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Microbial dormancy improves development
and experimental validation of ecosystem model
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1Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA; 2Climate Change
Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA and 3Biosciences Division, Oak Ridge
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Climate feedbacks from soils can result from environmental change followed by response of plant
and microbial communities, and/or associated changes in nutrient cycling. Explicit consideration of
microbial life-history traits and functions may be necessary to predict climate feedbacks owing to
changes in the physiology and community composition of microbes and their associated effect on
carbon cycling. Here we developed the microbial enzyme-mediated decomposition (MEND) model by
incorporating microbial dormancy and the ability to track multiple isotopes of carbon. We tested two
versions of MEND, that is, MEND with dormancy (MEND) and MEND without dormancy (MEND_wod),
against long-term (270 days) carbon decomposition data from laboratory incubations of four soils
with isotopically labeled substrates. MEND_wod adequately fitted multiple observations (total
C–CO2 and 14C–CO2 respiration, and dissolved organic carbon), but at the cost of significantly
underestimating the total microbial biomass. MEND improved estimates of microbial biomass by
20–71% over MEND_wod. We also quantified uncertainties in parameters and model simulations
using the Critical Objective Function Index method, which is based on a global stochastic
optimization algorithm, as well as model complexity and observational data availability. Together
our model extrapolations of the incubation study show that long-term soil incubations with
experimental data for multiple carbon pools are conducive to estimate both decomposition
and microbial parameters. These efforts should provide essential support to future field- and global-
scale simulations, and enable more confident predictions of feedbacks between environmental
change and carbon cycling.
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Introduction

Climate change is expected to alter carbon cycle
feedbacks from soils through shifts in the composi-
tion and carbon accrual rates of plants and microbes,
as well as the magnitude and sign of nutrient fluxes
(Manzoni et al., 2008; Melillo et al., 2011; Zhou
et al., 2012; Weedon et al., 2013). However, these
feedbacks are not yet predictable because we lack
both mechanistic understanding and appropriate
model structure. Theoretical analyses have been
developed to account for the roles of microbes and/
or exoenzymes in decomposition of litter and soil
organic matter (SOM; for example, Schimel and
Weintraub, 2003; Lawrence et al., 2009; Allison
et al., 2010; Davidson et al., 2012; Moorhead et al.,

2012; Wang et al., 2013). Observations suggest that a
critical parameter, the microbial carbon use effi-
ciency (CUE) or microbial growth efficiency, is
likely to decrease as a function of warming
(Devevre and Horwath, 2000; Manzoni et al., 2008;
Steinweg et al., 2008), which may result in lower
microbial biomass, lower enzyme production and
reduced heterotrophic respiration rates (Bradford
et al., 2008; Hartley and Ineson, 2008; Tucker et al.,
2013; Wang et al., 2013). These changes can occur
either through physiological adjustments in indivi-
dual microbial species/populations, for example,
microbial CUE, or through shifts in the microbial
community composition that change overall soil
community CUE, or complex combinations thereof
(Manzoni et al., 2012; Zhou et al., 2012). When the
response of CUE to temperature change is not
considered in models, soil carbon losses become
magnified over time with warming (Frey et al., 2013;
Wieder et al., 2013). When temperature-modified
CUE is included, acclimation of the community to
warmer temperatures moderates soil carbon loss
(Sierra et al., 2010; Wieder et al., 2013), which is
consistent with some experimental observations
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(Frey et al., 2008; Zhou et al., 2012). The ability to
understand the activities of microbes in response to
climate change and perturbations appears to be key
to predicting carbon cycle–climate feedbacks.

Microbially controlled SOM decomposition is
increasingly represented in ecosystem models
(Treseder et al., 2012). Other vital common evolu-
tionary traits, however, such as microbial dormancy
and community shifts are not yet represented (Jones
and Lennon, 2010; Weedon et al., 2013). When
environmental conditions are unfavorable for
growth, microbes may enter a state of low metabolic
activity until conditions improve to allow replica-
tion (Stolpovsky et al., 2011; Wang et al., 2014b).
Failure to consider dormancy in microbially con-
trolled decomposition could result in underestimate
of microbial biomass. Alternatively, measurements
of microbial biomass such as chloroform fumigation
and quantitative polymerase chain reaction cannot
readily inform microbial models unless the extent of
dormancy is considered (Wang et al., 2014b).
Although soil respiration data are the most available
and reliable observations for calibration and valida-
tion of models from point to global scale (Raich and
Schlesinger, 1992; Hanson et al., 2000), estimates of
microbial biomass, and even stoichiometry, will
ultimately be needed to parameterize microbial
ecosystem models (Sinsabaugh et al., 2013; Xu
et al., 2013).

Microbial SOM decomposition models contain
two major categories of parameters: decomposition
parameters and microbial parameters. Microbial
parameters are related to microbial growth and
maintenance and include maximum specific growth
and maintenance rates, true growth yield (YG) and
the half-saturation constant for microbial uptake
(Wang et al., 2014b). Our previous work has
modified the microbial parameters using the phy-
siological model to account for the extent of
dormant versus active microbes (Wang et al.,
2014b). Short-term (that is, several days) substrate-
induced respiration and substrate-induced growth
response experiments can be used to estimate many
microbial parameters (Van de Werf and Verstraete,
1987; Colores et al., 1996; Blagodatskaya and
Kuzyakov, 2013). However, the short-term nature
of these experiments means that decomposition
parameters for many slowly decomposing substrates
cannot be estimated from them (Wang et al., 2014b).
Decomposition parameters refer to the kinetic para-
meters directly controlling decomposition rates, for
example, rate constants in first-order kinetic models
(Lawrence et al., 2009), enzyme kinetics (maximum
specific enzyme activity and corresponding half-
saturation constant), and enzyme production and
turnover rates (Schimel and Weintraub, 2003; Tang
and Riley, 2013; Wang et al., 2013).

In this study, we incorporated the dormant and
active microbial physiological model developed in
Wang et al. (2014b) into the microbial enzyme-
mediated decomposition (MEND) model that

represents the microbial enzyme-driven biological
processes as well as the mineral-associated physi-
cochemical processes (Wang et al., 2013). Carbon
isotopes were also represented in MEND to distin-
guish fluxes of native SOM from added 14C-labeled
substrates, thus providing additional data for model
parameterization (Hanson et al., 2005; Thiet et al.,
2006; Parton et al., 2010). We tested two versions of
MEND, that is, MEND with dormancy (hereinafter
referred to as MEND) and MEND without dormancy
(hereinafter referred to as MEND_wod), against C
decomposition data collected from long-term labora-
tory incubations of soils with isotopically labeled
substrate additions. We hypothesized that (i) MEND
would be superior to MEND_wod to more accurately
estimate microbial and SOM dynamics; (ii) long-
term (B1 year) soil incubation experiments with
observations of diverse response variables (for
example, respiration, microbial biomass, dissolved
organic carbon (DOC) and C isotopes) are useful for
estimating decomposition parameters in addition to
microbial parameters.

Materials and methods

MEND model accounting for microbial dormancy
We divided the microbial biomass pool in original
MEND (MEND_wod) into two fractions, that is, active
and dormant microbial biomass (BA and BD; Figure 1
for model diagram). The microbial physiology com-
ponent was incorporated into MEND to account for
the transition of microbes between the two physio-
logical states (active and dormant; Wang et al.,
2014b). The particulate organic carbon (POC) pool
may be divided into several sub-pools representing
different substrate categories. For example, as per our
laboratory experiments with addition of glucose and
starch, we divided the POC pool into two compo-
nents: POC1 (denoted by P1) containing lignocellu-
lose-like compounds and POC2 (denoted by P2)
including starch-like compounds. P1 is degraded by
ligninases and cellulases (Wang et al., 2012; Li et al.,
2013), and P2 is broken down by amylases (Caldwell,
2005; Swarbreck et al., 2011). The DOC (D) pool
contains compounds of varying complexity that can
be bound to active layer of mineral-associated organic
carbon (MOC, M) pool, that is, the Q pool in Figure 1
(Mayes et al., 2012; Wang et al., 2013). In MEND, the
DOC (D) pool receives inputs from decomposition of
POC (P) and MOC (M), desorption of C from Q, and
dead enzymes and microbes (microbial biomass
carbon, MBC).

The dynamics of each soil C pool in MEND is
described by Supplementary Equations S1–S12 in
the Supplementary Information. The transformation
fluxes (Figure 1) are elucidated by Supplementary
Equations S13–S26 in Supplementary Table S1 in
the Supplementary Information. Model parameters
and their a priori value ranges adapted from Wang
et al. (2013) are summarized in Table 1.

MEND model with dormancy
G Wang et al

227

The ISME Journal



There are two additional parameters for model
initialization: initial active fraction (r0) and initial
lignocellulose fraction (LCF0; Table 1). r0 is the
initial fraction of active microbes within total
living microbes (Wang et al., 2014b). LCF0 is
defined as the initial ratio of particulate
lignocellulose–carbon (P1) concentration to the
total POC concentration. We define an index a¼
mR/(VD þmR), where VD and mR denote maximum
specific growth and maintenance rates, respec-
tively, for active microbes. Either mR or a is
included in model calibration, as one of them can
be derived from the other. Similarly, the binding
affinity (KBA) and desorption rate (Kdes) are cali-
brated, and the specific adsorption rate (Kads ¼
Kdes �KBA) can be computed from them. In MEND,
the ratio of dormant to active maintenance rate is
set to a constant (that is, b¼ 0.001), as the model is
not sensitive to b during the experimental period
(for example, within 1 year; Wang et al., 2014b).
Compared with MEND_wod, there is one more
parameter in MEND—the initial active fraction (r0).
In summary, there are 20 parameters for calibrating
MEND and 19 for MEND_wod.

Discriminating isotopes in the MEND model
The MEND and MEND_wod models were also
modified to explicitly account for different C
isotopes (for example, 12C, 13C and 14C), that is, the
soil C pools and fluxes represented in Figure 1 were

duplicated to consider different C isotopes. General
assumptions for the isotopically explicit MEND
models include: (i) isotopic fractionation in SOM
transformation, microbial processing and respira-
tion is negligible (Sala et al., 2000; Currie, 2007); (ii)
each pool is mixed well and isotopically homo-
geneous, and influxes to a pool can alter its isotopic
ratio, whereas outfluxes from a pool cannot (Currie,
2007). In this study, two C isotopes (14C and 12C)
were included, and the flux of 14C or 12C is assumed
to depend on the isotopic ratio (14C/12C) in the
upstream pool.

F14C ¼ Rup

Rup þ 1
� FC ð1aÞ

F12C ¼ 1

Rup þ 1
� FC ð1bÞ

where F14C and F12C represent the 14C and 12C flux,
respectively; FC is the total C flux; and Rup¼
(14C/12C)up denotes the isotopic ratio (14C/12C) in
the upstream pool.

Model parameter optimization
We used the SCEUA (Shuffled Complex Evolution at
University of Arizona) algorithm (Duan et al., 1992;
Wang et al., 2009) to determine model parameters.
We implemented SCEUA with 30 different random
seeds (Duan et al., 1992). The parameter optimiza-
tion is to minimize the total objective function (J)

Figure 1 Diagram of the microbial ezyme-mediated decomposition (MEND) model. Soil organic carbon pools include: particulate
organic carbon (POC) (for example, lignocellulose-like compounds and starch-like compounds, denoted by P1 and P2, respectively),
mineral-associated organic carbon (MOC, denoted by M), dissolved organic carbon (DOC, D), adsorbed phase of DOC (QOC, Q), active
microbial biomass (BA), dormant microbial biomass (BD), POC-degraded enzymes (for example, EP1 and EP2 that break down P1 and P2,
respectively), and MOC-degraded enzymes (EM). IP1, IP2 and ID are external inputs to the pools of P1, P2, and D, respectively.
Transformation fluxes include: (1) POC1 (P1) decomposition (denoted by the flux F1 in equations in the Supplementary Information); (2)
POC2 (P2) decomposition (F2); (3) MOC (M) decomposition (F3); (4, 5) adsorption (F4) and desorption (F5) between DOC (D) and QOC (Q);
(6) DOC (D) uptake by BA (F6); (7,8) dormancy (F7) and reactivation (F8) between BA and BD; (9, 10) BA growth respiration (F9) and
maintenance respiration (F10); (11) BD maintenance respiration (F11); (12) BA mortality (F12); (13) synthesis of EP1 (F13,EP1), EP2 (F13,EP2),
and EM (F13,EM); and (14) turnover of enzymes (F14,EP1, F14,EP2, and F14,EM).
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that is computed as the weighted average of multiple
single-objectives (Wang and Chen, 2012)

J ¼
Xm
i¼1

wi � Ji ð2aÞ

Xm
i¼1

wi ¼ 1 with wi 2 ½0; 1� ð2bÞ

where m denotes the number of objectives and wi is
the weighting factor for the ith (i¼ 1, 2,y, m)
objective (Ji).

In this study, the total objective function (J)
consists of four single-objectives (that is, m¼ 4) in
terms of four response variables: J1 for total cumu-
lative respiration (denoted by C–CO2), J2 for cumu-
lative respired 14C normalized by added 14C
(denoted by %14C–CO2), J3 for MBC and J4 for
DOC. The computation of each single-objective
includes the data from two experiments (with
addition of glucose and starch). For example, we
merged the respiration data with glucose addition
(number of data points n¼ 14) and the respiration
data from starch (n¼ 14) into one data set (n¼ 28)
for computing J1.

The objectives J1 (for C–CO2) and J2 (for %14C–
CO2) were computed as (1�R2), where R2 denotes
the coefficient of determination (Devore, 2008), and
higher R2-values (R2 p1) indicate better model
performance; while the objectives J3 and J4 (for
MBC and DOC, respectively) were calculated by the
mean absolute relative error (MARE) and lower
MARE values (MARE X0) are preferred (Dawson
et al., 2007). We used a different formulation for J1

and J2 from J3 and J4 because we had more
observations for C–CO2 and %14C–CO2 (n¼ 28 with
glucose and starch for each of them) than for MBC
and DOC (n¼ 8 for each of them). R2 is not suitable
for assessing the goodness-of-fit regarding a small
amount of data. MARE represents the averaged
deviations of predictions (Ysim) from their observa-
tions (Yobs):

MARE ¼ 1

n

Xn
i¼1

YsimðiÞ�YobsðiÞ
YobsðiÞ

����
���� ð3Þ

Uncertainty and statistical analyses
The uncertainties in parameters and model predic-
tions were quantified by the Critical Objective
Function Index (COFI) method, which is much
simpler than the commonly used method based on
Bayesian inference and Markov Chain Monte Carlo
(Wang and Chen, 2013). The COFI method is based
on a global stochastic optimization technique (for
example, SCEUA in this study). It also accounts for
model complexity (represented by the number of
model parameters) and observational data availabil-
ity (represented by the number of observations).

The procedure of COFI includes: (i) implementing
the SCEUA algorithm with multiple different ran-
dom seeds to search ‘relatively optimal’ parameter
sets that minimizing the objective function (J in
Equation (2)); (ii) collecting the optimal parameter
set generated in each loop of the SCEUA searching
process to form a feasible parameter space; (iii)
determining the COFI (Jcr; see Equation (4) below)

Table 1 MEND model parameters

Parameters Description A priori range Eq. Units

VP1 Maximum specific decomposition rate for P1 (0.1, 3) S13 mg C mg�1 C h�1

VP2 Maximum specific decomposition rate for P2 (1, 50) S14 mg C mg�1 C h�1

KP1 Half-saturation constant for P1 decomposition (1, 100) S13 mg C g�1 soil
KP2 Half-saturation constant for P2 decomposition (1, 100) S14 mg C g�1 soil
VM Maximum specific decomposition rate for M (0.05, 2) S15 mg C mg�1 C h�1

KM Half-saturation constant for M decomposition (10, 1000) S15 mg C g�1 soil
VD Maximum specific uptake rate of D for growth (0.0001, 0.5) S18 mg C mg�1 C h�1

KD Half-saturation constant for uptake of D (0.05, 0.5) S18 mg C g�1 soil
mR Specific maintenance rate of BA¼VD� a/(1� a) S18 mg C mg�1 C h�1

a ¼mR/(VD þ mR) (0.01, 0.5) —
b Ratio of dormant maintenance rate to mR 0.001 S23 —
YG True growth yield (0.1, 0.9) S18 —
fD Fraction of decomposed P1 and P2 allocated to D (0.1, 1) S3 —
gD Fraction of dead BA allocated to D (0.01, 1) S1 —
pEP Fraction of mR for production of EP1 and EP2 (0.001, 0.1) S25 —
pEM Fraction of mR for production of EM (0.001, 0.1) S25 —
rE Turnover rate of EP1, EP2 and EM (0.0001, 0.01) S26 mg C mg�1 C h�1

Qmax Maximum DOC sorption capacity (0.5, 5) S16 mg C g�1 soil
KBA Binding affinity (1, 16) (mg C g�1 soil) �1

Kdes Desorption rate (0.0001, 0.1) S17 mg C g�1 soil h�1

Kads Specific adsorption rate¼Kdes�KBA S16 mg C mg�1 C h�1

LCF0 Initial fraction of P1¼P1/(P1þP2) (0.1, 0.95) —
r0 Initial active fraction¼BA/(BAþBD) (0.01, 1) —

Abbreviations: BA and BD, active and dormant microbial biomass; DOC, dissolved organic carbon; Eq., equations; LCF, lignocellulose fraction;
MEND, microbial enzyme-mediated decomposition; YG, true growth yield.
Notes: The column ‘Eq’ lists the major equation nos. (see Supplementary Information) in which each parameter is used.
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based on Jopt (minimum J-value), n (number of
measurements) and p (number of model para-
meters); (iv) constructing the parametric surface of
the confidence space by selecting those parameter
sets resulting in JpJcr from the feasible parameter
space; (v) quantifying the uncertainty in parameters
by the statistics of these selected parameter sets; (vi)
conducting model simulations using these selected
parameter sets; and (vii) quantifying the uncertainty
in model predictions (for example, soil C pool sizes
and respiration) using the model simulation
outputs.

The COFI is computed as (Batstone et al., 2003;
Wang et al., 2014a):

Jcr ¼ Jopt � Z ¼ Jopt � 1þ p

n�p
Fa;p;n�p

� �
ð4Þ

where Jcr is the COFI that defines the parameter
uncertainty region, Jopt is the optimum (minimum)
objective function value that is calculated by
Equation (2a), n is the number of measured data
points, p is the number of parameters, and Fa,p,n�p is
the value of the F-distribution for a, p and n�p. For
MEND, P¼ 20, n¼ 72 (including measured
C–CO2, %14C–CO2, DOC and MBC in two experiments
with addition of glucose and starch), we used
a¼ 0.05, with F0.05,20,52¼ 1.776 to estimate the 95%
confidence parameter uncertainty regions. For
MEND_wod, P¼ 19 (that is, r0 is not included) and
F0.05,19,53 ¼ 1.786. As a result, Z¼ 1.683 and 1.640 for
MEND and MEND_wod, respectively. It is evident
that more observed data points and less undeter-
mined parameters would reduce parametric uncer-
tainty (that is, smaller Jcr).

We used the non-parametric Kruskal–Wallis ana-
lysis of variance to test whether the parameter
samples for each soil originated from the same
distribution at a significance level of 0.05
(McDonald, 2009; Giraudoux, 2013).

Soils and incubation experiments
We have chosen to study four soils selected from
contrasting climatic zones, the experimental details
of which were published previously: A Gelisol from
arctic, Andisol from sub-arctic, Mollisol from tem-
perate, as well as an Ultisol from tropical regions
(Jagadamma et al., 2014a, b). In brief, each soil was
incubated at room temperature (20 1C) for 270 days
in the dark in a temperature and humidity con-
trolled room. For each sample, 25 g soil were pre-
incubated at 40% water holding capacity for 1 week
to avoid the respiration response of the microbial
community to rewetting (Paul et al., 2001; Haddix
et al., 2011). Each soil sample was amended with
unlabeled substrate (D-glucose or starch) at the
concentration of 0.4 mg C g�1 soil and with uni-
formly labeled 14C substrates (U-14C glucose or U-14C
starch). The added glucose and starch were assumed
to enter the DOC (D) and POC_starch (P2) pool,
respectively. The initial conditions of soils are

summarized in Table 2. The initial Q pool size was
assumed to be 1% of the MOC (M) pool size and the
initial enzyme concentrations for EP1, EP2 and EM
were set to 1.1� 10�3, 1.1� 10�3 and 1.4� 10�3

mg C g�1 soil, respectively (Wang et al., 2013). The
radiocarbon labeled glucose and starch were added
to soils that had isotopic ratios (R¼ 14C/12C) of
4.80� 10�6 (for glucose) and 4.68� 10�6 (for
starch), respectively. Cumulative total respiration
(denoted by C–CO2 in units of mg C g� 1 soil) and
cumulative respired 14C normalized by added 14C
(denoted by %14C–CO2) were measured 14 times in
three replicates, that is, at days of 1, 2, 4, 6, 10, 15,
30, 45, 60, 90, 120, 150, 210 and 270. In addition,
MBC and DOC were determined at 4 days, that is, 4,
30, 150 and 270. Additional details about the soils
and the laboratory-incubation experiments can be
found in Jagadamma et al. (2014a, b).

Results

Model simulations
Both MEND and MEND_wod could simulate the
observed C–CO2, %14C–CO2 and DOC with similarly
satisfactory criterion values (Figures 2a, b and d).
Higher R2-values (R2 p1) indicate better model
performance, whereas lower MARE values (MARE
X0) are preferred. The R2-values for C–CO2 and
%14C–CO2 are 40.85 and close to the ideal R2-value
(1.0). The MARE values for DOC are o0.32 with
most of them o0.20 for both models. For MBC, the
MARE values for MEND_wod are 40.65 and are
25–126% higher than those for MEND (Figure 2c).
MEND_wod underestimated 91% of the 32 MBC
observations (eight observations for each of the four
soils), whereas the MEND underestimated 75%.
When dormancy was not considered, the MARE
for MBC predictions averaged out to 0.70 during the
full experimental period and 0.95 during the latter
period (at days of 150 and 270). When dormancy
was included, the average MARE values
were reduced to 0.37 and 0.47 for the full
period and the latter period, respectively. Thus,
MEND improved model estimates of MBC concen-
trations by 20–71% over MEND_wod across
four soils.

Taking the Mollisol as an example (Figure 3, the
error bars for model simulations were derived by the
COFI method), the simulated C–CO2 (Figures 3a and
c), %14C–CO2 (Figures 3b and d) and DOC (Figures
3f and h) by both models fit the observations very
well. MEND_wod greatly underestimated %14C–CO2

during the first 2 days (see the left two points in
Figures 3b and d) and slightly underestimated
%14C–CO2 from days 2 to 15 (data point 3–6 in
Figures 3b and d). However, MEND improved the
estimates of %14C–CO2 for the same period. The
simulated MBC concentrations (Figures 3e and g) by
MEND were also close to the observations, while
MEND_wod significantly underestimated MBC at
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days 150 and 270. Similar results were found for the
other soils (see Supplementary Figure S1 in the
Supplementary Information).

Model parameters
The parameter analysis in this section is focused on
MEND, as it represents microbial dynamics better
and presents superior model performance than
MEND_wod. The boxplots for model parameters
derived by the COFI method are shown in
Supplementary Figure S2 in the Supplementary
Information. In most cases, the calibrated parameter
values varied among soils. The Andisol held the
highest values in seven parameters (rE, VP2, KP1, KM,
Qmax, KD and gD) and the lowest in the other seven
parameters (mR, VD, pEM, VP1, VM, KP2, Kdes).

The decomposition parameters varied in different
SOC pools (Supplementary Figure S2). The MOC
(M) pool had the lowest maximum specific decom-
position rate (median of VM¼ 0.93, 95% confidence
interval (CI)¼ 0.06–1.98 mg C mg� 1 C h�1) and the
largest half-saturation constant (median of KM¼ 550,
95% CI¼ 35–998 mg C g�1 soil). The P2 pool (starch)
held the highest specific decomposition rate (med-
ian of VP2¼ 42, 95% CI¼ 16–50 mg C mg�1 C h� 1)
and the lowest half-saturation constant (median of
KP2¼ 6, 95% CI¼ 1–56 mg C g� 1 soil). The P1 (lig-
nocellulose) had slightly higher specific decomposi-
tion rate (median of VP1¼ 1.17 mg C mg�1 C h� 1)
than the M pool while having a modest half-
saturation constant (median of KP1¼ 58 mg C g�1

soil). Other decomposition parameters are related
to the turnover and production of enzymes (rE, pEP

and pEM). The overall rE (enzyme turnover rate) had a
median of 0.003 with the 95% CI the same as the a
priori (0.0001–0.01). The Gelisol exhibited the low-
est median rE (0.001). The distributions of rE were
not statistically different between the Mollisol and
the Andisol (median¼ 0.004 and 0.005, respec-
tively). The median rE for the Ultisol (0.002) was
between the previous two groups (Supplementary
Figure S2). The fractions of mR for the production of
EP and EM (pEP and pEM) across four soils had
medians of 0.06 and 0.04, respectively, with their
95% CIs almost identical to their a priori ranges.

Major microbial parameters in MEND include the
specific maintenance and growth rates (mR and VD),
the half-saturation constant for microbial uptake
(KD) and the YG. The medians of mR and VD for the
four soils were 0.01 and 0.03 mg C mg�1 C h� 1,
respectively, (Supplementary Figure S2). mR and
VD were significantly different among the four soils
with the highest in the Gelisol and the lowest in the
Andisol. KD exhibited a median of 0.467 (95%
CI¼ 0.09–0.50 mg C g�1 soil). The overall YG had a
median of 0.43 with 95% CI of 0.10–0.75
(Supplementary Figure S2). The medians (close to
the means) for the Gelisol, Andisol, Mollisol and
Ultisol were 0.25, 0.42, 0.49 and 0.52, respectively.

Discussion

Model parameterization
The Andisol stands out of the four soils in terms of
model parameters because Andisols are different
from other soil pertaining to their physical, chemi-
cal and mineralogical properties (Nanzyo, 2002;
McDaniel and Wilson, 2007). The Andisol contained
significantly higher SOC than the other soils
(Table 2) but generally produced lower cumulative
C–CO2 than the Mollisol and Ultisol during the
experimental period. Thus the model calibration
required the lowest specific reaction rates (for
example, mR, VD, VP1 and VM) and the highest half-
saturation constants (for example, KP1, KM and KD)
for the Andisol. The median values for mR and VD

derived here are two orders of magnitude higher
than those in Wang et al. (2013). This is because of
the consideration of microbial dormancy. The
MEND_wod model and other microbial models
include only one microbial biomass pool and do
not consider the physiological states of microbes.
Thus, the mR values in Wang et al. (2013) were
summarized from literature including maintenance
rates for active microbes (Anderson and Domsch,
1985b) or dormant microbes (Anderson and
Domsch, 1985a) or the total microbial biomass. In
MEND, mR solely refers to the maximum specific
maintenance rate of active microbes. The large
differences in mR and VD between MEND and
MEND_wod point to the importance of proper
accounting in parameterization of microbial ecosys-
tem models.

Our results showed the dependence of YG on the
changes in temperature (DT in Figure 4), where DT is
the difference between incubation temperature
(20 1C) and the mean annual temperature (Table 2).
Figure 4 shows that YG decreased with increasing
DT from 0.7 to 22.9 1C. The temperature-response
coefficient for YG (that is, the regression slope in
Figure 4) was approximately � 0.01 1C�1 with 95%
CI of (� 0.016 and � 0.005) 1C�1, which comprises
previous experimental estimates (Devevre and
Horwath, 2000; Steinweg et al., 2008; Tucker et al.,
2013). This dependence of YG on DT (Figure 4) may
imply that microbes have been acclimated to their
local environments and exhibit a relatively univer-
sal YG (averaged 0.56 with 95% CI of 0.48–0.64)
across different biomes.

When observations are available for various
response variables, the strategy of multi-objective
calibration is essential in order to reduce uncer-
tainty in model parameterization (Yapo et al., 1998;
Wang and Chen, 2012). We conducted model
parameterization aiming at minimizing a synthe-
sized objective function that consists of four objec-
tives in terms of C–CO2, %14C–CO2, DOC and MBC.
The optimal parameter sets reflected a balance
among all objectives. We also found that the
parameterization results could be qualitatively dif-
ferent when a new objective was introduced into the
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calibration process. Our previous study indicated
that short-term substrate-induced respiration or
substrate-induced growth response experiments
could be used to determine microbial parameters
(Wang et al., 2014b). This study further shows that
the long-term (that is, B1 year) soil incubations or
field experiments with measurements of microbial
biomass in addition to soil respiration are conducive
to estimate decomposition parameters in addition to
microbial parameters. We also advocate the incor-
poration of isotopic signatures into parameterization
and evaluation of ecosystem models. We have

shown our efforts in parameterizing the model in
terms of diverse soils from different climatic regions.
We hope that these parameter values could provide
documented references, although with large uncer-
tainty, for relating parameters to soil properties
and/or climatic conditions. Nevertheless, more
laboratory- and field-scale data sets are needed to
constrain model parameterization and associated
uncertainty. By this way, the microbial mechanisms
could be practically incorporated into ecosystem
models to represent microbial-controlled processes.

Table 2 Experimental soils and their initial soil carbon pool sizes (mg C g�1 soil)

Soils POC MOC DOC MBC Location MAT

Gelisol 4.25 11.04 0.17 0.05 Fairbanks, AK, USA � 2.9
Andisol 20.06 64.86 0.64 0.86 Krýsuvı́kurheiji, Reykjanes, Iceland 5.0
Mollisol 3.25 27.97 0.21 0.64 Batavia, IL, USA 11.3
Ultisol 4.71 17.67 0.48 0.52 Lavras, Minas Gerais, Brazil 19.3

Abbreviations: DOC, dissolved organic carbon; MAT, mean annual temperature (1C); MBC, microbial biomass carbon; MOC, mineral-associated
organic carbon; POC, particulate organic carbon.

Figure 2 Best criterion values for calibrating MEND model with dormancy (MEND) or without dormancy (MEND_wod). (a) R2 for C–CO2

(cumulative C–CO2 respiration); (b) R2 for 14C–CO2 (normalized cumulative 14C–CO2 by added 14C); (c) MARE for MBC (microbial biomass
carbon); (d) MARE for DOC (dissolved organic carbon). R2: coefficient of determination, higher R2-values (R2 p1) indicate better model
performance; MARE, mean absolute relative error (Equation (3)), lower MARE values (MARE X0) are better.

Figure 3 Comparison between observations (Obs) and simulations (Sim) for the Mollisol, where ‘MEND’ and ‘MEND_wod’ denote the
MEND model with and without dormancy, respectively. (a) C–CO2 (cumulative C–CO2 respiration) with addition of glucose. (b) %14C–
CO2 (normalized cumulative respired 14C by added 14C) with glucose. (c) C–CO2 with addition of starch. (d) %14C–CO2 with starch. (e)
MBC (microbial biomass carbon) with glucose. (f) DOC (dissolved organic carbon) with glucose. (g) MBC with starch; (h) DOC with
starch. The horizontal error bars in a–d are s.d. for observations (sample size n¼3) at days of 1, 2, 4, 6, 10, 15, 30, 45, 60, 90, 120, 150, 210
and 270 (from left to right); the vertical error bars in a–d are s.d. for C–CO2 simulated by MEND (n¼ 2346); for clarity, the error bars
(similar to MEND) by MEND_wod are not shown in a–d. No error bars are shown for observations in e–h because of the lack of replicate
measurements. The error bars in e–h are s.d. for simulations; for clarity, only the positive errors are shown.
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Microbial dormancy
The observations of low respiration rates but modest
MBC and DOC concentrations during the latter
period (for example, after 50 days) of incubation
imply there must be certain mechanisms further
depressing microbial activities. The total MBC or
DOC usually exhibited a decreasing trend after
4 days, but MBC concentrations at day 150 were as
high as 28–89% of initial MBC, and DOC concentra-
tions were at least 30% of initial DOC. The lower
microbial activities are reflected by the slower
increase in cumulative C–CO2 and 14C–CO2

(Figures 3a–d). That is why very low MBC concen-
trations (compared with initial MBC) were predicted
with satisfactory predictions of DOC when MEND_wod
was adopted (Figures 3e and g, and Supplementary
Figure S1). Major factors affecting microbial activ-
ities include environmental factors (for example,
soil temperature and moisture; Brockett et al., 2012),
carbon availability or root exudation (Drake et al.,
2013) and nutrient availability (Lennon and Jones,
2011). Changes in these factors might result in
changes in CUE (Sinsabaugh et al., 2013) and
transitions between microbial physiological states
(active and dormant), particularly in laboratory-
scale experiments. For example, dormancy is a
beneficial survival and evolutionary trait of soil
microbes when faced with unfavorable environmen-
tal conditions (Lennon and Jones, 2011). The
impacts of environmental factors and root exudation
could be excluded from this study, as the soils
without living roots were incubated at an aerobic
environment with constant soil temperature and
moisture. We found that the prediction of microbial
biomass could not be improved by simply
manipulating the intrinsic CUE (that is, YG) in
MEND_wod. Thus, the transition between
microbial physiological states owing to changes in
carbon or nutrient availability is the most likely
explanation for the observed variations in microbial
activities.

The MEND model substantially improved the
predictions of microbial biomass over MEND_wod,
indicating that it is essential to represent dormancy
in microbial ecosystem models in order to accurately
predict microbial biomass as well as to explain
variation in SOM decomposition as a function of
time. The initial active fractions (r0) in this study
averaged 0.79 (median¼ 0.90) with large variations
(95% CI¼ 0.19–0.99). The relatively high r0 might be
due to the pre-incubation of soil samples at 40%
water holding capacity for 1 week. The active fraction
(r) generally declined with time due to the decrease
in substrate (DOC) availability. Taking the Mollisol as
an example, the active fraction (r) dropped from its
initial value of 0.655 to 0.104 after 50 days (Figure 5).
At day 150, the predicted MBC concentrations by
MEND_wod only accounted for 3–8% of the initial
MBC across four soils, which were much lower than
the observations (428% of initial MBC). The incor-
poration of dormancy was able to resolve the large

discrepancies in total MBC between model predic-
tions and experimental observations.

MEND_wod could adequately fit the other obser-
vations (C–CO2, %14C–CO2 and DOC), but at the cost
of significantly underestimating the total microbial
biomass. In other words, if the total microbial
biomass could be more satisfactorily modeled, the
model without dormancy would poorly simulate
soil respiration, not to mention that microbial
uptake and respiration are more sensitive to the
changes in MBC than to the changes in DOC
concentration regarding the Michaelis–Menten
kinetics (Wang and Post, 2013). Taking the Mollisol
as an example, when MBC was given greater weight in
the objective function (Equation (2)) of MEND_wod,
the best MARE for MBC could be improved from
0.66 (when soil respiration was given greater
weight) to 0.27; however, the model was not good
at simulating C–CO2 (best R2¼ 0.78) compared with
the model performance shown in Figure 2 (best
R2¼ 0.98 for C–CO2). In this MEND_wod configura-
tion, the cumulative respiration at day 270 was
overestimated by 29%, compared with the relative
small errors of 5% from MEND. In conclusion, the
inclusion of dormancy substantially improves the
estimates of microbial biomass as well as the
mechanistic representation and prediction of soil
carbon cycle.

Feedbacks between the climate system and the
carbon cycle is a major focus of global change
research (Zhou et al., 2012). Biogeochemical cycles
including the carbon cycle are extensively driven by
microbes (Falkowski et al., 2008). The two necessary
conditions for soil microbes to affect ecological
processes are: (a) ‘organisms must differ in their
functional traits’ and (b) ‘biological reactions must be

Figure 4 Dependence of true growth yield (YG) on changes in
temperature. MAT, mean annual temperature at the soil sampling
site; CI, confidence interval; LCL, and UCL are lower and upper
confidence limits, respectively. The YG-values for each soil (from
left to right: Ultisol, Mollisol, Andisol and Gelisol) are 13
representative values corresponding to 13 percentiles (2.5, 5, 10,
20, 30, 40, 50, 60, 70, 80, 90, 95 and 97.5%).
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either the rate-limiting step or the fate-controlling
step’ (Schimel and Schaeffer, 2012). Microbial func-
tional groups are characterized by certain functional
traits, such as life-history traits and substrate-speci-
ficity traits (Kaiser et al., 2014). The newly developed
microbial mineral carbon stabilization model defines
two microbial functional groups (r- and K-strategies)
that differ in growth rate, turnover rate and their
interactions with physically and chemically pro-
tected SOM pools (Wieder et al., 2014). Our model
testing against experimental data demonstrates that
the microbial control over SOM decomposition is
substantial. In addition, active and dormant microbes
distinctly differ in their functional traits, and the
extent of microbial decomposition and uptake is the
rate-limiting step.

The dormancy strategy should be more significant
for microbes in field conditions that are influenced
by carbon and nutrient availability and changes in
environmental factors such as soil temperature,
moisture and oxygen (Wang et al., 2014b). For
example, dormancy has been found to be a better
strategy to achieve drought resistance in mineral
soils where C supply constrains growth and osmo-
lyte synthesis (Manzoni et al., 2014). The proposed
dormancy mechanism and calibrated microbial, and
enzymatic parameters with long-term laboratory
incubations provide a pathway forward for model-
ing field-scale processes. Although the importance
of microbial community composition may vary with
spatiotemporal scales (Schimel and Schaeffer,
2012), the inclusion of microbial physiology is
essential to confidently project feedbacks between
climate change and carbon cycle (Bradford, 2013).
Continued development is needed to bring micro-
bial physiology into global climate and ecosystem
models (Todd-Brown et al., 2012; Treseder et al.,
2012; Schimel, 2013).
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