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Iron deficiency increases growth and
nitrogen-fixation rates of phosphorus-deficient
marine cyanobacteria
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Marine dinitrogen (N2)-fixing cyanobacteria have large impacts on global biogeochemistry as they fix
carbon dioxide (CO2) and fertilize oligotrophic ocean waters with new nitrogen. Iron (Fe) and
phosphorus (P) are the two most important limiting nutrients for marine biological N2 fixation, and
their availabilities vary between major ocean basins and regions. A long-standing question
concerns the ability of two globally dominant N2-fixing cyanobacteria, unicellular Crocosphaera and
filamentous Trichodesmium, to maintain relatively high N2-fixation rates in these regimes where
both Fe and P are typically scarce. We show that under P-deficient conditions, cultures of these two
cyanobacteria are able to grow and fix N2 faster when Fe deficient than when Fe replete. In addition,
growth affinities relative to P increase while minimum concentrations of P that support growth
decrease at low Fe concentrations. In Crocosphaera, this effect is accompanied by a reduction in
cell sizes and elemental quotas. Relatively high growth rates of these two biogeochemically critical
cyanobacteria in low-P, low-Fe environments such as those that characterize much of the
oligotrophic ocean challenge the common assumption that low Fe levels can have only negative
effects on marine primary producers. The closely interdependent influence of Fe and P on N2-fixing
cyanobacteria suggests that even subtle shifts in their supply ratio in the past, present and future
oceans could have large consequences for global carbon and nitrogen cycles.
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Introduction

The relative degree of iron (Fe) versus phosphorus
(P) limitation of marine N2-fixing cyanobacteria is
variable throughout the oceans. Large continental
dust inputs from North Africa that deliver Fe to the
North Atlantic Ocean are thought to be responsible
for the high N2-fixation rates and low-P concentra-
tions in this region relative to the North Pacific gyre,
where the Fe:P concentration ratio is considerably
lower (Wu et al., 2000; Falcón et al., 2004; Mahaffey
et al., 2005; Mahowald et al., 2009; Karl, 2014). In
concordance with this view, there is evidence that P
limits N2-fixation rates by Trichodesmium in the
Sargasso Sea (Sañudo-Wilhelmy et al., 2001), where
this cyanobacterium is abundant (Capone et al.,

1997, 2005). In addition, low Fe concentrations in
the North Pacific may favor a higher relative
dominance of small unicellular N2 fixers in compar-
ison with Trichodesmium (Sohm et al., 2011),
because of their lower requirements for Fe to fix
N2 (Berman-Frank et al., 2007).

Some studies, however, do not support the
hypothesis that Fe and P are the sole limiting
nutrients for N2 fixation in the North Pacific and
North Atlantic, respectively (Mills et al., 2004;
Grabowski et al., 2008), suggesting a more complex
relationship between these two nutrients. The fact
that both Fe and P are at or near limiting
concentrations throughout much of the oligo-
trophic ocean emphasizes the need for an
improved understanding of nutrient co-limitation
(Saito et al., 2008) of marine N2 fixation. We
examined the consequences of Fe and P
co-deficiency for the growth and N2-fixation rates
of Crocosphaera watsonii and Trichodesmium
erythraeum. Together these isolates represent two
genera of globally distributed tropical and sub-
tropical marine cyanobacteria that are responsible
for a major fraction of total oceanic N2 fixation
(Sohm et al., 2011).
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Materials and methods

To examine interactive effects of Fe and P limitation
on growth of the N2-fixing cyanobacteria C. watsonii
and T. erythraeum, we grew laboratory cultures over
a range of P (0.05–4.0mM) in high-Fe (450 nM)
and low-Fe (0.13–0.35 nM) media. Trace metal
clean methods were used to grow cultures of
T. erythraeum (GBRRLI101) and C. watsonii (WH0003)
across a range of Fe and P concentrations at 28 1C
and 125 or 150 mmol quanta m�2 s�1, respectively.
Triplicate cultures were diluted every 3 days to
20� 103 cells ml� 1 (C. watsonii) or 22� 103 mm total
filament length ml� 1 (T. erythraeum) (counted
microscopically) for B20–50 generations with arti-
ficial seawater (Chen et al., 1996) that was micro-
wave sterilized, bubbled with air (24–48 h) and
passed through activated Chelex 100 resin (BioRad
Laboratories, Hercules, CA, USA) to remove Fe
(Price et al., 1989). We added vitamins and trace
metals except Fe according to the AQUIL recipe
(Sunda et al., 2005), HNa2PO4 (0.05–4.0 mM)
and FeCl3 (0.45 mM complexed with 5.0 mM ethylene-
diaminetetraacetic acid, EDTA, to high-Fe cultures
(Price et al., 1989). Dissolved Fe was mea-
sured in unfiltered seawater (0.13–0.35 nM Fe;
Supplementary Table S1) and in stock solutions
containing 100 mM and 1.0 mM PO4

3� (0.02–0.12 nM,
n¼ 4) with a flow injection analysis method
(Sedwick et al., 2005). To rule out the possibility
of differences between treatments due to potential
scavenging of phosphate onto any Fe oxyhydroxide
precipitates that may have formed in the medium
(Sunda and Huntsman, 1995; Wheat et al., 1996; Liu
and Millero, 2002), we measured dissolved phos-
phate using the MAGIC method (Karl and Tien,
1992) for two P concentrations (100 and 150 nM) at
both Fe concentrations used in the medium recipe
(Supplementary Table S2). Phosphate concentra-
tions were virtually identical in high- and low-Fe
treatments (P40.05), demonstrating that differential
P availability was unlikely to have affected our
results.

Cultures were acclimated to low-P conditions as
described by Garcia et al. (2013). Briefly, after
establishment of steady-state growth at each
P concentration, cultures were then successively
transferred to the neighboring lower P treatment
until a new steady-state growth rate was achieved
before sampling and further transfers. Consequently,
cultures, for which we report a growth rate of zero
(that is, Fe replete, 0.1 mM P treatments), had initially
positive growth rates that diminished with each
successive transfer, ultimately resulting in no
further accumulation of biomass over the last
3-day dilution period. At this point, cultures were
sampled for N2 fixation and cellular or trichome-
specific CNP analysis. Thus, these measurements in
the lowest P treatments in experiments with Tricho-
desmium and Crocosphaera were considered to
represent values where the growth rate approached

zero. We calculated growth rates as described
previously (Garcia et al., 2013) using volume-
specific estimates of cell number or total filament
length. Hyperbolic functions of the form f (x)¼
ax/(bþ x) were fit to the data in Figure 1 using an
iterative method (Garcia et al., 2013) with Sigma
Plot 10 software, where a¼ mmax, b¼Km and Cmin is
the minimum concentration of P needed to support
growth. Diameters of B12 cells (C. watsonii) were
measured microscopically from each treatment
(except the 0.6 mM P treatment) with an ocular
micrometer. We measured N2 fixation and particu-
late C, N and P at the end of a 3-day growth period
following the final dilution, as previously described
(Garcia et al., 2013). We used growth rates (d� 1) and
P-quota (fmol per cell) measurements to estimate
cell-specific P-uptake rates. To determine statistical
significance between treatments, we used a t-test or
the rank-based, two-tailed, nonparametric Mann–
Whitney U-test (Zar, 1999).

Results

As expected, growth rates in Fe-deficient cultures
were lower than those in Fe-replete cultures under
P-replete conditions (Po0.05), demonstrating
that Fe concentrations in the low-Fe seawater
medium limited growth of both C. watsonii and
T. erythraeum (Figure 1). At low-P concentrations,

Figure 1 Growth of two dinitrogen (N2)-fixing cyanobacteria
relative to variations in iron (Fe) and phosphorus (P) concentra-
tions. Mean cell-specific growth rates (with s.d.) in cultures of
Crocosphaera watsonii (WH0003) (a) and Trichodesmium ery-
thraeum (GBRRLI101) (b) grown over a range of P concentrations
(0.05–4.0 mM) under high (450 nM; closed symbols) and low (0.12–
0.35 nM; open symbols) Fe concentrations. K-selection yields
faster growth in low-P water, whereas r-selection yields higher
maximum growth rates. Monod kinetic constants and parameters
of the hyperbolic functions (solid lines) were best fit to the data
with 95% confidence intervals on hyperbolas (dashed lines).
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however, this effect was reversed, with Fe-deficient
cultures of both C. watsonii (Figure 1a) and
T. erythraeum (Figure 1b) maintaining significantly
higher cell-specific growth rates than Fe-replete
cultures (Po0.05). Thus, cultures that were co-
deficient in both Fe and P grew faster than those
deficient in P alone, revealing an unexpected
interactive relationship between Fe and P availabil-
ity and cell-specific growth rates.

Fe deficiency allowed both species to maintain
positive growth rates at and below the P concentra-
tions at which Fe-replete growth rates fell to zero
(0.1 mM, Figure 1, Table 1). Half-saturation constants
for growth with respect to P were reduced in Fe-
deficient cultures relative to Fe-replete cultures of
both C. watsonii and T. erythraeum (Table 1).
Although maximum growth rates of C. watsonii
were higher than those of T. erythraeum, the
minimum concentration of P that was required to
sustain growth was lowest in Fe-deficient cultures
of T. erythraeum (Table 1).

Similar to growth rates, the effects of Fe avail-
ability on N2-fixation rates were also reversed in
low-P seawater in comparison with high P treat-
ments (Figure 2). In low-P treatments, mean C-spe-
cific (Figures 2a and c) and N-specific (Figures 2b
and d) N2-fixation rates by both species were higher
in Fe-deficient cultures in comparison with Fe-
replete cultures (Po0.05). In addition, Fe-deficient
cultures of both species were able to fix N2 (Figure 2)
and maintain cell biomass in the form of particulate
organic carbon standing stocks (Figure 3) at low P
concentrations where Fe-replete cultures were
unable to survive (standing stocks of particulate
organic carbon at the end of the dilution period
integrate differences in growth rates and cellular C
quotas between treatments).

This reversal of the expected effects of Fe
availability on growth and N2 fixation at low P
concentrations was associated with significant
reductions in cell size and elemental quotas under
Fe/P co-deficiency in Crocosphaera. At low P
concentrations (0.1–0.3mM), mean cell volume in
Fe-deficient cultures of C. watsonii was 38–61%
lower (Figure 4a) and mean weight of combined C,
N and P (pg per cell) was 29–57% lower (Figure 4b),

relative to Fe-replete cultures (Po0.05). The
Fe-deficient culture grown at the lowest P level
(0.075 mM P) was an exception to this general trend
(Figure 4a), likely due to severely reduced growth
rates associated with extreme P starvation.
Fe-replete cultures, however, were unable to grow
at all at 0.075 mM P (Figure 1a). We could not

Table 1 Monod kinetic parameters calculated from hyperbolic
functions fitted to data in Figure 1

Km (mM P)a mmax (d�1)b Cmin (mM P)c r2

C. watsonii
Fe deficient 0.075 0.37 0.074 0.66
Fe replete 0.16 0.51 0.10 0.94

T. erythraeum
Fe deficient 0.050 0.25 0.04 0.30
Fe replete 0.16 0.35 0.10 0.95

aThe half-saturation constant for growth with respect to phosphorus (P).
bThe maximum growth rate with respect to P.
cThe minimum concentration of P needed to support growth.

Figure 2 Dinitrogen (N2)-fixation rates of two N2-fixing cyano-
bacteria relative to variations in iron (Fe) and phosphorus (P)
concentrations. Mean carbon (C)-specific and N-specific
N2-fixation rates (with s.d.) of Crocosphaera watsonii (WH0003)
(a, b) and Trichodesmium erythraeum (GBRRLI101) (c, d) grown
over a range of P concentrations (0.05–4.0mM) under high (450 nM;
closed symbols) and low (0.12–0.35 nM; open symbols) Fe
concentrations. Monod kinetic constants and parameters of the
hyperbolic functions (solid lines) were best fit to the data with
95% confidence intervals on hyperbolas (dashed lines).

Figure 3 Particulate organic carbon standing stocks in cultures
at the time when N2-fixation rates shown in Figure 2 were
estimated. Particulate organic carbon concentrations in cultures
of Crocosphaera watsonii (WH0003) (a) and Trichodesmium
erythraeum (GBRRLI101) (b) grown over a range of added P
concentrations (0.05–4.0mM P) under high (450 nM; closed
symbols) and low (0.12–0.35 nM; open symbols) Fe concentra-
tions. Means are plotted with s.d.
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accurately estimate Trichodesmium cell volume due
to its filament-forming habit, but mean weight of
combined C, N and P per unit of filament length
(pg mm�1) was also significantly lower in Fe-defi-
cient cultures in comparison with Fe-replete
cultures (Po0.05), with the largest differences
(18–59%) in low-P treatments (0.1–0.2mM P;
Figure 4c). In general, the difference in cell volume
and cell-specific or filament length-specific masses
between Fe-deficient and Fe-replete cultures was
largest under very low-P conditions.

Cellular P quotas in Fe-deficient C. watsonii were
in general slightly higher at high P concentrations
and slightly lower at low P concentrations, relative
to Fe-replete cultures (Supplementary Figure S1A).
Thus, cellular P quotas and growth rates had
opposite trends relative to Fe availability. Conse-
quently, P-uptake rates calculated using these two
values were not significantly different between
Fe-replete and Fe-deficient cultures (Po0.05; except
when growth rates fell to zero, Supplementary
Figure S1B). Along with dissolved P measurements

(Supplementary Figure S1A), the similar P-uptake
rates further support the idea that phosphate
availabilities did not differ substantially between
Fe treatments.

To evaluate effects of Fe availability on P-deficient
growth, we compared growth affinities with respect
to P (mmax /Km) between Fe-replete and Fe-deficient
cultures (Figure 5). Growth affinities with respect to
P were higher for Crocosphaera than for Trichodes-
mium in Fe-replete cultures (Po0.05), but increased
greatly for both species (by 57% for Crocosphaera
and 129% for Trichodesmium; Po0.05) to nearly
identical elevated values at low Fe concentrations
(Figure 5). Thus, Fe limitation provided a demon-
strable advantage during P limitation by increasing
the efficiency at which both cyanobacteria use P to
support their growth.

Discussion

Our surprising finding is that two widely distributed
and ecologically important oceanic N2-fixing cyano-
bacteria are able to fix N2 and grow faster when
co-deficient in both Fe and P, than when deficient in
P alone. For Crocosphaera, one possible mechanism
for this unexpected response is a drastic reduction
in cell size and cellular elemental quotas in Fe/P
co-deficient environments. Both of these species
elicited nearly identical responses to changes in
relative Fe and P co-deficiency, suggesting that the
concentration ratio of Fe:P may be more important
in determining oceanic N2-fixation rates than the
concentration of either nutrient alone.

In general, Fe limitation is known to reduce cell
size, and this effect has recently been documented
for a different strain of Crocosphaera (Jacq et al.,
2014). Cell size of the C. watsonii isolate that we
examined (WH0003) declines with decreasing light
as well, which is also associated with lower half-
saturation constants for growth with respect to P and
lower minimum concentrations of P required to

Figure 4 Cell size and major elemental mass of two dinitrogen
(N2)-fixing cyanobacteria relative to variations in both iron (Fe)
and phosphorus (P) concentrations. Cell volume of Crocosphaera
watsonii (WH0003) (a) and total summed mass of cellular carbon
(C), N and P (pg per cell) of C. watsonii (b) and summed mass of C,
N and P per unit of filament length (pgmm� 1 filament length) of
Trichodesmium erythraeum (GBRRLI101) (c) grown over a range
of added P concentrations (0.05–4.0 mM P) under high (450 nM;
closed symbols) and low (0.12–0.35 nM; open symbols) Fe
concentrations. s.d. are plotted on treatment means.

Figure 5 Growth affinities with respect to phosphorus (P) of two
dinitrogen-fixing cyanobacteria as a function of iron concentra-
tion. Growth affinities (mmax/Km) were calculated from Monod
hyperbolic parameters in Table 1 for Crocosphaera watsonii
(WH0003; filled bars) and Trichodesmium erythraeum
(GBRRLI101; open bars) grown at high (450 nM) and low
(0.12–0.35nM) iron concentrations. Error bars represent propagation
of the standard error on mmax and Km with respect to P.
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maintain growth and N2 fixation (Garcia et al.,
2013). In our experiment, neither P nor Fe had an
independent effect on cell size of WH0003, but the
combined effect of P and Fe together drastically
reduced the cell volume of Crocosphaera. The exact
mechanisms that restrict flexibility of cell size
in Fe-replete cells experiencing P deficiency and
P-replete cells experiencing Fe deficiency is not
known, but may involve changes in several
intracellular pools of C, N, P and Fe.

Two widely recognized advantages of small cells in
low nutrient environments are a high cell surface
area:volume quotient and a thin diffusion boundary
layer, both of which facilitate cross-membrane trans-
port of required elements such as Fe, P, N and C
(Sunda and Hardison, 2010). Cell size reductions can
relieve uptake-rate limitation and diffusion limitation
imposed by any of these required elements, allowing
cells to obtain resources more efficiently to support
cell growth. For example, P-uptake rates increased as
a function of decreasing cell size of Crocosphaera
WH0003 (Garcia et al., 2013).

Another less commonly acknowledged advantage
is that the material and energetic investment for
reproduction is also considerably reduced for
smaller cells. Because elemental quotas are lower
in small cells, the total mass of C, N, P and Fe that
must be accumulated before cell division can occur
is significantly reduced. This may be an additional
mechanism that allows miniaturized Fe-deficient
Crocosphaera cells to maintain faster growth rates in
low-P environments relative to larger, Fe-replete
cells. To determine if this reduction in cell volume
and elemental quotas could account for the observed
changes in growth rates, we compared the relative
magnitude of changes in these parameters between
Fe-deficient and Fe-replete Crocosphaera cells in
cultures growing at steady state with 0.15 mM P.
Cellular P and total major elemental mass (CþNþP)
were both reduced by 29%, and cell volume by
39% (Figure 4) in Fe-deficient cultures relative to
Fe-replete cultures. In comparison, Fe-deficient
cultures grew 64% faster than Fe-replete ones
(Figure 1). Thus, reductions in elemental quotas
could potentially account for a large fraction of the
higher growth rates in miniaturized Crocosphaera,
with other recognized mechanisms like faster nutri-
ent uptake rates likely accounting for the rest.

The minimum diameter achieved by Croco-
sphaera cells that were co-deficient in Fe and P in
our experiment approached the optimal cell
diameter/growth ratio for a range of phytoplankton
species documented by Bec et al. (2008) and
Marañón et al. (2013), as originally predicted by
Raven (1994). Since cell size is positively correlated
with sinking rates (Boyd and Newton, 1999), such
shifts in cell size towards optimal size/growth ratios
may affect organic carbon drawdown into the deep
ocean (Finkel et al., 2007). Thus, cell size plasticity
may be important for modeling responses and
feedbacks to global change (Morán et al., 2010).

Although there was also a significant difference
in CNP mass between Fe-replete and Fe-deficient
filaments of Trichodesmium, this was caused by
increases in Fe-replete, P-limited elemental mass,
and not by decreases in CNP mass in Fe-deficient
cultures. Thus, our data do not support a strong
reduction in CNP mass of Trichodesmium cells in
cultures grown in low-P, low-Fe seawater, as they do
for Crocosphaera. Although the mechanism(s) behind
the Trichodesmium response are unknown, they may
be related to other morphological changes such as
longer filaments in Fe-deficient cultures in compar-
ison with Fe-replete cultures (data not shown), or to
as yet undetermined physiological responses of
cellular nutrient acquisition and utilization pathways.

In consideration of the ecological and evolution-
ary implications of our findings, we examined
differences in growth kinetics in terms of classic
biological growth modes. Fe-replete cultures had
high maximum growth rates (mmax) and high half-
saturation constants for growth with respect to
P (Km), typical of r-selected species, and Fe-deficient
cultures had low mmax and Km values with respect to
P, characteristics of K-selected growth (Figure 1,
Table 1). Variable r- and K- growth strategies have
been documented among strains and species of
marine N2-fixing cyanobacteria relative to other
nutrient resources such as CO2 (Hutchins et al.,
2013), but an intraspecific ability to switch strate-
gies relative to limiting nutrients has not been
described previously within single microbial iso-
lates. Rather, this environmental response is
assumed in paradigms that describe evolution of
species, where flexible growth strategies within
strains likely precede selection for more permanent
species-specific changes in cell size and growth rate
relationships (Litchman et al., 2007).

Clearly, Fe-deficient cells of both species use
limiting concentrations of P to support their growth
more efficiently than do Fe-replete cells. In our
experiments, high concentrations of Fe effectively
raised the minimum concentration of P that was
needed to support positive N2-fixation rates, growth
and standing stocks of particulate organic carbon
(Table 1; Figure 5). Thus, the effect of Fe availability
on growth affinities with respect to P for photosyn-
thetic N2 fixers may have broad implications for
linking the C, N, P and Fe biogeochemical cycles.
Although a dustier climate has been hypothesized to
yield high N2 fixation and primary production rates
over geological time scales (Falkowski, 1997;
Michaels et al., 2001), our data suggest that increas-
ing Fe input to regions where P is chronically low
could actually have a negative effect on N2 fixation.
Our results imply that N2-fixation rates, primary
production and carbon export may all be sensitively
attuned to small changes in Fe:P input ratios to the
sunlit layers of the oceans.

In addition to cell physiology and ocean biogeo-
chemistry, the linkage between Fe and P availability
could also affect marine ecology. Small cells are
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more vulnerable to grazing (Sunda and Hardison
2010), but faster growth rates could assist in
compensating for such increased grazing mortality.
Conversely, in high-Fe, low-P environments, larger
cells might offset grazing mortality, bolstering
survivability despite slower growth rates. In
response to long-term exposure to specific Fe:P
conditions, simultaneous bottom-up and top-down
selection of N2-fixing ecotypes and species could
result from phenotypic tradeoffs between growth
and cell size. Our experimental results indicate that
Fe and P control the expression of size phenotypes
in Crocosphaera and r- and K-selected growth in
both species, demonstrating a possible means by
which divergent N2-fixing strains and species might
evolve in contrasting biogeochemical environments
(Finkel et al., 2007). The general high abundance of
larger N2-fixing phototrophic taxa in high-Fe waters
of the North Atlantic relative to low-Fe waters of the
North Pacific Ocean (Wu et al., 2000; Sohm et al.,
2011) seems to support selection of N2-fixing
cyanobacteria cell size based on Fe input. Our
results suggest that Fe:P ratios may be more
important than the absolute concentration of either
nutrient in selecting for strain and species dom-
inance in various ocean basins and regions, and
could thereby control bulk N2-fixation rates and
affect plankton community structure.

Several field studies indicate dynamic relation-
ships between Fe and P in controlling N2 fixation. In
the eastern tropical North Atlantic Ocean, experi-
mental Fe and P additions to natural plankton
communities suggest Fe and P co-limitation of N2

fixation (Mills et al., 2004). Other studies, however,
indicate that N2-fixation rates are relatively high in
the western North Atlantic in comparison with the
eastern portion of this basin, despite decreasing Fe
inputs with increasing distance from North Africa
(Capone et al., 2005; Mather et al., 2008; Mahowald
et al., 2009; Moore et al., 2009). A close balance
between Fe and P availability in controlling
N2-fixation rates may also be implicit in studies
from the North Pacific Subtropical Gyre, where Fe
and P additions to natural phytoplankton commu-
nities yielded variable responses between study
sites (Grabowski et al., 2008). In these types of
short-term field experiments, it may be important to
distinguish between nutrient co-deficiency and co-
limitation, as short and long-term responses to
nutrient supplies may be very different. Responses
such as the N2-fixation rate and cell size changes we
observed in our steady-state cultures may not be
manifested in short shipboard incubation experi-
ments, as they likely depend on the acclimated
phenotype and long-term plasticity of cells.

Overall, our results suggest that these N2-fixing
cyanobacteria share a common strategy that allows
them to maintain relatively high growth rates in
Fe- and P-co-deficient environments, conditions that
characterize vast areas of the oligotrophic regions
where these species grow. Varying ratios of Fe and P

may also create a range of ecological niches for at
least the unicellular N2-fixing cyanobacteria, through
tradeoffs between cell size and growth rates.
Fe deficiency appears to be advantageous during
P limitation because it affords Crocosphaera a viable
strategy to help maintain higher cell-specific growth
rates–cellular miniaturization–that is not available to
Fe-replete cells. For Trichodesmium, the cell size
response appears instead to consist of increases in
filament mass under Fe-replete, P-limited conditions.
Various major cellular elemental pools could be
involved in controlling cell size plasticity and Fe
and P-use efficiencies for growth, including those
associated with the nitrogenase complex, photosyn-
thetic electron transport (Raven 1988), polypho-
sphates (Rao et al., 2009), Fe storage compounds
such as ferritin (Keren et al., 2004) or other proteins
and nucleic acids (Raven et al., 2013).

Future work should examine the physiological,
biochemical and genetic mechanisms involved in
cell morphological responses to Fe concentrations,
as biogeochemical models may need to understand
these mechanisms in order to better parameterize
nutrient co-limitation and co-deficiency and their
effects on the biological pump (Moore et al., 2013).
Regardless of the mechanism, our results suggest
that if Fe:P supply ratios change as the future
surface ocean becomes warmer and more stratified
with lower P fluxes from below (Sarmiento et al.,
2004), we may expect corresponding changes in cell
size of N2-fixing cyanobacteria, new N inputs,
standing stocks of organic carbon and overall
biological community structure.
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