9±2.1% variance,
respectively. Sites with mining split into group A (heavily mined;
symbols outlined) and group B (moderately mined; symbols not
outlined).

Table 1 Average water chemistry values from December 2010 and April and May 2011 that differed significantly between sites without
AlkMD (unmined, n¼ 6) and sites draining mines (n¼17)

Environmental variable Unmined All mined Mined

Moderately Heavily

n¼ 6 n¼ 17 n¼ 8 n¼ 9
Mean s.e. Mean s.e. Mean s.e. Mean s.e.

U (mg l�1) BDL – 2.01 0.35 1.84 0.41 2.34 0.63
Li (mg l�1) 0.43 0.02 18.07 2.01 15.72 2.98 21.52 2.79
Se (mg l�1) 0.27 0.07 9.13 1.53 6.43 1.40 12.32 2.57
Mg (mg l� 1) 3.18 0.21 88.40 9.10 80.71 12.28 101.04 14.42
Sr (mg l�1) 46.33 4.23 660.14 134.74 472.59 104.50 884.13 250.66
Ca (mg l�1) 9.04 1.43 113.81 13.58 97.09 15.89 136.72 22.29
SO4

2- (mg l� 1) 46.35 32.64 536.60 52.73 472.48 70.32 629.70 78.27
Ni (mg l�1) 0.69 0.06 6.48 1.98 3.41 0.48 9.74 3.93
Conductivity (mS cm� 1) 126.80 17.55 1065.56 95.44 958.18 130.92 1224.93 142.29
TN (mg l� 1) 0.84 0.26 3.21 0.56 2.37 0.37 4.19 1.28
NO3

- (mg l� 1) 1.03 0.36 2.36 0.57 1.60 0.32 3.23 1.12
B (mg l�1) 12.59 1.91 26.28 2.63 24.17 2.69 28.90 5.04
NPOC (mg l�1) 2.01 0.23 3.04 0.16 2.88 0.15 3.00 0.23
% Watershed Mined 0.00 0.00 50.40 5.61 39.70 4.80 63.24 9.03
pH 8.15 0.32 7.80 0.07 7.79 0.14 7.83 0.09
Fe (mg l�1) 176.48 43.28 34.83 5.66 39.44 12.43 27.54 3.46
Si (mg l� 1) 3.15 0.13 2.43 0.09 2.48 0.16 2.33 0.10
Zn (mg l� 1) 17.11 3.68 10.23 0.94 10.81 1.84 9.82 1.24
V (mg l�1) 0.24 0.02 0.11 0.01 0.12 0.02 0.09 0.02
Cl (mg l�1) 7.43 1.33 2.41 0.38 1.79 0.41 2.99 0.69

Abbreviations: AlkMD, alkaline mine drainage; BDL, below detection level.
The pH did not differ significantly. Horizontal bar chart displays percent of change from unmined sites.
*Percent change from unmined sites was 2Eþ7 % for U.
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percentage of watershed mined that drained to a
sampling location explained 96% of site variance
(r¼ 0.96, P o0.001). We also observed unexpected
increases in non-purgeable organic carbon (r¼ 0.79,
Po0.001) and mean nitrate (r¼ 0.72, Po0.001)
along the component 1, or AlkMD, axis
(Supplementary Table S3). Component 2 positively
correlated with increasing biofilm Cd, Mn, Zn, Ni
and Zn concentrations (r40.6, Po0.01).

Biofilm biomass as DNA per unit surface area
ranged from 6 to 274 mg m�2 (mean¼ 57±12.07
mg m�2) and did not differ between mined and
unmined sites (log-transformed, Student’s t-test,
P¼ 0.25). Biofilm C content ranged from 10 to
127 g C m�2 (mean¼ 42±6.17 g C m� 2) and was
not different between mined and unmined sites
(log-transformed, Student’s t-test, P¼ 0.24).

Sequencing and taxa identification
The sequencing run of 16S rRNA amplicons yielded
145 138 raw reads. Filtering and removing nontarget
sites left 23 sites with 102 772 sequences. Maximum
reads per site was 7555 with mean 3543 (s.e. 393).
Final sequence clustering gave 1846 OTUs. Each
sample had a mean of 391 OTUs (s.e. 9).

Identification of OTUs at different taxonomic levels
yielded 304 species, 298 genera, 203 families, 128
orders, 72 classes and 25 phyla. Raw sequences are
available at MG-RAST (accession numbers
4498070.3–4498093.3, http://metagenomics.anl.gov/
linkin.cgi?project=1572; Meyer et al., 2008).

Across all sites, Proteobacteria was the dominant
phylum (66.7%), followed by Bacteroidetes (20.8%),
Acidobacteria (4.7%) and Actinobacteria (2.0%). All
other phyla had abundances of o1%. At the phylum
level, o0.02% of reads were unclassified. The most
common classes were Alphaproteobacteria (39.0%),
Betaproteobacteria (19.3%) and Sphingobacteria
(12.5%). At the class level, 2% of reads were
unclassified. The most abundant genera were
Flavobacterium (6.7%) and Novosphingobium
(4.9%). Of the OTUs, 1.1% were assigned to known
species.

Overall bacterial community structure
We determined compositional differences among
the following site categories: unmined, within
valley filled tributaries and in Mud River’s main-
stem downstream of valley filled tributaries using

Table 2 Overall and pair-wise comparisons of Mud River bacteria community composition analyzed with perMANOVA using
Bray–Curtis and GUniFrac distances for a priori groups and Bray–Curtis distance for post hoc groups

Source d.f. SS MS F R2 P

PerMANOVA for Mud River bacteria using Bray–Curtis distance, a priori
Overall

Site type 3 1.047 0.349 1.937 0.244 0.002
Residuals 18 3.245 0.18 0.756
Total 21 4.292 1

Contrasts
Mined vs unmined 1 0.573 0.573 3.18 0.134 0.001
Mainstem mined vs active valley fill 1 0.288 0.288 1.595 0.067 0.08
Active valley fill vs reclaimed valley fill 1 0.187 0.186 1.035 0.043 0.415
Residuals 18 3.245 0.18 0.756
Total 21 4.292 1

PerMANOVA for Mud River bacteria using GUniFrac distance, a priori
Overall

Site type 3 0.161 0.054 1.553 0.206 0.021
Residuals 18 0.621 0.034 0.794
Totals 21 0.781 1

Contrasts
Mined vs unmined 1 0.081 0.081 2.358 0.104 0.002
Mainstem mined vs active valley fill 1 0.054 0.054 1.576 0.07 0.061
Active valley fill vs reclaimed valley fill 1 0.025 0.025 0.724 0.032 0.748
Residuals 18 0.621 0.034 0.794
Total 21 0.781 1

PerMANOVA for Mud River bacteria using Bray–Curtis distance, post hoc
Overall

Site type 2 1.402 0.701 4.607 0.327 0.001
Residuals 19 2.89 0.152 0.673
Totals 21 4.292 1

Contrasts
AB vs unmined 1 0.573 0.573 3.768 0.134 0.001
Group A vs group B 1 0.828 0.828 5.445 0.193 0.001
Residuals 19 2.89 0.152 0.673
Total 21 4.292 1

Abbreviations: MS, mean sum of squares; perMANOVA, permutational multivariate analysis of variance; SS, sum of squares.
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Bray–Curtis distance and GUniFrac NMDS (Table 2).
With the Bray–Curtis distance matrix, mined sites
separated into two groups using hierarchical cluster
analysis (Ward’s method), leading us to reclassify
mined sites into two post hoc groupings: group A
and group B (Figure 3a). Community composition of
these two groups differed significantly (permuta-
tional multivariate analysis of variance, F2, 19¼ 4.61,
Po0.001, Table 2). Group A was characterized by
higher concentrations of biofilm Ca, Cd, Mn, Ni, Sr,
Th and Zn, and water column Ca, Ni, Se, SO4

2- and
TN (Student’s t-test, Pp0.05; Figure 4). Group A
sites occurred in stream reaches draining water-
sheds with 25–96% of watershed area occupied by
mines, whereas sites in group B had 16–51% of their
watershed mined (Student’s t-test, P¼ 0.03).

Based on Bray–Curtis distances, which do not
incorporate phylogenetic relatedness in community
differences, bacteria community composition dif-
fered significantly overall (F3, 18 ¼ 1.94, P¼ 0.002)
and between sites with and without AlkMD
(F3, 18¼ 3.18, Po0.001; Figure 3a and Table 2). There
were no significant differences in community
composition between streams draining active and
reclaimed valley fills (F1, 18¼ 1.04, P¼ 0.42). NMDS
axes 1 and 2 had similar degrees of explanatory
power (25.9% and 26.4%, respectively). Configura-
tion stress was 0.192.

We also used GUniFrac to compare composition
across sites. GUniFrac analyses include the phylo-
genetic relatedness of taxa. Results were similar to
the Bray–Curtis analysis, although separation
between sites in ordination space was less distinct
(F3, 18¼ 1.55, P¼ 0.02; Figure 3b and Table 2).
Contrasts between mined and unmined sites

showed significant differences in bacterial commu-
nity composition (F1, 18¼ 2.36, P¼ 0.002), but again
we found no difference between communities in
streams below reclaimed and active valley fills
(F1, 18¼ 0.72, P¼ 0.75). Axis 1 in the GUniFrac
distance NMDS ordination explained the most
compositional differences between sites (31.0%),
whereas axis 2 explained 21.3% and stress was 0.190.

Bacterial diversity along the mining gradient
We examined correlations between a-diversity and
environmental variables. Component 2, a PCA axis
capturing variation in biofilm metals, was the single
strongest correlate of richness estimated by multiple

Unmined
Mainstem Mined
Actively Mined Trib.
Reclaimed Mined Trib.

a b

Figure 3 NMDS ordination (a) using Bray–Curtis distance matrix and (b) using GUniFrac distance matrix (with a¼ 0.5). Mined sites
categorized as group A (symbols outlined) and group B (symbols not outlined) resulting from cluster analysis of Bray–Curtis distance
NMDS. Distance matrices based on 16S rRNA pyrosequences. The r2 values are in parentheses. Stress: (a) 0.192 and (b) 0.190. Rarefied to
1543 sequences per site.

Figure 4 Water and biofilm chemistry variables that differ
significantly between groups A and B shown as proportion of
change from average concentration in unmined sites (Pp0.05).
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a-diversity metrics. Chao1 richness, Margalef’s
index and evenness negatively correlated with
component 2 (Chao1: P¼ 0.002, r¼ � 0.63; Marga-
lef’s index: P¼ 0.006, r¼ � 0.57; evenness: P¼ 0.006,
r¼ � 0.57). Across all sites we did not observe
significant correlations between percent of watershed
mined and a-diversity metrics (Figure 5, all P40.05).
However, Chao1 richness estimator and Margalef’s
index of only mined sites were significantly nega-
tively correlated with the percent watershed mined
(both P¼ 0.004, r¼ � 0.66).

We examined diversity variation among site
categories using common biotic indices (Table 3).
The a-diversity of bacteria OTUs did not differ
between a priori designated site types using any of
these indices (Kruskal–Wallis, P40.05). However,
post hoc categories did differ in a-diversity for
Chao1 richness, Margalef’s index and evenness
(Kruskal–Wallis, P¼ 0.04, P¼ 0.04, P¼ 0.002),
which was lower in group A (heavily mined) than
group B (moderately mined) (Table 3).

Indicator taxa and predicted functions
We performed indicator species analysis of OTUs,
orders and families to determine which taxa reliably
indicated particular environmental conditions

(Table 4). Comparing heavily mined, moderately
mined and unmined sites, we found 174 OTU-based
taxa strongly associated with one of these three
groups. Most OTU indicators (n¼ 156) closely
associated with unmined sites, only 1 strongly
associated with the moderately affected group B
sites and 17 associated with the heavily affected
group A. Of the OTUs assigned to a taxa identifier,
we found 20 orders (of 128 total), 34 families (of 203
total) and 28 genera (of 255 total) that were indicator
taxa for one of the three post hoc groups.

Out of all described taxa, percent of watershed
mined explained significant linear trends in abun-
dance for 9 of 72 classes, 18 of 128 orders and 12 of
203 families (Supplementary Table S4). Whereas the
Acidobacteria-5 and Betaprotebacteria classes,
YCC11 and Ellin329 orders, and Bacteriovoracaceae
and EB1003 families correlated negatively with
percent of watershed mined (all r4� 0.6), the
Acidimicrobiia class, Acidimicrobiales, SBR1032,
and Rhodobacterales orders, and Phyllobacteria-
ceae, Methylophilaceae and Desulfobacteraceae
families increased in relative abundance in streams
of more heavily mined watersheds (all r40.5).

Because cross-gradient patterns of taxa are often
conducted at coarse levels of taxonomic resolution,
we explored genera responses within the two most
abundant classes: Betaproteobacteria, which nega-
tively correlated with percent of watershed mined,
and Alphaproteobacteria, which did not correlate
with percent of watershed mined. For each genus
within the class, we assessed abundance patterns
across the gradient of percent mining using Quasi-
Poisson regression (McCullagh and Nelder, 1989).
The negative correlation between Betaproteobacteria
relative abundance and percent of watershed mined
did not hold for all genera within the class
(Figure 6). Whereas 9 genera did show a negative
response, 6 responded positively and 18 had no
response. In Alphaproteobacteria, which showed
no response to mining at the class level, 13 genera
responded positively, 11 responded negatively and
28 showed no significant response (Figure 7). We
referenced each responding genus with KEGG
Organism modules and Bergey’s Manual (Garrity,
2005) to identify energy metabolisms that might
respond to AlkMD constituents (Table 5). The
majority of sulfur and nitrogen metabolism
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Figure 5 The a-diversity (Chao1 richness and Shannon diversity
index (H’) shown here) across a range of watersheds with different
percentages of their area that had been mined (Observed, P¼ 0.44;
Chao1, P¼0.74; and Shannon, P¼0.37). The post hoc designations
of sites (group A, group B and reference) are indicated in key.

Table 3 The a-diversity using 1543 sequences

Post hoc mined All mined Unmined

Group A s.e. Group B s.e. s.e. s.e.

Chao 1 richness 678.84 ±66.5 820.9 ±44.39 742.83 ±94.07 652.36 ±121.82
Margalef’s index (D) 62.03 ±5.09 68.88 ±5.25 65.2 ±6.22 61.21 ±9.13
Shannon index (H’) 7.88 ±0.17 7.91 ±0.28 7.89 ±0.23 7.92 ±0.35
Simpson diversity (1-D) 0.991 ±0.001 0.989 ±0.004 0.99 ±0.003 0.992 ±0.003
Evenness (E) 0.892 ±0.01 0.88 ±0.02 0.887 ±0.017 0.9 ±0.018
Dominance 0.009 ±0.001 0.011 ±0.004 0.01 ±0.003 0.008 ±0.003
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pathways were shared by both positive and negative
responders. However, the only responsive genus
reported to include a denitrifier increased with

mining, whereas assimilatory sulfate reduction
pathways were identified for genera who only
responded negatively to mining.

Table 4 Taxa identified at the order or family level as indicators using Indicator Taxa Analysis

Site classification (IV) Mean s.d. P Taxon (phylum, class, order)

Identified to order
Unmined 94.3 42.5 12.4 o0.001 Proteobacteria, Betaproteobacteria, YCC11
Unmined 75.3 56.4 9.96 0.046 Proteobacteria, Betaproteobacteria, A21b
Unmined 72.3 55.6 7.31 0.0194 Proteobacteria, Alphaproteobacteria, Ellin329
Unmined 71.5 56.2 6.32 0.012 Proteobacteria, Alphaproteobacteria, Rickettsiales

Group A 84.7 50 10.68 0.004 Proteobacteria, Deltaproteobacteria, Myxococcales
Group A 83.9 38.8 10.05 0.001 Proteobacteria, Gammaproteobacteria, HTCC2188
Group A 78 56.5 7.09 0.0036 Proteobacteria, Gammaproteobacteria, Legionellales
Group A 77.3 60 7.11 0.008 Nitrospirae, Nitrospira, Nitrospirales
Group A 76.8 51.9 10.62 0.0168 Proteobacteria, Betaproteobacteria, MND1
Group A 76.4 51.4 11.14 0.0238 Proteobacteria, Betaproteobacteria, Rhodocyclales

Group B 86.6 42.1 10.35 0.0012 Firmicutes, Bacilli, Bacillales
Group B 75 29.2 10.23 0.0028 Acidobacteria, Acidobacteria-6, CCU21

Site classification (IV) Mean s.d. P Taxon (phylum, class, order, family)

Identified to family
Unmined 76.9 53 10.91 0.0286 Proteobacteria, Betaproteobacteria, A21b, EB1003
Group A 100 38.9 10.6 o0.001 Proteobacteria, Gammaproteobacteria, Legionellales, Legionellaceae
Group A 83 39.2 10.56 0.0032 Proteobacteria, Gammaproteobacteria, HTCC2188, 211ds20
Group A 77.8 60.6 7.48 0.0142 Nitrospirae, Nitrospira, Nitrospirales, Nitrospiraceae
Group A 76.4 51.3 11.29 0.0248 Proteobacteria, Betaproteobacteria, Rhodocyclales, Rhodocyclaceae
Group A 72.7 56.5 4.84 0.0016 Acidobacteria, Acidobacteria-6, iii1-15, RB40
Group A 70.5 56.4 4.13 o0.001 Proteobacteria, Betaproteobacteria, Methylophilales, Methylophilaceae

Group B 80.8 41.5 9.84 0.002 Firmicutes, Bacilli, Bacillales, Bacillaceae
Group B 71.8 56.4 4.76 0.0026 Bacteroidetes, Sphingobacteriia, Sphingobacteriales, Flexibacteraceae

Showing the top indicators with X70% perfect indication based on relative abundance and relative frequency. Unmined indicators identified in
comparison with all mined sites grouped. Comparison of group A (outlined symbols in Figures 2 and 3a) and group B (symbols not outlined in
Figures 2 and 3a) did not include unmined sites.

Figure 6 Response to percent area of watershed mined by (a) class Betaproteobacteria; and genera within Betaproteobacteria:
(b) Hydrogenophaga, a representative positive responder; (c) Rubrivivax, a representative non-responder; and (d) Polaromonas, a
representative negative responder, using Quasi-Poisson regression.
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Relative gene family abundances generated by the
predicted functional profile using PICRUSt grouped
into three level-2 functional categories that corre-
lated negatively with percent watershed mined.
Gene family relative abundances ranged from 11%
to o1%. Percent watershed mined correlated
negatively with gene families in ‘Signaling Mole-
cules and Interaction’ (Environmental Information
Processing category) (P¼ 0.005, r¼ � 0.59, 4%
abundance), ‘Xenobiotics Biodegradation and Meta-
bolism’ (Metabolism category) (P¼ 0.01, r¼ � 0.53,
0.4% abundance) and ‘Transport and Catabolism’
(Cellular Processes category) (P¼ 0.02, r¼ � 0.50,
0.2% abundance).

Discussion

Despite receiving extensive AlkMD contamination
from the largest surface coal mine in Appalachia,
microbial communities exposed to exceptionally
high levels of AlkMD constituents in Mud River
are no less diverse than nearby reference commu-
nities. Diversity in these streams best correlates with
a multivariate factor that incorporates elevated
biofilm Cd, Mn, Zn and Ni. Contrary to our
predictions, overall bacterial diversity was not
strongly correlated with the extent of upstream
mining, although within mined sites, mining inten-
sity correlated negatively with taxonomic richness.
Despite only modest changes in a-diversity, we
detected significant compositional differences
between microbial communities of unmined and
mining-affected streams. These compositional shifts
resulted from changes in relative abundance rather

than turnover between species at mined and
unmined sites, as only 9% of OTUs differed enough
between mined and unmined sites to serve as
indicator taxa. There was limited evidence that
these compositional shifts were driven by responses
to nitrate and sulfate availability for use in energy
metabolism. Rather, taxa shifts may be because of
stressors that effect cellular processes and signaling.

Although our data suggest that bacterial
community composition shifted with AlkMD expo-
sure, we do not observe linear trends in a-diversity
along the mining gradient because a-diversity varies
widely at unexposed sites. However, within mined
sites, richness decreased as more watershed area
was mined. When an ecosystem undergoes extreme
environmental alteration, such as mountaintop
mining, we expect organisms favored by the changes
to flourish and sensitive taxa to fail. This subsidy–
stress response (Odum et al., 1979) can shift
community composition across environmental
gradients as well as increase diversity at intermedi-
ate exposure levels where sensitive and tolerant (or
subsidized) taxa overlap (Niyogi et al., 2007). This is
a possible explanation for microbial taxa richness
and diversity responses to the AlkMD gradient. It is
also consistent with a transplant experiment in the
Clark Fork River drainage containing Butte copper
mine where Feris et al. (2009) found bacterial taxa
richness was greatest at low and moderate levels of
metal contamination (As, Cd, Cu, Pb and Zn) and
lowest in uncontaminated and highly contaminated
sediments.

Many studies reporting microbial community
responses to environmental contaminants occur in
acid mine drainage systems (Baker and Banfield,

Figure 7 Response to percent area of watershed mined by (a) class Alphaproteobacteria; and genera within Alphaproteobacteria: (b)
Rhodobacter, a representative positive responder; (c) Sphingobium, a representative non-responde; and (d) Bradyrhizobium, a
representative negative responder, using Quasi-Poisson regression.
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2003). Communities in these very acidic, metallic
waters typically are less diverse than bacteria from
neutral or alkaline streams (Lear et al., 2009; Kuang
et al., 2013) and pH strongly correlates with
phylogenetic diversity, richness and UniFrac dis-
tance (Kuang et al., 2013). Water column pH during
our study period was not statistically distinct
between mined and unmined sites and had no
correlation with percent watershed mined, although
it spanned nearly two orders of magnitude (6.9–8.6).
AlkMD characteristically elevates pH (Griffith et al.,
2012), and previous work at this field site found a
strong positive correlation between percent
watershed mined and pH (Lindberg et al., 2011).
Unlike that earlier study of Mud River, this study
occurred during winter/early spring at which time
high flows dilute pH effects of mine drainage. In
contrast to prior studies (Fierer and Jackson, 2006;
Lauber et al., 2009; Rousk et al., 2010; Griffiths et al.,
2011), pH was not an important correlate of
composition or diversity metrics during this sam-
pling period. This may be explained by the pHs we
examined or the limited pH range in our study
(2 orders of magnitude) relative to prior studies (X4
orders of magnitude). Yet, our results also contrast a
study of diversity in streams of Hubbard Brook
Experimental Forest in New Hampshire, USA, in
which a similar range in pH (4–6.3) was shown to be
the best correlate of microbial taxa richness across
streams (Fierer et al., 2007). The lack of a pH
diversity correlation in Mud River suggests that
other chemical constituents were stronger determi-
nants of bacterial community structure than pH, and
this is perhaps unsurprising given the large

difference in alkalinity, conductivity and numerous
trace elements associated with surface mining.

Community composition differed significantly
between unmined sites and sites downstream of
surface mines. In mining-affected sites, we detected
two distinct post hoc groups associated with
different levels of AlkMD exposure. Bacterial com-
munities in moderate AlkMD exposure sites were
more diverse than communities with high contami-
nant exposure. The shift in composition between
unmined and mined sites was best explained by
elevated AlkMD constituents Ca2þ , Li, SO4

2� , Se and
Mg2þ and overall ionic strength. Composition
differences between high and moderate AlkMD
groups was best explained by greater biofilm Cd,
Mn and Zn concentrations in the high-mining-
affected sites. Earlier work shows that salinity and
trace metals generate significant changes in micro-
bial community composition (Baker and Banfield,
2003; Feris et al., 2003; Lozupone and Knight 2007;
Giller et al., 2009; Auguet et al., 2010; Lami et al.,
2013). A number of studies have found that Cd and
Zn in particular alter microbial community compo-
sition (Ganguly and Jana, 2002; Sverdrup et al.,
2006; Bouskill et al., 2010; Xie et al., 2011).

As previous studies recognize (Lozupone et al.,
2007; Kuczynski et al., 2010), analysis methods
influence conclusions about composition differ-
ences. Although both distance matrices that we
used for creating NMDS ordinations yielded iden-
tical differences between site types, they also
revealed unique patterns of community composition
within site- types. GUniFrac incorporates phylo-
genetic relatedness into the distance matrix by more

Table 5 Energy metabolism functions for Alpha- and Beta-Proteobacteria that respond to the mining gradient

Class Response
type

Genus Pseudo-
R2

Energy metabolism KEGG Organism
species

Alphaproteobacteria Brevundimonas 0.371 Aerobic respiration B. subvibrioides

þ Erythromicrobium 0.358 Aerobic photosynthesis
Hyphomonasa 0.316 DNRA H. neptunium
Rhodobactera 0.396 N-fixation, DNF, thiosulfate oxidation

by SOX complex
R. sphaeroides,
R. capsulatus

� Phenylobacterium 0.309 DNRA P. zucineum
Arthrospira 0.186 Assimilatory NO3

- reduction, assimilatory
SO4

2- reduction
A. platensis

Sphingomonas 0.160 Aerobic respiration, assimilatory SO4
2-

reduction
S. wittichii, S. sp. MM-
1

Bradyrhizobium 0.156 N-fixation, assimilatory SO4
2- reduction,

thiosulfate oxidation by SOX complex
B. japonicum

Rhodoplanes 0.156 DNF, photoheterotrophy
Betaproteobacteria þ Polynucleobacter 0.442 Thiosulfate oxidation by SOX complex P. necessarius, P. sp.

QLW-P1DMWA-1
Methyloversatilis 0.259 Assimilatory NO3

- reduction M. universalis
Hydrogenophagaa 0.314 Hydrogen oxidation�
Methylibium 0.153 DNRA, thiosulfate oxidation by SOX

complex
M. petroleiphilum

Polaromonasa 0.430 N-fixation, DNRA, thiosulfate oxidation
by SOX complex

P. naphthalenivorans,
P. sp. JS666

Abbreviations: DNF, denitrification; DNRA, dissimilatory nitrate reduction to ammonium. Sources: KEGG (Kyoto Encyclopedia of Genes and
Genomes) Organism module and Bergey’s Manual of Systematic Bacteriology (Vol. 2).
aIndicator taxa for presence or absence of mining.
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heavily weighting closely related taxa (Kuczynski
et al., 2010; Chen et al., 2012). Because site-type
differences in composition were less strong when
using a GUniFrac rather than Bray–Curtis dissim-
ilarity distance matrix, shifts in composition may be
due to closely related taxa responding quite differ-
ently to AlkMD. This point is bolstered by the
genera-level analyses that revealed that genera
within the same class had varied responses to the
mining gradient.

Ultimately, as our knowledge of microbial life
history and physiology grows, we hope to map
individual microbial traits onto phylogenies. Such
knowledge would improve chemical pollution mon-
itoring and predictions of microbial responses to
ecosystem degradation. At present, mapping micro-
bial traits to identities is highly limited, obscuring
causes or consequences of specific compositional
shifts in bacteria communities. Yet, examining taxa
that respond strongly to AlkMD and comparing
associated compositional changes with those across
other environmental gradients may illuminate
important microbial indicator taxa.

Taxonomic data sets are informative, but poorly
resolved at genus and species levels (only 1.1% of
OTUs were assigned to known species). Thus, it is a
challenge to select appropriate taxonomic levels for
best understanding microbial responses. At the class
level, the strongest AlkMD responders were within
Proteobacteria, Acidobacteria and Actinobacteria
phyla. Similar to Feris et al. (2003), we found that
Betaproteobacteria relative abundance decreased
across a contamination gradient. Betaproteobacteria
indicator taxa also correlate negatively with river and
estuary water organic carbon content (Fortunato et al.,
2013), and this may play a role in structuring AlkMD
communities as dissolved organic carbon had a strong
positive correlation with mining. In contrast, Feris
et al. (2009) also found that in hyporheic sediments
sourced from alkaline streams (pH 7.9–8.3), Alpha-
and Gammaproteobacteria relative abundance
increased with a metal contamination index.
Although we used surface biofilms, not hyporheic
sediments, we observed no such relationship. In our
study, the strongest positive correlation with mining
occurred in Actinobacteria that responded linearly
rather than in a threshold manner.

After identifying taxa responsive to this gradient,
the next step is investigating mechanisms and
corresponding ecological implications. We antici-
pated that two ions that substantially increased with
mining, sulfate and nitrate, would link to changes in
taxa composition as these can be used in energy
metabolism. Indeed, several AlkMD-tolerant taxa
included Gamma- and Deltaproteobacteria, Nitros-
pira, Bacilli and Sphingobacteria, several of which
perform biogeochemical transformations involving
nitrogen cycling. These include nitrite oxidation to
nitrate by Nitrospirae (Wakelin et al., 2008), metha-
nol oxidation linked with denitrification by Methy-
lophilaceae (Kalyuhznaya et al., 2009) and nitrate

reduction and aromatic compound degradation by
Rhodocyclales (Hesselsoe et al., 2009). However,
KEGG Organism modules revealed similar nitrogen
pathways for species in genera that increased and
decreased with mining. Moreover, predicted gene
family abundances for nitrogen metabolism were not
positively correlated with mining. Sulfur metabolism
had a similar outcome: predicted sulfur metabolism
gene family abundances were not correlated with
mining (and sulfate), yet the sulfate-reducing Desul-
fobacteraceae family increased in relative abundance
in streams of more heavily mined watersheds.
Because of the regime shift in many AlkMD-asso-
ciated chemicals, it is likely that no single mechan-
ism is responsible for the taxa patterns we observe.
Rather, the multivariate nature of AlkMD is best
represented by the percentage of watershed mined.
This chemical regime shift may affect cellular
processes and signaling as the predicted functional
profile suggests. At the ecosystem level, it is possible
that these effects could alter energy requirements,
thus influencing carbon use efficiency and carbon
cycling if energy is shunted toward cellular processes
and away from growth. Nonetheless, it seems that the
majority of functional categories are predicted to be
redundant between bacterial communities spanning
the mining gradient.

In conclusion, our study shows that stream
biofilm bacterial composition in the Mud River
system significantly differed between sites receiving
AlkMD and unexposed sites. Average taxonomic
richness in sites receiving moderate levels of AlkMD
constituents exceeded that for unexposed or heavily
exposed sites, creating a nonlinear relationship
between exposure and diversity. At most taxonomic
levels, few taxa were statistically dissimilar enough
between exposure categories to indicate habitat
specialization. The small number of strongly
responding taxa and disparity in compositional
similarity between GUnifrac and Bray–Curtis ordi-
nations suggest that community shifts occur through
families, genera and species rather than further up
the hierarchy. Such results contrast macrofaunal
responses to AlkMD exposure where entire orders of
aquatic insects are lost from heavily AlkMD-affected
streams (Pond et al., 2008; Pond, 2010, 2012).
Testing microbial community functional responses
is the next logical step toward understanding
ecologically relevant links between compositional
shifts and the strong chemical gradient AlkMD
establishes in Central Appalachian streams.
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