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Significance of archaeal nitrification in hypoxic
waters of the Baltic Sea
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Ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota are widespread, and their
abundance in many terrestrial and aquatic ecosystems suggests a prominent role in nitrification.
AOA also occur in high numbers in oxygen-deficient marine environments, such as the pelagic
redox gradients of the central Baltic Sea; however, data on archaeal nitrification rates are scarce and
little is known about the factors, for example sulfide, that regulate nitrification in this system. In the
present work, we assessed the contribution of AOA to ammonia oxidation rates in Baltic deep basins
and elucidated the impact of sulfide on this process. Rate measurements with 15N-labeled
ammonium, CO2 dark fixation measurements and quantification of AOA by catalyzed reporter
deposition–fluorescence in situ hybridization revealed that among the three investigated sites the
highest potential nitrification rates (122–884nmol l�1per day) were measured within gradients of
decreasing oxygen, where thaumarchaeotal abundance was maximal (2.5–6.9� 105 cells per ml) and
CO2 fixation elevated. In the presence of the archaeal-specific inhibitor GC7, nitrification was
reduced by 86–100%, confirming the assumed dominance of AOA in this process. In samples spiked
with sulfide at concentrations similar to those of in situ conditions, nitrification activity was inhibited
but persisted at reduced rates. This result together with the substantial nitrification potential
detected in sulfidic waters suggests the tolerance of AOA to periodic mixing of anoxic and sulfidic
waters. It begs the question of whether the globally distributed Thaumarchaeota respond similarly in
other stratified water columns or whether the observed robustness against sulfide is a specific
feature of the thaumarchaeotal subcluster present in the Baltic Deeps.
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Introduction

Since the discovery that autotrophic ammonia
oxidation is not restricted to the Bacteria but is also
performed by members of the Archaea (Venter et al.,
2004; Könneke et al., 2005; Treusch et al., 2005),
mesophilic ammonia-oxidizing archaea (AOA) have
been recognized as one of the most successful and
ubiquitous groups of microorganisms on Earth
(Francis et al., 2005; Offre et al., 2013). Phylogen-
etically affiliated with the novel phylum Thau-
marchaeota (Brochier-Armanet et al., 2008; Spang
et al., 2010), AOA occur in high abundances in both
terrestrial (Zhang et al., 2010; Pratscher et al., 2011)
and aquatic (Yakimov et al., 2011; Biller et al., 2012;
Amano-Sato et al., 2013) ecosystems, often out-
numbering bacterial ammonia oxidizers (Schleper,

2010). As a consequence, questions arise regarding
the ecological niche of AOA, their roles in nitrifica-
tion and primary production and the environmental
factors that regulate their contribution to these
processes.

The conversion of ammonia (NH3) or its proto-
nated form ammonium (NH4

þ ) to nitrite (NO2
� ) is the

first and generally rate-limiting step in nitrification
(except to some extent in the primary nitrite
maximum in the oceans; Lomas and Lipschultz,
2006). The relative contributions to ammonia oxida-
tion by autotrophic AOA and ammonia-oxidizing
bacteria (AOB) have been inferred using the archaeal
and bacterial amoA genes that encode subunit A of
the key enzyme ammonia monooxygenase (see, for
example, Rotthauwe et al., 1997; De Corte et al.,
2009; Sauder et al., 2011; Auguet et al., 2012). These
studies often revealed the dominance of archaeal
over bacterial ammonia oxidizers (Francis et al.,
2005; Wuchter et al., 2006; Mincer et al., 2007;
Agogué et al., 2008; Newell et al., 2013). Further
support for the strong role for AOA in nitrification
comes from observations of the co-occurrence of
archaeal amoA in areas of nitrification activity
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(Caffrey et al., 2007; Beman et al., 2008; Alves et al.,
2013) and from metatranscriptomic studies (Baker
et al., 2012; Lesniewski et al., 2012). However, to
determine the actual contribution and impact of
AOA on the nitrogen cycle requires measurements
of ammonium oxidation rates, as they cannot be
deduced from transcript abundance alone
(Mu�mann et al., 2011), given that quantification is
influenced by, for example, mRNA degradation
during sampling (Feike et al., 2012) and, in addition,
may not inevitably reflect environmental activity.

In the globally expanding marine oxygen mini-
mum zones and in other oxygen-deficient systems,
archaea are prominently embedded in the cycles of
carbon (C) and nitrogen (N) (Löscher et al., 2012;
Stewart et al., 2012), consistent with the recognition
of these systems as hot spots for chemolithoauto-
trophs (Ulloa et al., 2012). Concerted dissimilatory
microbial processes successively transform fixed
nitrogen species into dinitrogen gas (Lam and
Kuypers, 2011) and autotrophy promotes the fixa-
tion of inorganic carbon into biomass (Herndl et al.,
2005). Accordingly, AOA have been shown to play
an important role within the N (Francis et al., 2007;
Stewart et al., 2012) and C cycles (Ingalls et al.,
2006). As AOA may contribute strongly to nitrifica-
tion and primary production, knowledge of their
ecology and regulation are crucial for the under-
standing of ecosystem-relevant N and C cycling in
oxygen-deficient zones.

Nitrogen transformations and the responsible
microorganisms have also been investigated in the
oxic–anoxic transition zones of the water column of
the central Baltic Sea (Hannig et al., 2007; Schneider
et al., 2010; Hietanen et al., 2012). Oxygen depletion
in deep basins is accompanied by gradients of NO3

� ,
NO2

� , H2S and NH4
þ that are exploited by different

guilds of chemolithoautotrophic prokaryotes (Grote
et al., 2008; Labrenz et al., 2010; Glaubitz et al.,
2013). Autotrophic ammonia oxidation is an essen-
tial ecological function for the N and C cycle in the
Baltic Sea that receives high loads of nutrient input
from its catchment area (Voss et al., 2011). Nitrifica-
tion fuels subsequent denitrification that in the
water column is mainly carried out by chemo-
lithoautotrophic prokaryotes that link the latter
process to the oxidation of reduced sulfur com-
pounds (Brettar and Rheinheimer, 1991; Hannig
et al., 2007; Dalsgaard et al., 2013). Anaerobic
ammonia oxidation (anammox) has been shown to
occur periodically upon major inflow events of
oxygen-rich water, causing temporary nonsulfidic
conditions (Hannig et al., 2007) in Baltic deep
basins. As an extended oxygen- and sulfide-free
zone is lacking most of the time (in contrast to the
Black Sea; Lam et al., 2007), ammonia oxidation is
carried out mostly aerobically because of the
sensitivity of anammox bacteria toward oxygen
and potentially sulfide (Jin et al., 2012; Carvajal-
Arroyo et al., 2013). Where ammonium and oxygen
gradients overlap, potential nitrification rates as

high as 85–160 nmol l�1 per day have been mea-
sured (Hietanen et al., 2012). Labrenz et al. (2010)
reported the dominance of a single thaumarchaeotal
subcluster, termed GD2, related to the autotrophic
Candidatus Nitrosopumilus maritimus (Könneke
et al., 2005) that accounted for up to 26% of all
prokaryotes in hypoxic waters. The high-level
transcription of archaeal amoA further indicates a
substantial contribution of AOA to ammonia oxida-
tion (Labrenz et al., 2010; Feike et al., 2012).
Moreover, the dominance of archaea is in contrast
to AOB abundance, as very low cell numbers (o1%
of total cell numbers; Bauer, 2003) and amoA
transcript levels below the detection limit (Labrenz
et al., 2010) point to their minor role in ammonia
oxidation in Baltic Sea redox gradients. However,
cell abundance does not necessarily reflect the
respective organism’s contribution to a specific
process (Musat et al., 2008). AOA and AOB belong
to different domains with specific physiologies, and
levels of functional gene expression may not be
equally extrapolated to the process rates, and hence
alternative experimental approaches are required to
confirm this hypothesis. In the case of ammonia
oxidation, rate measurements can be linked with
archaeal vs bacterial contributions by the use of
inhibitors specific for either Bacteria or Archaea
(Löscher et al., 2012; Yokokawa et al., 2012).

Sulfide (H2S) directly impairs metabolism and is
therefore toxic to most aerobic microorganisms,
including nitrifiers (Joye and Hollibaugh, 1995);
thus, its mixing into hypoxic waters (0–10 mmol l�1

O2) such as those of Baltic redox gradients affects
microbial activities (Hoppe et al., 1990) and likely
also nitrification. The presence of AOA in sulfidic
environments (Caffrey et al., 2007; Coolen et al.,
2007) suggests that they are able to cope with
sulfide, unlike highly H2S-sensitive AOB (Sears
et al., 2004). Among the oxygen-depleted systems
worldwide, the Baltic Sea presents an ideal habitat
to not only investigate archaeal nitrification but also
its response to sulfidic conditions. The high abun-
dance of Thaumarchaeota reported by Labrenz et al.
(2010) in a sulfidic basin of the Baltic Sea suggested
that they are the predominating ammonia oxidizers,
potentially because they are better adapted than
their bacterial counterparts to periodically sulfidic
conditions. Erguder et al. (2008) reported a shift
toward archaeal amoA enrichment in a sequential
batch reactor when pulsed with sulfide. In the
pelagic redox gradient of the Baltic Sea, sulfide is
used as an electron donor by chemoautotrophic
sulfide-oxidizing bacteria, for example, the auto-
trophic Sulfurimonas sp. subgroup GD17 (Grote
et al., 2008) and perhaps by Gammaproteobacteria
of the SUP05 group (Glaubitz et al., 2013), but short-
term mixing events would also expose sulfide-
sensitive microbes such as nitrifiers to low and
potentially toxic sulfide concentrations. In fact,
lateral intrusions and small-scale mixing have
been shown to influence microbially mediated
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transformations in pelagic redox gradients
(Fuchsman et al., 2012) and are also frequent in
the Baltic Sea (Kuzmina et al., 2005; Wieczorek
et al., 2008; Friedrich et al., 2014).

In this study we quantified Thaumarchaeota and
potential nitrification at different times and loca-
tions, assessing the contribution of AOA to this
process by using archaea-specific inhibitors. In
addition, we sought to elucidate the effect of sulfide
on nitrification activity in Baltic Sea redox gradi-
ents. Our results provide compelling evidence that
Thaumarchaeota are indeed responsible for the
major portion of ammonia oxidation in hypoxic
waters of the Baltic Sea and that they are likely
adapted to its periodically occurring anoxic and
sulfidic conditions.

Materials and methods

Sampling and physicochemical analyses
Sampling was conducted in the eastern and western
Gotland Basin and the Bornholm Basin (locations
and coordinates in Figure 1), specifically at Gotland
Deep station 271, Landsort Deep station 284 and
Bornholm Deep station 213 during cruises with the
research vessels Alkor (February 2011), Elisabeth-
Mann-Borgese (July 2011) and Meteor (November
2011 and June 2012). During all cruises, water was
collected, with emphasis on oxic–anoxic transition
zones, in free-flow water bottles attached to a
conductivity, temperature, and depth (CTD) probe.
For each depth, sampling was conducted with two
5-l free-flow bottles (Hydrobios, Kiel, Germany).
Water was taken from one bottle for nitrification and
CO2 fixation rate measurements, followed by

sampling for cell counts. At the same time, samples
from the second bottle were immediately analyzed
on board for O2, H2S, NH4

þ , NO3
� and NO2

�

concentrations (detection limits per liter: 1mmol
for O2; 0.2 mmol for H2S; 0.2–0.5mmol for NH4

þ and
NO3

� , 0.05 mmol l� 1 for NO2
� ) according to the

method of Grasshoff et al. (1983) or Cline (1969)
(for H2S). O2 was determined via automatic titration
(Titrino 702, Metrohm, Herisau, Switzerland); the
titer of the thiosulfate solution was determined daily
and the solution renewed if deviating 40.1 from the
reference value of 1.0. Standards for H2S were run
ranging from 0.1 to 3 mg l�1 with an r2 between
0.9882 and 0.9997. Calibration for NH4

þ and NO3
�

was done using standards of 10 mmol l� 1 or
2mmol l�1 for NO2

� . At Gotland Deep in 2011, water
was retrieved in two consecutive CTD casts.
Samples for the sulfide-spiking experiment and
dissolved inorganic carbon determination were
obtained in subsequent separate CTD casts.

Quantification of Thaumarchaeota and Sulfurimonas
sp. subgroup GD17
From each depth, samples of 100 ml were fixed for
6–12 h with 0.2 mm filtered formaldehyde (2% final
concentration) at 4 1C. From these, volumes of 20–
40 ml (profiles) or 4 ml (spiking experiment) were
filtered onto 0.2 mm polycarbonate filters (Nuclepore
track-etched, Whatman, GE Healthcare, Freiburg,
Germany). The filters were dried and stored at
� 20 or � 80 1C until analysis. Catalyzed reporter
deposition–fluorescence in situ hybridization was
performed according to Pernthaler et al. (2002) with
a few modifications. Briefly, the filters were
embedded in 0.1% agarose before digestion with
lysozyme and achromopeptidase at 37 1C for 60 and
15 min, respectively. Hybridization with the horse-
radish peroxidase-labeled Cren679 probe, specifi-
cally targeting thaumarchaeotal subcluster GD2
(Labrenz et al., 2010), was carried out overnight at
35 1C in the presence of 35% formamide, followed
by tyramide signal amplification with Alexa Fluor
488 (Invitrogen, Life Technologies GmbH, Darm-
stadt, Germany). Hybridization and quantification
targeting cells of Sulfurimonas sp. subgroup GD17
was conducted with probe SUL90 and 55%
formamide according to Grote et al. (2007). Dried
filter sections were embedded in Vectashield
mounting medium (Vector Labs, Burlingame,
CA, USA) containing 40,6-diamidin-2-phenylindol.
For enumeration by epifluorescence microscopy,
600–1400 40,6-diamidin-2-phenylindol-stained cells
from randomly selected microscopic fields were
inspected using a Zeiss Axioskop 2 mot plus (Zeiss,
Oberkochen, Germany).

Potential nitrification rates
Incubations with amended 5mmol l�1 15NH4Cl (99%
15N, Cambridge Isotope Laboratories, Tewksbury, MA,
USA) were conducted as described in Holtappels
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Figure 1 Overview of the locations of the three sampled sites in
the Baltic Sea: station 213 at the Bornholm Deep (551 15.0300 N,
0151 59.1400 E), station 271 at the Gotland Deep (571 19.2041 N,
0201 02.9291 E) and station 284 at the Landsort Deep (581 35.0056
N, 0181 14.0344 E).
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et al. (2011) with minor modifications. We consider
the measured nitrification rates as potential rates
because the addition of 15NH4Cl resulted in ammo-
nium concentrations significantly exceeding the
in situ concentrations (Supplementary Table S1).
The details of the procedure are as follows: sample
water was transferred from the CTD into 0.5-l or 1-l
glass bottles with a threefold overflow and then
closed without headspace with polytetrafluoroethy-
lene-taped butyl rubber stoppers. The bottles were
transferred to a cooling room (6–11 1C) where a gas-
tight syringe (Hamilton, Bonaduz, Switzerland) was
used to inject them with 5mmol l�1 of an anoxic
15NH4Cl solution. Before and after tracer amendment,
the total NH4

þ concentration in the samples was
determined in order to calculate the percentage of
15NH4

þ labeling that ranged between 21% and 100%
(Supplementary Table S1). The water was distributed
from the bottle into aliquots of 12 ml in Exetainer
glass vials (Labco Ltd, Lampeter, UK). For this, the
bottle was placed upside down, gently discharging
the sea water by replacement with N2 through a glass
tube into Exetainer vials with threefold overflow one
after another. Then, the Exetainers were immediately
capped without headspace. Incubations took place in
the dark at approximately the in situ temperature.
Two or three vials were removed approximately every
6 h over a period of 30 h from the beginning of the
experiment. Headspace was added to each vial then
they were frozen at � 20 1C.

For mass-spectrometric analysis, the frozen sam-
ples were thawed, and NO3

� in a 4.5-ml aliquot
reduced to NO2

� , adding B0.3 g spongy cadmium per
sample, as described by Jones (1984). After horizontal
shaking overnight, the tubes were centrifuged and
4 ml of the supernatant was transferred into new 6 ml
Exetainer vials. These vials were then closed with
caps and flushed with helium (grade 5.0) for 10 min.
The NO2

� pool was reduced to N2 as described in
Füssel et al. (2011) by adding 50ml of 4% sulfamic
acid and shaking the samples overnight. With only a
small fraction of the bulk NO2

� labeled, 15NO2
� was

converted to 15N14N. The vials were stored upside
down until gas chromatographic isotopic ratio mass
spectrometry analysis was carried out within a few
days. The accumulation of 15N14N was determined by
gas chromatographic isotopic ratio mass spectrometry
analysis (Delta V plus Isotope Ratio MS, Thermo
Finnigan Conflo III, Thermo Fisher Scientific, Wal-
tham, MA, USA) analysis of a 500-ml sample of the
headspace N2. Potential nitrification rates were
derived from the excess in the 29N2/

28N2 ratio,
measured over time during the incubation period,
above the initial ratio and from the percentage of 15N
labeling of ammonia (see Supplementary Information;
Thamdrup and Dalsgaard, 2000).

Sulfide-spiking experiment
At the Gotland Deep site in 2011, water from the
zone with the highest potential nitrification rates

(122 nmol l�1 N per day at a depth of 110 m) was
retrieved and transferred to 0.5-l or 1-l bottles as
described above but, because of limitations in the
sample volume, without overflow. The bottles were
randomly assigned to one of four H2S treatment
groups, generated by adding H2S as spikes from a
stock solution of 188 mmol l� 1 H2S to final concen-
trations of 0 (control), 4.1, 8.3 and 16.6 mmol l�1. To
detect a potential impact of sulfide addition on
nitrification activity after spiking, potential nitrifi-
cation rates were measured as described above, that
is, by subsampling from one bottle of each group
into Exetainer vials at 0, 24 and 48 h after spiking,
such that nitrification rate determinations covered
the intervals 0–24, 24–48 and 48–72 h. The Exetai-
ner incubations were similarly stopped for parallel
vials of the control and each sulfide amendment
four to nine times during the following 24 h in order
to determine potential nitrification rates. In addi-
tion, samples from the bottles and Exetainers were
fixed with ZnCl2 to measure sulfide concentrations
according to Cline (1969).

Dark CO2 fixation
Rates of dark CO2 fixation were determined, slightly
modified, as described in Jost et al. (2010). Sea water
was transferred directly from the CTD bottles into
12 ml Exetainer glass vials with threefold overflow.
The vials were closed without headspace after
which a gas-tight syringe was used to add B1.85
MBq of NaH14CO3 (Hartmann Analytic GmbH,
Braunschweig, Germany) from an anoxic stock
solution. Three parallels plus a killed control, in
which the sample was fixed with formaldehyde (2%
final concentration), were incubated at approxi-
mately the in situ temperature for 24 h; the exact
times were noted. The incubations were stopped by
filtering the contents of the vials onto 0.2 mm
cellulose acetate (Sartorius, Göttingen, Germany) or
polycarbonate (Nuclepore track-etched, Whatman)
filters (25 mm diameter). Before filtration, 50 ml of
the sample was withdrawn to determine the total
radioactivity added to each vial. The filters were
exposed to HCl fumes for 0.5–2 h and then trans-
ferred into 4 ml of LumaSafe scintillation cocktail
(PerkinElmer, Rodgau, Germany). Total- and fil-
ter-14C disintegrations per min were analyzed in a
PerkinElmer Tri-Carb 2800R liquid scintillation
analyzer. CO2 fixation rates were derived (see
Supplementary Information) from the fraction of
14C incorporated in relation to the total activity
added and the background concentration of dis-
solved inorganic carbon ranging between 2003 and
2037 mmol kg�1 (Gotland Deep, July 2011). The
determination of CT was performed by coulometry
using the SOMMA system designed by Johnson
et al. (1993). The system was calibrated with
certified carbon reference material (Dr A Dickson,
University of California, San Diego, La Jolla, CA, USA)
and allowed for a precision/accuracy of approximately
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±2mmol kg�1. Counts of the killed controls were
subtracted before the rates were calculated.

Domain-specific inhibition of archaea and bacteria
Taking advantage of the fundamental differences in
the translation machinery of Archaea and Bacteria,
we chose inhibitors targeting archaeal or bacterial
protein biosynthesis and tested them before in situ
application. To do so, the chemoautotrophic activity
(dark CO2 fixation rates) of a thaumarchaeotal AOA
enrichment culture was used to determine the
extent of inhibition. This culture, originally
obtained from the redox gradient of the Landsort
Deep and enriched over a period of 1.5 years in the
presence of streptomycin and NH4Cl, contained
89–97% archaea (according to catalyzed reporter
deposition–fluorescence in situ hybridization (probe
Arc915); C Berg et al., unpublished data). The
archaeal inhibitors, N1-guanyl-1,7-diaminoheptane
(GC7; Biosearch Technologies, CA, USA) (Jansson
et al., 2000) and diphtheria toxin (Sigma-Aldrich,
Germany) (Mu�mann et al., 2011; Yokokawa et al.,
2012), at concentrations of 0.25–2.0 mmol l�1

and 0.5–10 mg ml�1, respectively, and the bacterial
inhibitor erythromycin (VWR, Germany), at concen-
trations between 10 and 50 mg ml� 1 (Yokokawa et al.,
2012) were assessed. GC7 shuts down biosynthesis
via cell cycle arrest and specifically targets
archaea (Jansson et al., 2000), including Ca. N.
maritimus SCM1, but it has no effect on AOB
(Löscher et al., 2012).

Whereas diphtheria toxin caused no inhibition,
GC7, at a concentration of 1 mmol l� 1, significantly
reduced dark CO2 fixation activity by 81% (one-way

analysis of variance Po0.0004; Figure 2) within 24 h
and was therefore chosen as the archaeal inhibitor
for environmental samples. The GC7 solvent (acetic
acid) was likewise tested and had no significant
inhibitory effect on AOA (Supplementary Figure S1).
For the environmental samples, GC7 dissolved
in 5 mmol l� 1 acetic acid to a concentration of
100 mmol l� 1 was prepared as a stock solution
and stored at � 20 1C until use. For inhibitor
experiments, sample water from the Gotland Deep
and the Landsort Deep was amended with 15NH4Cl
and then distributed into 6 or 12 ml vials as
described above. Immediately afterwards, GC7 was
injected (1 mmol l�1 final concentration) into the
vials that were then incubated alongside the
controls (without inhibitor) for 6, 12 or 24 h. Activity
was arrested by freezing the samples at � 20 1C.

Statistical analyses
All statistical analyses were performed with the
PAST software package v 3.0 (Hammer et al., 2001).
Correlation between potential nitrification rates and
the abundance of Thaumarchaeota was tested via
linear bivariate regression of measured potential
nitrification rates and thaumarchaeotal cell counts.
Domain-specific inhibition of CO2 fixation activity
in an AOA enrichment culture with inhibitors at
several concentrations was compared using one-way
analysis of variance followed by Tukey’s pairwise
comparison. A generalized linear model was used to
test for significant difference of regression slopes from
zero. Difference in regression slopes of potential
nitrification rates with and without GC7 or erythromy-
cin was tested using one-way analysis of covariance.

Results

Redox zone structure in the Gotland Deep, Landsort
Deep and Bornholm Deep
At the Gotland Deep in July 2011, the water column
was oxygenated in the upper 119 m, including a
hypoxic zone with low oxygen concentrations
(o10 mmol l� 1) between 109 and 119 m (Figure 3).
An overlap of oxygen with small amounts of sulfide
was detected between 114 and 119 m. Below this
depth, sulfide concentrations increased. The sam-
pling depths, which spanned from 74 to 119 m,
covered a broad peak of nitrate, with a maximum
concentration of 8.4 mmol l�1 at 104 m. Nitrite
ranged between 0.1 and 0.4 mmol l�1. Ammonium
was detectable in the hypoxic zone at concentra-
tions of 0.1–0.2 mmol l� 1 and increased progres-
sively with depth. Total prokaryotic cell numbers
ranged between 3.2 and 7.5� 105 cells per ml,
with a peak in the hypoxic zone at 110 m. The
Thaumarchaeota subcluster GD2 accounted for
2–24% of total cell numbers, reaching a maximal
abundance of 1.8� 105 cells per ml at 110 m, that is,
within the hypoxic zone.
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Figure 2 Evaluation of different concentrations of GC7 and
erythromycin (EM) on CO2 fixation rates in a thaumarchaeotal
enrichment culture. Measurements were conducted in triplicate
subsamples taken from the culture; error bars show s.d.
*Significant (Po0.0004) difference of the treatment compared
with the control (one-way analysis of variance (ANOVA) and
Tukey’s pairwise comparison).
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At the Landsort Deep in June 2012, the hypoxic
zone was sampled within a gradient of decreasing
nitrate, also covering nitrite maximum (Figure 4).
Ammonium concentrations increased pronouncedly,
from 0.1 to 1.4mmol l� 1, whereas oxygen concentra-
tions decreased from 22 to 2.7mmol l� 1. Sulfide did
not exceed 0.1mmol l� 1. At the Gotland Deep in June
2012, the hypoxic zone was sampled at depths
between 70 and 104 m (Figure 5) above the sulfidic/
anoxic zone that was not covered by the sampling
depths. The physicochemical profile deviated from
the typical stratification by showing a narrow band of
increased H2S and NH4

þ concentrations at 94 m.
Above this intrusion, sharp peaks in nitrate and nitrite
were located at depths of 85 and 89 m, respectively.

The Bornholm Deep in 2011 was characterized by
a declining oxygen gradient, with concentrations
as low as o10 mmol l�1 above the sea floor
(Supplementary Table S1), coinciding with NH4

þ

concentrations of 13.6 (November 2011) and
1.8 mmol l�1 (July 2011). The highest potential
nitrification rates were detected in November 2011,
when Thaumarchaeota were highly abundant
(4.3� 105 cells per ml). Also at this site, hydrogen
sulfide was detected above the sea floor at a
concentration of 23.4 mmol l�1.

Dark CO2 fixation, as a measure of chemoauto-
trophic activity in the nonsulfidic, hypoxic zones of
the Bornholm Deep, Gotland Deep and Landsort
Deep (Figures 3–4, Supplementary Table S1),
achieved rates of up to 28, 19, and 58 nmol l�1 per
day, respectively, coinciding with high potential

nitrification rates. This level of carbon fixation was
at least 20-fold lower than the rates in the upper
sulfidic waters of the Gotland Deep that were as high
as 380 nmol l�1 per day (Figure 3).

Potential nitrification rates in Baltic Sea redox zones
Potential nitrification, as evidenced from the
increase in 15N label in the NO2

� and NO3
� pools

with time after 15NH4
þ addition, was detectable on

all sampling occasions at varying rates and within
depth intervals of several meters. Maximal potential
nitrification rates in the redox zones of the Gotland
Deep (Figure 3) and Landsort Deep (Figure 4a)
in 2011 and 2012 were in the range of
133–351 nmol l�1 per day (Supplementary Table S1).
In the Bornholm Deep, maximum rates of
189–884 nmol l�1 per day were measured within a
narrow zone above the sea floor at 78 m depth
(Supplementary Table S1). In both the Gotland Deep
and Landsort Deep, the zone of maximal nitrifica-
tion was generally located below the nitrate peak
and at oxygen concentrations o10mmol l� 1,
coinciding with the nitrite peak (Figures 3 and 4).
Increasing potential rates of nitrification were
accompanied by decreasing oxygen concentrations
and a high abundance of GD2 Thaumarchaeota cells
(Supplementary Figures S2 and S3). For the com-
bined data from the Gotland Deep, Landsort Deep
and Bornholm Deep, the relationship between
potential nitrification rates and thaumarchaeotal
abundance varied considerably but the correlation
was positive and significant (Po0.002, r2¼ 0.20,
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n¼ 46) (Supplementary Figure S3). At Gotland
Deep, July 2011, anammox activity was not detected
in incubations from selected depths (114–124 m) as
evidenced from the absence of significant 29N2

accumulation over time (Supplementary Figure S4).
A potential nitrification rate of 62 nmol l� 1 per

day was also measured in samples taken from a
moderately sulfidic depth (3 mmol l� 1 H2S, 124 m), at
the Gotland Deep in July 2011 (Figure 3). In the
hypoxic zone of the Gotland Deep in June 2012
(Figure 5a), potential nitrification rates of
0.2–4.3 nmol l�1 per day were measured in depths
from 82 to 87 m, close to a narrow band of anoxic
water enriched in H2S and NH4

þ at 94 m.

Impact of domain-specific inhibitors on nitrification
activity
In samples from two depths of the Landsort Deep
(79.6 and 81 m) collected in June 2012 and treated
with the archaeal inhibitor GC7, the potential
nitrification rate was significantly reduced (one-

way analysis of covariance, Po10� 5) compared with
the untreated controls (Figure 4b). Nitrification was
most strongly inhibited within the first 6 h (83–86%)
at both depths, with the effect tailing off with longer
incubation times. In contrast, nitrification activity in
samples treated with the bacterial inhibitor erythro-
mycin either did not decrease or increased slightly
(one-way analysis of covariance, Po0.2 and
Po0.02, respectively) relative to the untreated
controls. In water from the Gotland Deep in June
2012, when a sulfidic intrusion was observed and
potential nitrification rates were substantially lower
overall, the addition of GC7 resulted in the complete
elimination of nitrification (Figure 5b) as evidenced
from negative regression slopes of NO2

� þNO3
�

production significantly different from the
untreated controls (one-way analysis of covariance,
82.1 m: Po0.4; 84.5 m: Po10�4; 87.0 m: Po0.05).

Sulfide-spiking experiment
Sulfide was added to water taken from the
nitrification maximum (110 m depth) of the
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Gotland Deep in July 2011 (Figure 3) to examine
its effect on nitrification. Between sulfide
addition and the distribution of samples into the
Exetainer vials, sulfide losses were minimal
(Supplementary Figure S5); nonetheless, over time
sulfide concentrations decreased in both the
bottles and the Exetainers (Supplementary Figure
S5A vs B). Nitrification was significantly inhibited
(one-way analysis of variance, Po10� 5) by the
addition of 4.1 mmol l�1 H2S (Table 1). A higher
concentration of H2S (8.3 mmol l� 1 H2S) further
decreased potential nitrification rates compared
with the untreated control, and 16.6 mmol l� 1 H2S
completely inactivated nitrification activity.
Cell numbers of Sulfurimonas sp. subgroup
GD17 increased by up to 25-fold during the
incubations, especially in those with H2S addition
(Supplementary Figure S6), where CO2 fixation rates
were also higher than in the untreated control
(Supplementary Figure S7).

Discussion

Our study shows that Thaumarchaeota are the main
catalyzers of ammonia oxidation in Baltic Sea redox
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Figure 5 (a) Physicochemical profile of the Gotland Deep hypoxic zone in June 2012 during a sulfidic intrusion. Error bars show the s.e.
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inhibitor GC7. (b) Time course of NO2
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Table 1 Effect of H2S addition on nitrification activity
(nmol l� 1 per day) in water taken from the Gotland Deep
nitrification maximum

Spikes of H2S (mmol l�1)

0 (control) 4.1 8.3 16.6

0–24 h 132 128 2 (1.5%) 15 (11.5%) 0 0 0 0
24–48 h 190 115 54 (35.4%) 13 (8.5%) 0 0 0 0
48–72 h 246 174 28 (13.3%) 24 (11.4%) 8 (3.8%) 0 0 0

Values in parentheses are the percentage of activity remaining after
H2S spiking relative to mean nitrification in the untreated control
samples. Results from each of the duplicate incubations are shown.
Nitrification was determined within 0–24, 24–48 and 48–72 h after the
addition of sulfide.
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gradients as revealed by domain-specific inhibition
experiments. This habitat, harboring one dominat-
ing group of Thaumarchaeota (Labrenz et al., 2010),
is periodically exposed to sulfidic intrusions from
subjacent waters into the nitrification zone. Addres-
sing this ecological feature via a sulfide-spiking
experiment, we found that nitrification persisted
after sulfide pulses of in situ-like concentrations,
suggesting a tolerance against sulfide by AOA
assemblages in the Baltic Deeps.

Nitrification activity, CO2 fixation and the distribution
of Thaumarchaeota
In hypoxic areas of the Baltic deep basins, nitrifica-
tion was detected at varying rates during several
seasons, covering more than 1 year. Low-oxygen
waters above the onset of sulfide consistently
hosted maximal thaumarchaeotal abundances
(Supplementary Figure S2), showing that AOA are
a stable component of Baltic Sea redox gradients as
presumed by Labrenz et al. (2010). The highest
potential nitrification rates (maximum 884 nmol l�1

per day) along with abundant Thaumarchaeota
(4.3� 105 cells per ml) were detected at Bornholm
Deep in November 2011. This site showed an
ammonium gradient with concentrations higher
than those detected in the other deeps. In general,
our data confirm the temporal and spatial variability
in potential nitrification rates reported by Hietanen
et al. (2012) but also underline the persistence of
nitrification in the Baltic Sea over time. Anaerobic
oxidation of ammonium (anammox), however, was
not detected in selected depths of the Gotland Deep
(Supplementary Figure S4), and this is in accor-
dance to detectable anammox activity only after the
inflow of oxygen-rich water into the Baltic Sea
(Hannig et al., 2007). Thus, ammonia oxidation
occurred probably mostly aerobically in Baltic Sea
redox gradients.

The abundance of marine group I Thaumarchaeota
in the Black Sea hypoxic zone is one order of
magnitude lower, at 4.3� 104 cells per ml (Lam
et al., 2007), than in the Baltic Sea, concurrent with
the lower nitrification rates of 5–50 nmol l� 1 per day
(Ward and Kilpatrick, 1991) although potential
nitrification rates—as in our study—may be higher
than the actual in situ nitrification rates (Horak
et al., 2013). Similarly, in the Cariaco Basin,
Thaumarchaeota comprise maximally 9% (Cren537
probe) (Lin et al., 2006) to 13% (Cren679 probe,
maximum 1.5� 104 cells per ml; Gordon Taylor,
personal communication) of the total cell counts but
also prevail around the redox transition zone. These
comparisons show that pelagic Baltic redox gradi-
ents offer particularly favorable conditions for both
high nitrification activities and high AOA abun-
dances. Apparently, AOA are the best-adapted
ammonia oxidizers to the predominant sulfidic
conditions in this system, as anammox occurs only
during sulfide-free periods (Hannig et al., 2007) and

AOB may be more susceptible to sulfide (Joye and
Hollibaugh, 1995), making AOA the main utilizers
of ammonium. In contrast, in the Black Sea,
anammox bacteria obtain nitrite from aerobic ammo-
nia oxidizers and compete with them for ammonium
(Lam et al., 2007), whereas in Baltic redox gradients
ammonium may exclusively be used by AOA to
produce the nitrite that subsequently fuels auto-
trophic denitrification. The dominance and high
cell numbers of AOA in the Baltic Sea basins might
be caused by the close proximity of the nitrification
zone to sulfidic waters.

The energy provided by aerobic ammonia oxida-
tion serves to carry out CO2 fixation for growth in
autotrophic Thaumarchaeota. In our measurements,
potential nitrification rates usually were one order
of magnitude higher than the corresponding CO2

fixation activities. This is in line with the 10:1
ratio of N oxidized per C incorporated reported
for nitrifiers (Tijhuis et al., 1993; Middelburg, 2011)
and suggests that CO2 fixation in Baltic Sea hypoxic
zones is coupled mainly to nitrification by AOA.
In general, the rates of CO2 dark fixation in
hypoxic waters were notably lower than those in
the upper sulfidic zone, a difference attributed to
the activity in the latter of high numbers of
chemoautotrophic denitrifiers of the Sulfurimonas
sp. subgroup GD17 (Grote et al., 2007, 2008; Jost
et al., 2008).

Thaumarchaeota contribute substantially
to nitrification
Our archaea-specific inhibition experiments provide
evidence of the major contributions of archaea to
nitrification. The Landsort Deep exhibited high
potential nitrification rates that were inhibited up
to 83–86% by GC7 (Figure 4); at the Gotland Deep,
nitrification rates were comparably low and com-
pletely inhibited by the archaea-specific inhibitor
(Figure 5). The different inhibition levels at the two
sites may be because of their different hydrological
histories: Landsort Deep showed a stable stratifica-
tion, whereas at Gotland Deep, a sulfidic intrusion
(Figure 5) may have impaired activities of ammonia
oxidizers before sampling, resulting in low potential
nitrification rates, and cells being more susceptible
to the biosynthesis inhibitor GC7. In addition, the
tailing off of inhibition by GC7 at Landsort Deep may
relate to the degradation of the inhibitor by amine
oxidases (Park et al., 1994), such that inhibition was
reversible (Jansson et al., 2000), or by the recovery of
incompletely inhibited cells.

Taken together, inhibition of archaeal nitrification
by GC7 and the correlation between thaumarchaeotal
abundance and nitrification activity in Baltic Sea
depth profiles provide complementary evidence that
archaea are the main mediators of ammonium
oxidation in these waters. Given the low diversity
of the archaeal community (Labrenz et al., 2010), the
determined ammonia oxidation activities likely rely
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on only one well-adapted dominant subcluster,
related to Ca. N. maritimus.

Impact of sulfide on ammonia-oxidizing
Thaumarchaeota
Episodic sulfidic plumes have previously been
recognized to occur in oxygen minimum zones, for
example, off Peru (Schunck et al., 2013) and the
Namibian Shelf (Lavik et al., 2009). In Baltic Sea
redox gradients, periodic intrusions of different
water layers result in the juxtapositioning of
sulfidic, anoxic and low-oxygen waters that undergo
temporal changes (Hannig et al., 2007; Bruckner
et al., 2013). The sulfidic part of the redox gradient
does not permit oxygen-driven ammonia oxidation
and, correspondingly, amoA expression is minimal
here (Labrenz et al., 2010). Instead, at these depths
Thaumarchaeota may reside inactive. Notably, the
detected nitrification potential, likely because of
small oxygen additions during sampling (De
Brabandere et al., 2012), of 62 nmol l�1 per day at a
sulfidic depth (Figure 3) suggests that AOA persist
during sulfidic conditions and quickly become
active as soon as oxygen is again available.
Hietanen et al. (2012) pointed out that a nitrification
potential might extend into deeper layers, even into
the sulfidic waters. Physiological adaptations, for
example, in cell membrane composition, may enable
Thaumarchaeota to tolerate the sulfide pulses
encountered in the nitrification zone or sulfide
accumulation in these waters. This would enable
sulfide-tolerant Thaumarchaeota to also persist in
sulfidic waters and carry out ammonia oxidation
after ventilation of sulfidic deep waters caused by
major inflow events, thereby sustaining an ecologi-
cally important N cycle function under dynamic
conditions.

In line with that, our sulfide-spiking experiment
showed that nitrification activities in Baltic Sea
redox gradients, dominated by Thaumarchaeota, are
not completely terminated at in situ-like concentra-
tions of hydrogen sulfide (Table 1), consistent with
the observation from water-column profiles that
nitrification is still active at low sulfide concentra-
tions (o4mmol l�1) (Supplementary Table S1 and
Hietanen et al., 2012). Recovery of nitrification after
spiking with time was indicated (Table 1) but longer
time intervals between sulfide spike and nitrifica-
tion measurement may show a significant recovery.
Added sulfide persisted up to 24 h (Supplementary
Figure S5), impairing microbial activities directly
at addition, and then declined during the incuba-
tion, most likely as a result of biotic oxidation
by denitrifiers (Grote et al., 2008) rather than
chemical. Sulfide-oxidizing chemolithoautotrophic
denitrifiers of the Sulfurimonas sp. subgroup
GD17 comprise stable (Grote et al., 2007; Labrenz
et al., 2007) and active (Grote et al., 2008; Glaubitz
et al., 2009) populations in Baltic Sea redox
gradients and were stimulated during incubation

as indicated by their strongly increased cell num-
bers (Supplementary Figure S6) and elevated CO2

fixation activities (Supplementary Figure S7). Thus,
potential consumption of 15NO2

� or 15NO3
� produced

by nitrification may even have led to underesti-
mated or undetectable nitrification at higher sulfide
concentrations. Presuming stoichiometry of chemo-
lithoautotrophic denitrification by Sulfurimonas
gotlandica str. GD1 as calculated by Bruckner et al.
(2013), added sulfide would have been sufficient to
denitrify the NO3

� pool. Given the impairment of
sulfide pulses on nitrification activity, the supply of
oxidized nitrogen in redox gradients by nitrification
is also indirectly suppressed by intermittent sulfidic
water masses being toxic to nitrifiers.

On the ecosystem level, our findings emphasize
the effect of sulfide on nitrifiers in regulating
nitrogen budgets in the Baltic Sea and they are in
line with those of Joye and Hollibaugh (1995), who
showed that the inhibition of nitrification in sedi-
ments by sulfide limits nitrogen loss processes.
Different histories, that is, lateral intrusions vs
small-scale vertical mixing with sulfidic waters,
may therefore explain the varying nitrification rates
reported in this and previous (Hietanen et al., 2012)
studies. For example, at the Bornholm Deep, sulfidic
conditions occur less frequently such that nitrifica-
tion is more stable, proceeding at higher rates and
fostering high AOA abundance. Moreover, the
portion of Thaumarchaeota residing in sulfidic
waters provides a high potential for nitrification
upon oxygenation and may therefore represent a
stable and important component within the N cycle
in the Baltic Sea, particularly in light of the dynamic
perturbations and lateral intrusions that character-
ize these waters.

Future studies may investigate how nitrification is
potentially initiated in sulfidic water after oxygen
spikes or ventilation. Sulfidic pulses may act as a
‘switch’ by pausing nitrification and stimulating
denitrification—after reoxygenation, nitrification
may quickly restart again. Such process fluctuations
and the coupling between nitrification and denitri-
fication could be a major force that drives N removal
in the Baltic and may represent an intriguing
mechanism involved in ecosystem functioning.
It is furthermore worthwhile to study whether
Thaumarchaeota in other oxygen-depleted systems
respond similarly to sulfidic mixing. The role of
Thaumarchaeota in sulfidic habitats is not exten-
sively clarified at present and asks for elucidation of
the physiological mechanisms that allow for toler-
ance of these conditions.

Conclusions

Nitrification in Baltic Sea redox gradients
was detected as a persistent process together
with the presence of Thaumarchaeota. The
correlation between potential nitrification rates
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and thaumarchaeotal abundance and the results of
our inhibition experiments support the conclusion
that AOA are the main drivers of this process. In a
sulfide-spiking experiment with environmental
samples, nitrification proved to be robust against
lower in situ-like sulfide concentrations, as would
occur upon mixing with sulfidic waters. Our study
emphasizes the role of Thaumarchaeota for N
cycling in the Baltic Sea and shows that the supply
of oxidized N compounds from aerobic ammonium
oxidation is mainly dependent on Thaumarchaeota
that, in the Baltic Sea, are represented by one
abundant phylogenetic group. Our results suggest
that the dominance and high abundance of AOA in
this ecosystem result from a tolerance of the cells to
periodic exposures to sulfidic waters and the close
proximity of the nitrification zone to sulfidic
water layers. It appears worthwhile to examine
whether this robustness of archaeal nitrification
against sulfide can also be detected among other
globally distributed AOA or whether it is an
exclusive feature of the Baltic Sea thaumarchaeotal
assemblages.
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