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We would like to refute the suggestion that incor-
porating secondary structure information improves
taxonomy-independent (TI; see Table 1 for list of
abbreviations) 16S rRNA binning methods for
partial 16S rRNA sequence reads. Although 16S
rRNA secondary structure is crucial for its proper
function, it is not clear that nucleotide differences at
positions important for secondary structure contain
unique phylogenetic information that requires dif-
ferent weighting than nucleotide differences at other
positions. We support our position, and show the
large computational expense required to include
secondary structure information, using data from a
simulation study. Our findings are important for

microbial ecologists, as they confirm that an existing
algorithm, ESPRIT-Tree (Cai and Sun, 2011),
performs equally or better without consideration of
secondary structure. Consequently, microbial eco-
logists who are already struggling with computa-
tional limitations analyzing vast data sets need not
suspect that they are missing important improve-
ments in operational taxonomic units (OTU) bin-
ning that could be achieved only at much greater
computational cost, and can analyze data sets with
many millions of sequences with confidence.

Recent advances in high-throughput sequencing
technologies have contributed to an explosion in
sequence data from studies of the microbial diver-
sity in various environments. The analysis of
complex microbial communities frequently includes
large-scale sequencing of 16S rRNA, to estimate
species composition and diversity in many environ-
ments. Although sequencing technologies allow
ever deeper interrogation of microbial communities,
the availability of efficient bioinformatics tools that
handle such vast data sets has become a bottleneck.

A first and crucial step towards microbial com-
munity analyses is the binning of 16S sequences
into groups that contain sequences with a predeter-
mined degree of similarity. In taxonomy-dependent
methods, query sequences are compared at a pre-
determined similarity level with known sequences
deposited in an annotated database (e.g., RDP and
Greengenes). In contrast, TI methods assign query
sequences into a set of OTUs by applying clustering
algorithms to pairwise distances of sequences using
specified distance thresholds (Sun et al., 2011;
Schloss and Westcott, 2011). A crucial advantage
of TI methods is their independence from the
completeness of existing databases, which allows
for the inclusion of novel sequences that often
represent a significant proportion of sequence data.

TI methods generally consist of two major com-
ponents: (1) aligning sequences to build a pairwise
distance matrix and (2) performing clustering ana-
lysis to group sequences into OTUs. Currently used
methods include hierarchical clustering algorithms
such as DOTUR, MOTHUR, ESPRIT, ESPRIT-Tree
and greedy algorithms (Sun et al., 2011; Schloss and
Westcott, 2011).

Multiple sequence alignment (MSA) and pairwise
sequence alignment (PSA) have been applied in TI
methods. MSA is attractive for two reasons; first,

Table 1 Abbreviations used in the text

Abbreviation Definition

DOTUR A software package, mainly used for clustering
sequences

ESPRIT A hierarchical clustering algorithm, mainly used
for clustering sequences

ESPRIT-Tree The fast version of ESPRIT

INFERNAL A sequence alignment algorithm considering
secondary structures

MOTHUR An improved version of DOTUR for analyzing
sequences

MSA Multiple sequence alignment

NMI Normalized mutual information. A metric to
evaluate clustering performances

NW Needleman–Wunsch algorithm, a widely used
global sequence alignment algorithm

OTU Operational taxonomic units

PARTS A sequence alignment algorithm considering
secondary structures

PSA Pairwise sequence alignment

TaxCollector A set of Python scripts that attaches taxonomic
information to sequences in a database

TD Taxonomy-dependent (clustering method)

TI Taxonomy-independent (clustering method)
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each sequence needs to be compared with a
reference alignment only once, avoiding the need
to compare all pairs of sequences, and second,
properties of the reference alignment such as
secondary structure can be used to improve the
multiple alignment. However, several recent studies
show that PSA leads to a much more accurate
estimate than MSA (Huse et al., 2010; Sun et al.,
2011). A frequent criticism of using the classic
Needleman–Wunsch (NW) alignment method in
PSA is that NW ignores the secondary structure
information. However, the assumption that incor-
porating secondary structure information indeed
improves TI methods and subsequent OTU assign-
ment has never been rigorously tested. Thus, we
applied three TI methods, two of them including
secondary structure information, to compare their
performances on a test data set based on partial 16S
rRNA sequences. The sequences had an average
length of 231 nucleotides (range 200–317), covered
the V2 region and were previously generated to
study the association between obesity and the
composition of human gut microbiota (Turnbaugh
et al., 2009). We used the NW algorithm, one of the
most commonly used PSA methods that does not
consider secondary structure information, and two
secondary structure-based alignment algorithms
(i) PARTS (Harmanci et al., 2008), an accurate but
computationally expensive PSA algorithm, and
(ii) INFERNAL (Nawrocki et al., 2009), a MSA
algorithm widely applied in many studies and
incorporated into many workflows.

As noted previously (Sun et al., 2011), one major
obstacle to comparing OTU assignment methods is
the lack of ground truth information for performance
evaluation. To overcome this difficulty, we con-
structed a reference database from the RDP-II
database (Cole et al., 2005) using TaxCollector
(Giongo et al., 2010), so that each reference sequence
was fully annotated. We then ran a MegaBlast search
of the gut data against the reference database, and
used a stringent criterion (497% identity over an

aligned region 497% of the total length of the
sequences) to retain the annotated sequences, which
resulted in a total of about 750 000 reads that can be
confidently classified into 671 species. Due to large
computational costs associated with PARTS, we
generated 10 test subsets, each containing 500
sequences selected from the order Clostridiales in
the TaxCollector annotated data set. Selecting
sequences from within an order increases the
difficulty of OTU picking, which is required for
testing the performance of the algorithms. We
applied NW, PARTS and INFERNAL (using their
default settings) to align the sequences in each data
set and to produce distance matrices. The com-
monly used normalized mutual information (NMI)
metric (Strehl and Ghosh, 2002; Sun et al., 2011)
was applied to evaluate how the clustering out-
comes of the three competing approaches agreed
with the ground truth.

The pairwise sequence distances computed by
NW, PARTS and INFERNAL are shown in Figure 1.
We removed all pairs of sequences with NW
distances greater than 0.15, resulting in a total of
580 295 sequence pairs to compute pairwise dis-
tances. As expected, all distances generated by
PARTS and INFERNAL were greater than those from
NW, because by definition, NW is the optimal
pairwise sequence alignment method and yields
the minimum genetic distance for a given sequence
pair. From the scatter plot, it can be seen that the
variance of PARTS distances is proportional to the
NW distances, whereas the variance of INFERNAL
distances appears independent of NW distances.
The r2 between NW distances and PARTS distances
is 0.95, indicating a high linear association between
distances from NW and PARTS, whereas r2 is 0.79
between NW and INFERNAL distances.

The pairwise distances were then fed into ESPRIT
using the average linkage mode to group the
sequences into OTUs at various distance levels
(0.01–0.15 incremented by 0.01), and corresponding
clustering performance was evaluated by NMI

Figure 1 Scatter plot of pairwise distances. (a) pairwise distances generated by NW and PARTS (r2¼ 0.9497). The data is fitted by a line
(y¼1.0995xþ0.0018) using linear least squares method. (b) Scatter plot of pairwise distances generated by NW and INFERNAL
(r2¼0.7943). The data is fitted by a line (y¼1.2066xþ0.0021) using linear least squares method.
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scores. Figure 2a presents the NMI scores of
NW-based, PARTS-based and INFERNAL-based
approaches at 15 distance levels, over the 10 data
sets. The three approaches performed differently at
various distance levels. Overall, the profiles of
NMI scores from NW-based and PARTS-based
approaches are similar. In contrast, the peak score
of INFERNAL-based approach shifts to the right of
the other two, which implies that as a MSA,
INFERNAL tends to overestimate pairwise distances
and that its best clustering performance occurs at a
larger distance level.

We compared the peak NMI scores of the three
approaches, which by definition correspond to the
best clustering results that these methods can achieve
for each test data set (Figure 2b). The NW-based
ESPRIT-Tree clustering results were also reported for
reference. For each test data set, NMI scores were
computed by each method at various distance levels
(0.01–0.15), and the peak score was recorded to
evaluate the method’s performance on the data sets.
The mean value of peak NMI scores over the 10 test
data sets was computed using each method and the
results were 0.88 for NW-based ESPRIT, 0.87 for NW-
based ESPRIT-Tree, 0.87 for PARTS, and 0.83 for
INFERNAL, which indicates on average NW-based
ESPRIT outperforms others and INFERNAL generates
the worst results. To further illustrate how significant
those results are different from each other, two-tailed
t-tests were performed comparing the mean value of
peak scores computed by NW-based ESPIRT with
those by other methods. We observe that at signifi-
cance level 0.05, NW-based ESPRIT performed
similarly to NW-based ESPRIT-Tree (P¼ 0.10)
and PARTS-based ESPRIT (P¼ 0.08), whereas it
performed significantly better than INFERNAL
(Po10�8). All of the results suggest that the secondary
structure information incorporated in PARTS and
INFERNAL does not significantly contribute to the
clustering accuracy and may even decrease it.

Although the results of the PARTS alignment
are similar to those of NW alignments, their
computational costs differ greatly. NW required only

0.16 CPU hours on a desktop computer (2.8GHz) to
align the sequences of the 10 test data sets, but
PARTS required a total of 58 900 CPU hours (on a
cluster of nodes each with six-core Opteron 4184
processors (AMD, Pasadena, CA, USA) at 2.8GHz).

Our argument, that incorporating secondary struc-
ture information into 16S rRNA sequence align-
ments does not improve the performance of TI
methods, is supported by the simulation study. An
additional simulation study performed on a 16S
rRNA data set against the V9 region from a soil
sample confirmed this observation (data not shown).
The use of multiple sequence alignment techniques
that include secondary structure actually appears to
diminish performance and increase computational
costs. Secondary structure is crucial for the biologi-
cal function of ribosomal RNA and helpful for
constructing valid phylogenetic trees of distantly
related organisms. However, for assigning OTUs in
large 16S rRNA data sets, adding secondary struc-
ture information currently appears to be of little
utility. Our findings should reassure microbial
ecologists that binning algorithms already exist that,
at least for partial 16S rRNA sequence reads,
perform better than existing secondary structure-
based algorithms, which, in any case, are too
inefficient for scaling to the analysis of data sets
containing many millions of sequences. Microbial
ecologists need to be aware that another issue exists
with current binning algorithms for 16S rRNA
sequences in large data sets, particularly the high
frequency of multiple OTU’s that contain sequences
of high similarity. Rather than focusing on second-
ary structure, addressing this other issue will allow
microbial ecologists more accurate insight into the
true diversity of complex communities.
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Figure 2 NMI scores of three approaches. (a) Boxplots of NMI scores. The NW-based results are shown in wide boxes, the PARTS-based
results are shown in narrow boxes, and the INFERNAL-based results are shown in filled boxes. (b) Peak NMI scores generated by ESPRIT,
PARTS and ESPRIT-Tree for 10 test data sets.
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