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The niche of an invasive marine microbe
in a subtropical freshwater impoundment
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Growing attention in aquatic ecology is focusing on biogeographic patterns in microorganisms and
whether these potential patterns can be explained within the framework of general ecology. The
long-standing microbiologist’s credo ‘Everything is everywhere, but, the environment selects’
suggests that dispersal is not limiting for microbes, but that the environment is the primary
determining factor in microbial community composition. Advances in molecular techniques have
provided new evidence that biogeographic patterns exist in microbes and that dispersal limitation
may actually have an important role, yet more recent study using extremely deep sequencing
predicts that indeed everything is everywhere. Using a long-term field study of the ‘invasive’ marine
haptophyte Prymnesium parvum, we characterize the environmental niche of P. parvum in a
subtropical impoundment in the southern United States. Our analysis contributes to a growing body
of evidence that indicates a primary role for environmental conditions, but not dispersal, in the lake-
wide abundances and seasonal bloom patterns in this globally important microbe.
The ISME Journal (2015) 9, 256–264; doi:10.1038/ismej.2014.103; published online 20 June 2014

Introduction

‘Everything is everywhere, but, the environment
selects’ (Baas-Becking, 1934; de Wit and Bouvier,
2006) suggests that dispersal is not limiting for
microbes, but that the environment is the primary
factor determining whether a particular microbe is
actively participating in a given community. If true,
microbial biogeographic distributions may be reflec-
tive only of technical limitations in detection,
whereas their active or meaningful participation in
a community will depend on the suitability of a
given habitat to foster positive population growth
(Gibbons et al., 2013; Hambright et al., 2014). The
marine haptophyte Prymnesium parvum Carter is
considered to be a globally invasive species in many
freshwater systems in which it is now a community
member and often dominant. However, recent study
has suggested that P. parvum is not dispersal
limited, as extremely low-density populations have
been detected in habitats that do not experience
P. parvum blooms, many of which are directly
downstream of P. parvum bloom sites (Zamor
et al., 2012). This phenomenon reflects the general

notion of the rare or dormant microbial biosphere in
microbes (Sogin et al., 2006; Caron and Countway,
2009; Jones and Lennon, 2010; Gibbons et al., 2013),
and leads to the hypothesis that environmental
conditions that foster high growth in P. parvum
relative to other microbial constituents are the
principle determinants of P. parvum blooms in
inland freshwater systems.

P. parvum blooms and fish kills have been
observed in many inland aquatic systems world-
wide (Granéli et al., 2012), including waterbodies,
mostly reservoirs, in at least 20 US states (Roelke
et al., 2011; Hambright, 2012). This apparent
incredible range expansion since the first North
American report (Pecos River of southern Texas) in
the 1980s (James and De La Cruz, 1989) represents
an interesting enigma—while P. parvum has an
ability to thrive across a broad range of environ-
mental conditions (Edvardsen and Paasche, 1998),
the conditions found in most North American bloom
sites tend to be far removed from optimal conditions
described from the laboratory study (Baker et al.,
2009). Most inland blooms of P. parvum in the
southwestern United States have occurred at rela-
tively low salinities (1–3 partial salinity units, psu)
during winters when temperatures range from 10 1C
to 20 1C, yet laboratory studies suggest that inland
strains of P. parvum are well suited to high salinities
(8–30psu) and temperatures (20–30 1C) (Baker et al.,
2007, 2009; Hambright et al., 2010, 2014; Roelke
et al., 2011; Patiño et al., 2014). This apparent
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paradox has led to speculation that its toxigenic
capabilities provide a competitive edge to P. parvum
over other algae, allowing blooms to develop during
periods of stress, such as created by low nutrient
availabilities (for a review, see Granéli et al., 2012).
However, while toxicity may have important roles in
predator avoidance and heterotrophy in this uni-
cellular mixotroph, toxin production is unlikely to
provide a competitive advantage to P. parvum to the
degree necessary to lead to bloom formation under
suboptimal environmental conditions (Jonsson
et al., 2009; Remmel and Hambright, 2012).

Because it is a microbial eukaryote that can occur
in immense numbers, encyst and be passively
transported, its dispersal capabilities are potentially
unlimited (sensu Finlay, 2002; but see Martiny et al.,
2006; Hanson et al., 2012). Indeed, examination of
the P. parvum distribution in Lake Texoma (Okla-
homa–Texoma) reveals that P. parvum is dispersed
throughout the lake, yet blooms and fish kills are
common only in areas in which environmental
conditions are conducive for growth (Hambright
et al., 2010; Zamor et al., 2012). Thus, the recent
expansion of P. parvum into new habitats, which is
typically noted only after a bloom and fish kill,
suggests that habitats with suitable environmental
conditions (e.g., elevated nutrients and salinities,
see below) may be becoming more abundant,
particularly in the southwestern United States,
where quality of surface water resources is subjected
to the pressures of climate change and increasing
freshwater demands that accompany growing
human populations and development (Roelke
et al., 2011).

Here we report results of a long-term study of
P. parvum in subtropical Lake Texoma (Oklahoma–
Texas, USA), in which P. parvum blooms are now
commonplace. We use these data to test the
hypothesis that environmental conditions that foster
high growth in P. parvum are the principle determi-
nants of P. parvum blooms in the lake. Our analysis
provides further support for the Baas-Becking
hypothesis ‘Everything is everywhere, but, the
environment selects’, as we identify a primary role
for environmental conditions, but not dispersal, in
the lake-wide distributions and bloom patterns in
P. parvum.

Materials and methods

Study site
Lake Texoma (Figure 1), an impoundment of the Red
and Washita Rivers, was constructed in 1944 for
flood control, hydropower generation and recrea-
tion. The lake is the 12th largest reservoir in the
United States (at normal pool elevation) with a
surface area of 360 km2, and mean and maximum
depths of 8.7 and 26m. The lake watershed occupies
87 500 km2 of the high plains of Texas and the rolling
plains of Texas and Oklahoma. Owing to this

extremely large watershed (watershed area: lake
surface area¼ 243), nutrient loading to the lake is
high and the lake is eutrophic to hypertrophic,
depending on season and location within this
complex, dendritic reservoir (Oklahoma Water
Resources Board, 2010). The watershed also con-
tains abundant deposits of calcium carbonate,
halite, gypsum, anhydrite and other Permian-Salado
evaporites (Ground and Groeger, 1994), which lead
to salinities that often exceed 1psu (defined here as
having a specific conductivity equivalent to 1 g l�1

NaCl), the general limit for fresh water. The
phytoplankton are often dominated by filamentous
and colonial cyanobacteria and the lake is home to a
diverse array of zooplankton, including multiple
daphniids, numerous copepod and rotifer species
(Franks et al., 2001; Hambright et al., 2010), and
more than 50 fish species, many of which are
recreationally important (Matthews et al., 2004).

Lake sampling
We sampled eight littoral sites along the northern
Oklahoma side of Lake Texoma in marinas and
coves, and five pelagic stations in the Red and
Washita River arms of the lake, as well as at the dam
(Figure 1). Littoral samples were taken in shallow
(usually o1m) waters, usually from boat ramps or
docks, if present. Temperature and salinity (as
specific conductance), and dissolved oxygen, chlor-
ophyll and phycocyanin concentrations were mea-
sured in situ with YSI and Hydrolab sondes, using a
single mid-water point for littoral sites, and surface-
to-bottom water column profiles for pelagic sites.
Water samples (1 l; mid-water samples for littoral
sites or 6 to 10m, depending on depth, integrated
samples for pelagic sites) were collected in acid-
washed, deionized- and sample-rinsed Nalgene
bottles, stored on ice in the field and refrigerated
in the laboratory for subsequent analyses of
P. parvum abundances by quantitative PCR (Zamor
et al., 2012) (microscopy (hemocytometer, 6–12
fields per sample) was used in 2006–2007), and for
concentrations of chlorophyll (acetone extraction),
total nitrogen (TN) and total phosphorus (TP) (flow-
injection autoanalysis) (American Public Health
Association, 1998) and pH. Lake surface elevation
data were taken from the 0800 hours measurements
recorded at the Denison Dam (Army Corps of
Engineers–Tulsa District, 2012). Further details of
sampling and sample analyses and additional para-
meters monitored can be found in Hambright et al.
(2010).

Statistical analyses
All statistical analyses were carried out in R (version
3.0.2; R Development Core Team, 2013). We used
logistic regression analysis to examine relationships
between Prymnesium distributions within the
lake (categorized as either presence–absence or
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bloom–no bloom, where bloom was quantified as
X10000cells per ml) and environmental conditions,
in which the predictor variables (identified from
earlier studies; (Hambright et al., 2010; Zamor et al.,
2012) consisted of temperature (1C), salinity (psu),
TN (mg N l� 1), TP (mg P l� 1), molar TN:TP and site
type (littoral or pelagic); N¼ 1181 (rms package;
version 4.0-0; Harrell, 2013). This approach of
dichotomizing the response variable and using
logistic as opposed to a continuous generalized
linear modeling approach was taken because these
response variables best fit our question (i.e., compar-
ing variables predicting presence and blooms) and
because our data are zero inflated owing to a
preponderance of absence and non-bloom situa-
tions. Preliminary analysis of environmental pre-
dictors indicated correlations between TN and TP
and between TP and TN:TP (see Supplementary
Information and Supplementary Figure S1), but
variance inflation factors were sufficiently low (all
o5) to rule out potential effects of multicollinearity
on parameter estimates or goodness-of-fit metrics
(Davis et al., 1986). We quantified goodness of fit of
logistic regression models using the model like-
lihood ratio w2; Nagelkerke’s R2

N as a measure of
explained variance; the C index, a measure of
concordance of model prediction, which ranges

from 0.5 (random) to 1 (perfect), 40.8 indicates a
useful model; and Somer’s Dxy, which measures the
rank correlation difference between concordance
and discordance of predictions to model, and ranges
from 0 (random) to 1 (perfect). Logistic regression
models were further validated using bootstrapping
(n¼ 100) to measure the degree of overfitting; slope
ranges from 0 (extreme overfitting) to 1 (no over-
fitting). Predictors of P. parvum presence and
blooms were further elucidated using classification
tree analyses (rpart package; version 4.1-1; Therneau
et al., 2013). Classification trees complement logistic
regression well because they can capture complex
interactions and non-monotonic relationships
between predictors and response variables, and
display these complex relationships in easily inter-
preted plots (De’ath and Fabricius, 2000). Classifica-
tion trees predicting either presence or blooms of
P. parvum were assembled using the default settings
of rpart. To minimize overfitting, trees were pruned
to minimize cross-validated error (for details, see
De’ath and Fabricius, 2000).

Although chlorophyll, dissolved oxygen and pH
are routinely measured in water quality monitoring
programs owing to ease of measurement, any
relationship between P. parvum and these predictors
may be confounded by the direct influence of algal

Figure 1 Schematic of Lake Texoma location and sampling sites. L1–L8 are littoral sites and P1–P5 are pelagic sites.
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growth and abundances on these three variables.
These variables were strongly correlated with other
variables used in the models (Supplementary Figure
S1), although, as before, the variance inflation
factors were sufficiently low (all o5) to suggest
multicollinearity was not likely a substantial pro-
blem. In addition to the previously described
predictors, our previous analysis (Hambright et al.,
2010) suggested that water level elevation might be a
good predictor of P. parvum abundances in Lake
Texoma, and Grover et al. (2012) have suggested a
potential negative relationship between cyanobac-
terial and golden algal abundances. Therefore, we
also ran logistic regression and classification tree
analyses in which chlorophyll, DO, pH and eleva-
tion (N¼ 1181), and chlorophyll, DO, pH, elevation
and cyanobacterial abundances, as phycocyanin
concentrations (N¼ 560) were included as predictor
variables in an effort to ascertain any increase in
predictive capabilities for P. parvum presence and
blooms by the inclusion of these additional vari-
ables. Full and reduced models were compared
using the corrected Akaike Information Criterion
(for details, see Burnham and Anderson, 2002).

Results

P. parvum bloomed in at least one cove of Lake
Texoma in seven of the nine winters during 2004–
2012 (Figure 2). Highest densities were observed at
littoral sites, such as Lebanon Pool, on the western
Red River arm of the lake, and lower densities
further downstream and on the Washita River arm of
the lake (see also Hambright et al., 2010; Zamor
et al., 2012). As demonstrated previously, prevalent
environmental conditions during the bloom years
included relatively high salinities and nutrients. Net
maximum population growth rates of P. parvum
during the initial bloom phase in Lebanon Pool
(calculated as the slope of the log of P. parvum
densities over time during the initial growth period
of each bloom) scaled positively with salinity, but
were not significantly related (all P40.05) to TN:TP,
pH or temperature (Figure 3).

Logistic regression analysis revealed that the
presence of P. parvumwas best predicted by salinity,
site type, temperature, TP and TN:TP; TN was
not a significant predictor (Table 1). Addition of
chlorophyll, DO, pH and water elevation to the
model resulted in a slight improvement of the
overall model fit, with chlorophyll, pH and water
elevation being added as significant predictors of
P. parvum presence (assessed as Nagelkerke’s R2;
Supplementary Table S1). Model comparison using
corrected Akaike Information Criterion suggested
that the second, 10-predictor model (including
chlorophyll, DO, pH and water elevation) was
strongly preferred over the 6-predictor model
excluding these factors (Supplementary Table S3).
Addition of phycocyanin to the analysis resulted

in a smaller data set (n¼ 560) and did not
improve either 10- or 6-predictor model results
(Supplementary Table S4).

Blooms of P. parvum (defined as X10 000 cells per
ml) were best predicted by salinity, site, tempera-
ture, TN, TP and TN:TP (Table 2). Addition of
chlorophyll, DO, pH and water elevation to the
model also resulted in a slight improvement of the
overall bloom model, with chlorophyll and water
elevation being added as significant predictors of
P. parvum blooms (assessed as Nagelkerke’s R2;
Supplementary Table S2). Corrected Akaike Infor-
mation Criterion model comparison suggested that
the second, 10-predictor model (including chlorophyll,
DO, pH and elevation) was preferred over the reduced,
6-predictor model for prediction of P. parvum blooms
(Supplementary Table S5). Addition of cyanobacteria

Figure 2 Monthly mean abundances of P. parvum and tempera-
ture, salinity (as psu), total nitrogen and total phosphorus
concentrations, and molar N:P in Lake Texoma littoral (black
line) and pelagic (dashed line) stations during 2004–2012.
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to the analysis reduced the size of the data
set (n¼ 560) and slightly weakened both 10- and
6-predictor model results (Supplementary Table S6).

The classification tree analysis of P. parvum
presence generated a pruned tree with three splits
and four terminal nodes with a misclassification rate
of 0.243 (Figure 4a). Only one terminal node
was classified by environmental conditions
(salinity X1.3 psu, temperature o21.7 1C and TP
o0.29mg l� 1) in which P. parvum was likely to be
present. The classification tree analyses of
P. parvum blooms generated a pruned tree with

only one split and two terminal nodes with a
misclassification rate of 0.059 (Figure 4b). In this
case, P. parvum blooms were predicted to be most
common when salinity X1.7 psu.

Discussion

Previously, based on a 3-year analysis of Lake
Texoma littoral sites during winter (January–April)
only, we concluded that salinity and TN:TP were
the primary predictors of P. parvum densities

Figure 3 Net growth rates of P. parvum during initial bloom
development in Lebanon Pool (L2) during the winters of 2004–
2005 through 2011–2012 in relation to mean salinity, TN:TP,
temperature and pH during the period of population increase.
Note that the relationship between growth rate and pH is
confounded by an expected increase in CO2 consumption (and
concomitant increase in pH) with increased growth rates.

Table 1 Results from logistic regression analysis showing the
independent variables, partial logistic regression coefficients (B),
standard errors of the partial slope coefficients (s.e.), Wald test
and the significance level (P)

Independent variables B S.e. Wald Z P-value
(4|Z|)

Salinity (psu) 2.6553 0.2431 10.92 o0.0001
Site (littoral or pelagic) � 0.6409 0.1679 � 3.82 0.0001
Temperature (1C) � 0.1075 0.0108 � 9.98 o0.0001
TN (mg l� 1) � 0.2730 0.2629 � 1.04 0.2991
TP (mg l�1) � 3.2344 1.3448 � 2.41 0.0162
TN:TP (at:at) � 0.0264 0.0071 � 3.74 0.0002
Intercept � 0.1884 0.3672 � 0.51 0.6079

Abbreviations: TN, total nitrogen; TP, total phosphorus.
Model goodness of fit is shown by the model likelihood ratio w2,
Nagelkerke R2

N, the C index, Somer’s Dxy and the bootstrapping slope.
The dependent variable was coded so that 0¼P. parvum absence and
1¼P. parvum presence.
Model w2¼ 356.30, Po0.0001.
R2

N¼ 0.363; C¼ 0.816, Dxy¼ 0.632; Slope¼ 0.976.
N¼1181.
All P-valuesr0.05 are indicated in bold.

Table 2 Results from logistic regression analysis showing the
independent variables, partial logistic regression coefficients (B),
standard errors of the partial slope coefficients (s.e.), Wald test
and the significance level (P)

Independent variables B S.e. Wald Z P-value
(4|Z|)

Salinity (psu) 2.3751 0.2527 9.4 o0.0001
Site (littoral or pelagic) �2.3976 0.7353 � 3.26 0.0011
Temperature (1C) �0.1049 0.0234 � 4.48 o0.0001
TN (mg l�1) 2.1341 0.5686 3.75 0.0002
TP (mg/l� 1) � 15.5889 4.4775 � 3.48 0.0005
TN:TP (at:at) �0.1213 0.0322 � 3.77 0.0002
Intercept �1.0392 0.9167 � 1.13 0.2569

Abbreviations: TN, total nitrogen; TP, total phosphorus.
Model goodness of fit is shown by the model likelihood ratio w2,
Nagelkerke R2

N, the C index, Somer’s Dxy and the bootstrapping slope.
The dependent variable was coded so that 0¼no bloom (P. parvum
o10000 cells per ml) and 1¼bloom (P. parvumX10 000 cells per ml).
Model w2¼ 258.81, Po0.0001.
R2

N¼ 0.481; C¼ 0.921, Dxy¼ 0.843; slope¼ 0.947.
N¼1181.
All P-valuesr0.05 are indicated in bold.

Figure 4 Pruned classification trees for P. parvum presence or
absence (a) and bloom or no bloom (b) using the predictors
salinity (psu), site type (littoral, pelagic), temperature (1C), TN
(mg l� 1), TP (mg l�1) and molar TN:TP. Presence was defined as
detectable by microscope (X166 cells per ml; 2006–2007) and
quantitative PCR (X26 cells per ml; 2008–2012) analyses;
misclassification rate¼ 0.243 (presence) and 0.059 (bloom); N¼1181.
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(Hambright et al., 2010). Although all parameters
examined in that study were correlated with winter
P. parvum densities, a general lack of any significant
relationships between P. parvum and environmental
factors across the complete data set led to the
conclusion that there was a great deal of stochasti-
city behind P. parvum dynamics in Lake Texoma.
Now with an additional 6 years of data, much of the
apparent stochasticity has become predictable.
As before, but now with the complete data set,
including both pelagic and littoral sites, P. parvum
presence and blooms are related positively to
salinity and negatively to TN:TP (Tables 1 and 2
and Supplementary Tables S1 and S2). Both pre-
sence and blooms are also negatively related to site
type and temperature, indicating that P. parvum is
more likely to be present or to bloom in littoral sites
during the winter. While winter P. parvum abun-
dances had scaled positively with both TN and TP
(Hambright et al., 2010), in this study, P. parvum
presence scaled negatively with both TN and TP,
and P. parvum blooms scaled positively with TN,
but negatively with TP. These negative relationships
with nutrients seem contradictory to the nutrient-
bloom paradigm embodied by the general concept of
eutrophication. However, further analysis of the
data reveals that the negative and positive relation-
ships are due to unimodal relationships between the
probabilities of P. parvum presence and P. parvum
blooms with TN and TP (Supplementary Figure S2).
Probabilities for presence and blooms would be
predicted to occur at relatively high TN (1.2–
1.7mg l�1) and TP (100–250 mg l� 1) concentrations,
with both probabilities declining markedly at lower
and higher values.

Additions of chlorophyll, DO, pH and water
elevation resulted in improved model fits for both
P. parvum presence and P. parvum blooms.
Hambright et al. (2010) also noted that the inclusion
of chlorophyll improved their multiple regression
model of winter P. parvum densities. However, the
potential correlation between P. parvum and its
primary photosynthetic pigment is uninformative
with respect to understanding environmental
regulation of P. parvum dynamics. The predictive
capability of pH, which has been reported to
affect toxicity of P. parvum toxins (Valenti et al.,
2010, but see, Cichewicz and Hambright, 2010), and
of DO are similarly compromised, as elevated
pH and O2 concentrations are indicative of high
algal growth rates and blooms. However, pH was
not a significant predictor of P. parvum blooms
generally (Supplementary Table S2). Previously, we
(Hambright et al., 2010) hypothesized that water
elevation could be used to predict P. parvum blooms
because of a strong negative relationship between
salinity in the littoral regions of the lake and water
levels, which reflected the balance between inflows
and evaporation. Roelke et al. (2011) report a similar
role for inflows in three Brazos River system
reservoirs (Lakes Possum Kingdom, Granbury and

Whitney), with blooms occurring only at low
inflows and high salinities. Our present study
also reveals relationships between water level
elevation and both P. parvum presence and blooms
(Supplementary Tables S2 and S3), as well as with
salinity (Supplementary Figure S3), but unlike the
Brazos system in which inflows and salinities are
more tightly coupled, these relationships in Lake
Texoma are nonlinear and very noisy, making useful
interpretation difficult. For example, the counter-
intuitive positive relationships between water level
and P. parvum presence or blooms detected by
logistic regression analyses are driven by unimodal
relationships (Supplementary Figure S2), the left-
hand side of which resulted from a period of relative
drought and lower than normal water levels during
seasons when other conditions conducive to
P. parvum (e.g., cooler temperatures, higher salinities)
were absent. Finally, there has been considerable
discussion pertaining to potential negative (via
allelopathy; see references in Granéli et al., 2012)
and positive (via indirect proliferation of bacterial
prey for P. parvum; see references in Granéli et al.,
2012) impacts of cyanobacteria on P. parvum.
Although we only monitored cyanobacterial abun-
dances during 2009–2012, addition of phycocyanin
concentrations (a proxy for cyanobacterial abun-
dances) to our logistic regression models did not
provide any improvement in predictive capabilities,
even though cyanobacteria are very common in Lake
Texoma during much of the year.

As in previous inland studies, we found that
P. parvum presence and blooms in Lake Texoma
seemed to correlate with non-optimal growth condi-
tions, at least with respect to temperature and salinity
(Hambright et al., 2014; Patiño et al., 2014). During
2004–2012, net population growth rates in Lebanon
Pool were highest at suboptimal cold temperatures,
between 5 1C and 10 1C, as well as suboptimal
salinities, ranging between 0.5 and 2.5psu, during
the bloom development phase, compared with
laboratory optima of 27 1C and 22psu measured for
a P. parvum strain (UTEX-LB2792; originally cited
using the temporary identification LBZZ181,
D Nobles, UTEX Culture Collection, University of
Texas, personal communication) isolated from the
Colorado River, Texas (Baker et al., 2007). Other
experiments using UTEX-LB2797 revealed a logarith-
mic growth–salinity relationship in which maximum
potential growth rates of P. parvum declined at
salinities of 6psu or lower compared with 15 and
30psu (Hambright et al., 2014). Similar findings have
been documented for Norwegian and Danish strains
of P. parvum (Larsen and Bryant, 1998). Not only
were P. parvum growth rates during blooms in
Lebanon Pool, Lake Texoma (Oklahoma–Texas) nega-
tively related to temperatures between 7 1C and 16 1C,
these blooms were large (up to 200000cells per ml)
and quite toxic, as indicated by bioassays and large
fish kills (Hambright et al., 2014; Zamor et al., 2014).
In Hambright et al. (2014), both growth rates and
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general toxicity in cultures were found to increase
with increasing salinity.

We hypothesized that environmental conditions
that foster high growth in P. parvum relative to other
microbial constituents are the principle determi-
nants of P. parvum blooms in inland freshwater
systems. The alternative hypothesis suggests dis-
persal limitation. Two aspects of our data are
supportive of the environment side of the hypoth-
esis: (1) downstream flow in Lake Texoma is
repeatedly introducing P. parvum downlake, yet
blooms remain restricted to uplake, Red River
stretches of the reservoir (Hambright et al., 2014;
Zamor et al., 2014), (2) both our logistic regression
models (compare R2

N, C and Somer’s Dxy) and
classification tree analyses (compare misclassifica-
tion rates) indicate that environmental data were
better at predicting P. parvum blooms than
P. parvum presence. We interpret this as meaning
that presence is more dependent on factors such as
detection limit or propagule pressure or both,
whereas blooms are explicitly associated with
appropriate environmental conditions. Because it
is a microbial eukaryote that can occur in immense
numbers, encyst and be passively transported,
P. parvum’s dispersal capabilities are potentially
unlimited (sensu Finlay, 2002; but see Martiny et al.,
2006; Hanson et al., 2012) and subjected to prob-
abilities related to various potential vectors, such as
wind, migratory-animal-assisted propagation or
even human intervention (Johnson et al., 2008).
For example, Hambright et al. (2014) estimated that
during a P. parvum bloom of 105 cells per ml in
Lebanon Pool (volume B3� 106m3), the total
P. parvum population would exceed 3� 1011 indivi-
duals and represent an immense pool for down-
stream transport of invasive propagules via
hydraulic flushing and advective downstream flow.
Yet, P. parvum, which is often detected downstream,
has yet to bloom in any area of the lake outside the
environmental conditions identified here (Zamor
et al., 2012). A similar argument can be made for
areas downstream of Lake Texoma, as well as many
downstream water bodies in the Canadian River
watershed, which also experiences P. parvum
blooms in upstream systems (Zamor, 2013).

Recently, there has been growing interest focused
on biogeographic patterns in the distributions of
microorganisms and whether general ecological
principles based predominantly on the study of
macrobial species also hold for microbes. For
example, can microbes be invasive? Much of the
discussion has centered on the longstanding credo in
microbiology, ‘Everything is everywhere, but, the
environment selects’ (Baas-Becking, 1934; de Wit and
Bouvier, 2006), which suggests that dispersal is not
limiting for microbes and that the environment is the
primary factor determining whether a particular
microbe is abundant enough to be detected in a
given habitat. Indeed, early morphology-based taxo-
nomic studies of protists tended to conclude that

cosmopolitan distributions for microbes were the
norm (Finlay, 2002; Fenchel and Finlay, 2004). By
contrast, recent taxonomic studies using modern
molecular genetics (i.e., pyrosequencing) have pro-
vided evidence that indeed some microbes seem to
exhibit biogeographic patterns unrelated to environ-
mental conditions (Hanson et al., 2012), although the
underlying mechanisms which explain these pat-
terns are not yet understood. Interestingly, a more
recent study by Gibbons et al. (2013) has provided
support for the Baas-Becking hypothesis, as they
propose that extremely deep sequencing (i.e., on the
order of 1011 sequences) of an individual marine
bacterial community would reveal global phyloge-
netic diversity of the oceans. Within the P. parvum
system, a recent phylogenetic analysis (Lutz-Carrillo
et al., 2010) also provides evidence that long-distance
dispersal in P. parvum is common. There, they found
that isolates of P. parvum from populations in the US
states of Texas, South Carolina and Wyoming share
high levels of similarity in the first internal tran-
scribed spacer in the nuclear ribosomal operon (ITS1)
with P. parvum isolates from Scotland; isolates from a
single lake in north Texas were similar to isolates
from Denmark and Norway; and isolates from Maine
were similar to isolates from England. Isolates
collected from the US state of Washington were most
similar to a clade comprised of isolates from Scot-
land, Denmark, Norway, Texas, South Carolina and
Wyoming, whereas an isolate from Australia was
most similar to the England and Maine clade. Thus, if
everything is everywhere (or has the potential to be),
perceived microbial invasions and range expansions
may indeed be reflective only of technical limitations
in detection or changing environmental conditions.
Alternatively, spatial barriers to dispersal could vary
in strength, from being negligible at local and
regional scales, to stronger at continental, interconti-
nental and global scales (Lutz-Carrillo et al., 2010).
These contrasting hypotheses should be testable with
population genetic surveys.

Classical ecologic theory stipulates that the differ-
ences in taxonomic diversity and composition among
sites will depend on whether species are excluded
from meaningful participation in a particular habitat
by local biotic and abiotic conditions or by dispersal
limitation, in which a species does not arrive at that
particular habitat (Shurin, 2000). Unfortunately, in
microbial systems, the probability of type 2 error
associated with rejecting dispersal as a driving
mechanism is heavily dependent on technological
detection limits of the commonly used molecular
tools. This problem has led some researchers to
suggest that dispersal be redefined as being both
arrival to, and successful establishment in, a given
habitat, as evidenced by metabolic activity and some
level of reproduction (Hanson et al., 2012). Thus,
mere presence would not suffice as evidence that
dispersal had occurred and presumably the problem
associated with detection limits would no longer be
an issue. Unfortunately, this definition of dispersal
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would exclude many microbes that are present in a
community but that are not active, biologically
relevant participants in the community because they
are either extremely rare (Sogin et al., 2006; Caron
and Countway, 2009) or dormant (Jones and Lennon,
2010; Gibbons et al., 2013) under the current
environmental conditions. However, these microbes
could become important community participants if
the environment changed to more favorable condi-
tions (Caron and Countway, 2009). Furthermore, the
use of active community participation to define
dispersal renders ‘Everything is everywhere, but,
the environment selects’ untestable. By contrast, for
microbial taxa for which technical limitations of
detection have been greatly reduced through devel-
opment of new methodologies, we would argue that
differentiation between the roles of dispersal and
habitat suitability in microbial biogeographic pat-
terns can and should be addressed experimentally
(e.g., Ehrlén and Eriksson, 2000; Shurin, 2000).
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