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Cyanobacteria have had a pivotal role in the history of life on Earth being the first organisms to
perform oxygenic photosynthesis, which changed the atmospheric chemistry and allowed the
evolution of aerobic Eukarya. Chloroplasts are the cellular organelles of photoautotrophic
eukaryotes in which most portions of photosynthesis occur. Although the initial suggestion that
cyanobacteria are the ancestors of chloroplasts was greeted with skepticism, the idea is now widely
accepted. Here we attempt to resolve and date the cyanobacterial ancestry of the chloroplast using
phylogenetic analysis and molecular clocks. We found that chloroplasts form a monophyletic
lineage, are most closely related to subsection-I, N2-fixing unicellular cyanobacteria (Order
Chroococcales), and heterocyst-forming Order Nostocales cyanobacteria are their sister group.
Nostocales and Chroococcales appeared during the Paleoproterozoic and chloroplasts appeared in
the mid-Proterozoic. The capability of N2 fixation in cyanobacteria may have appeared only once
during the late Archaean and early Proterozoic eons. Furthermore, we found that oxygen-evolving
cyanobacteria could have appeared in the Archaean. Our results suggest that a free-living
cyanobacterium with the capacity to store starch through oxygenic CO2 fixation, and to fix
atmospheric N2, would be a very important intracellular acquisition, which, as can be recounted
today from several lines of evidence, would have become the chloroplast by endosymbiosis.
The ISME Journal (2010) 4, 777–783; doi:10.1038/ismej.2010.2; published online 4 March 2010
Subject Category: evolutionary genetics
Keywords: chloroplast; cyanobacteria; plastid evolution

Introduction

Evolutionary importance of cyanobacteria
Cyanobacteria form one of the most morphologically
and genetically diverse group of Prokaryotes (Water-
bury, 1991; Castenholz, 2001) showing cellular and
colony differentiation. They are classified in five
subsections and Orders, comprising unicellular and
filamentous forms (Castenholz, 2001). They repre-
sent the basis of the nitrogen cycle, because the
capacity to fix atmospheric N2 is found throughout
this lineage, making them essential components of
past and modern ecosystems (Bergman et al., 1997;
Capone et al., 1997; Raymond et al., 2004; Tomitani
et al., 2006; Haselkorn, 2007). Molecular phyloge-
netic studies have made it clear that all photoauto-
trophic eukaryotes (plants and algae) share a single
origin, as well as a common endosymbiotic ancestry,
for cyanobacteria-derived chloroplasts (Bhattacharya
and Medlin, 1995; Delwiche et al., 1995; Douglas,

1998; Moreira et al., 2000; Martin et al., 2002; Raven
and Allen, 2003; Stiller et al., 2003; Hedges et al.,
2004; McFadden and van Dooren, 2004; Yoon et al.,
2004; Rodriguez-Ezpeleta et al., 2005; Hackett et al.,
2007 among others). The work of Bhattacharya and
Medlin (1995), Nelissen et al. (1995) and Turner
et al. (1999) suggested the chloroplast lineage arose
at the onset of diversification of the cyanobacterial
lineage. Recent work by Deusche et al. (2008)
suggested, after a careful examination of four
eukaryotic and nine cyanobacterial genomes, that
among cyanobacteria, Nostoc and Anabaena, within
Order Nostocales, harbor more genes related to those
acquired by eukaryotes. This suggests that the
ancestor of the chloroplast could lie within the
heterocyst-forming cyanobacteria. Heterocysts are
specialized cells for N2 fixation that lack the oxygen-
generating photosystem-II (PSII). They consist of a
thick isolating cell wall that is less permeable to
gases, and heterocysts are connected to adjacent
vegetative cells by micro-plasmodesmata, through
which organic compounds (for example, sugars,
amino acids) may pass. Sugar is required for
respiratory reductive power, but most of the
required ATP is produced through PSI, which is
the only PS remaining in the heterocyst. The ATP is
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needed to fuel the activity of nitrogenase, the
enzymatic complex capable to fix atmospheric N2,
which is irreversibly inhibited in the presence of
oxygen (Bergman et al., 1997). Tomitani et al. (2006)
suggested, on the basis of genetic distances and
fossil calibrations, an age ranging from 2450 to 2100
million years ago (MYA) for heterocystous cyano-
bacteria, which may predate the rise of atmospheric
oxygen at about 2300 MYA. However, the work of
Deusche et al. (2008) considered whole genomes,
but cyanobacterial diversity is poorly represented in
genomic studies, thus phylogenetic interpretations
may be misleading at present. Recently, Deschamps
et al. (2008) provided the first evidence of the
existence of starch in bacteria within unicellular,
N2-fixing cyanobacteria, belonging to Order Chroo-
coccales. These authors suggested that starch for-
mation would define the genetic make-up of the
ancestor of the plant kingdom related to storage
polysaccharide metabolism. Unicellular N2-fixing
cyanobacteria differ phylogenetically from the het-
erocyst lineage, and have resolved N2 fixation and
oxygen-generating photosynthesis through temporal
separation, storing polysaccharides in starch gran-
ules during the day to fuel N2 fixation at night
(Falcón et al., 2004). The above suggests that the
ancestor of chloroplasts had the ability to fix N2, fix
CO2 by an oxygen-evolving type-II PS and store
starch. The ancient symbiosis metabolic fluxes
consisted of the export of ADP-glucose from the
cyanobiont to the host, eliminating its ability to
store polysaccharides, thus in habilitating its capa-
city to fuel N2 fixation, demanding import of
reduced nitrogen from the host to the cyanobiont
(Deschamps et al., 2008).

Materials and methods

To estimate the timing of phylogenetic divergence
events, we used a data set including 56 cyanobacte-
rial taxa from all subsections, and nine chloroplasts,
which included members of Rhodophyta, Glauco-
phyta, Chlorophyta and Streptophyta. Phylogenetic
relationships were estimated on the basis of nucleo-
tide sequences of 16S rDNA (1255 bp), rbcL
(1470 bp) and a concatenated set of these two loci.
Bayesian phylogenetic analysis for the individual
and combined loci were conducted with MrBayes
v3.1.2 (Huelsenbeck and Ronquist, 2001), applying
the model with best fit to each data set as identified
with the Akaike Information Criterion, implemented
in Modeltest (Posada and Crandall, 1998; Posada
and Buckley, 2004). Each Bayesian analysis con-
sisted of two independent Markov chain Monte
Carlo runs, each formed by four differentially heated
chains of 5� 106 generations, in which a tree was
sampled every 200 generations. Phylograms topolo-
gically identical to the maximum a posteriori (MAP)
topology were recovered using PAUP* 4.0b10

(Swofford, 2002), and from these, 100 were
randomly selected to conduct dating analyses.

The timing of phylogenetic divergences was
estimated with penalized likelihood (Sanderson,
2002), implemented in r8s v1.71 (Sanderson,
2006). The optimal smoothing parameter for each
data set was identified through a cross-validation
procedure that involved pruning terminal branches.
Dating analyses were conducted on the 100 phylo-
grams topologically identical to the MAP tree. The
trees were calibrated by fixing the origin of the
cyanobacterial lineage at 3500 MYA, based on
the age of oldest fossils represented by stromatolites
(Schopf and Packer, 1987), and at 2700 MYA, the
time at which oxygen-evolving cyanobacteria had
likely quite originated due to reports of steranes in
carbonaceous shales of northwestern Australia
(Brocks et al., 1999). A maximal age constraint of
460 MYA was applied to the crown group of
tracheophytes, considering the oldest vascular plant
fossil remains (Kenrick and Crane, 1997). Minimal
age constraints of 1618 and 1253 MYA were applied
to the heterocyst-forming lineage and to the origin of
plastids, respectively, derived from a preliminary
analysis in which the ages of these lineages were
estimated without imposing minimal age constraints.
Point estimates of age from each of the 100
phylograms were used to obtain mean and standard
deviations of ages of nodes across the tree.

Results and discussion

Ancestry of the chloroplast
Bayesian inferences of phylogenetic relations
between cyanobacteria and chloroplasts with 16S
rDNA and rbcL genes, plus the concatenated set,
produced the following results: (1) chloroplasts
constitute a monophyletic lineage and are most
closely related to N2-fixing unicellular cyanobacter-
ia and (2) heterocyst-forming cyanobacteria are their
sister group (Figure 1). Molecular clock estimates
rooting the origin of cyanobacteria at 3500 and 2700
MYA gave intervals of appearance of N2 fixation in
cyanobacteria within the late Archaen and early
Paleoproterozoic eons, while heterocystous and
unicellular N2-fixing cyanobacterial clades must
have originated within the Paleoproterozoic
(Table 1). The molecular clock estimated age for
the heterocystous cyanobacterial clade coincides
with the dates suggested by Tomitani et al. (2006)
on the basis of genetic distances and fossil calibra-
tions. Dates for the plastid lineage, considering a
cyanobacterial phylogeny, occurred in the mid-
Proterozoic, in agreement with previous studies
(Figure 2 and Table 1).

After evolution of life, the second major event that
transformed the biogeochemistry of the Earth, was
oxygen-evolving photosynthesis by cyanobacteria
(Dismukes et al., 2001; Kopp et al., 2005; Cavalier-
Smith, 2006; Shi and Falkowski, 2008). The Great
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Oxidation Event (GOE), which establishes the
presence of molecular oxygen in the fossil record,
and thus of oxygen-producing photoautotrophs,
occurred as early as 2450 MYA (Holland, 2002).
However, the work of Brocks et al. (1999) showed
that steranes were already present in the geological
record by 2700 MYA, implying biologically pro-
duced molecular oxygen. Microfossils comprising
six bacterium morphotypes, including cyanobacteria,
have been found in Archaean rocks dating between
3200 and 3500 MYA (Schopf, 2006). Thus, current
evidence suggests that the origin of oxygen-produ-
cing cyanobacteria may date from as early as, or
even earlier than, 3500 MYA, and were likely extant
by 2700 MYA. Nevertheless, geological features that
require free environmental oxygen, for example,

banded iron formations, lateritic paleosols and
sulfate deposits, occur shortly before the 2300—
2200 MYA global ‘snowball Earth’, but are not
present at the B2900 MYA Pongola glaciation (Kopp
et al., 2005) contradicting the Archaean appearance
of oxygenic photosynthesis. Further, it has been
argued that the isotopic line of evidence for early
43500 MYA oxygen evolution with q13C values
attributed to C-fixation, sulfate deposits (B3450
MYA) and anaerobic methanotrophy (B2700 Ma),
can occur under anaerobic conditions (Hayes, 1994;
Canfield et al., 2000; Rosing and Frei, 2004; Kopp
et al., 2005). Eigenbrode and Freeman (2006)
examined 13C enrichment patterns of the Hamersley
Province in Western Australia and suggested that
oxygenic photosynthesis must have originated
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Figure 1 Phylogenetic relationships of cyanobacteria and chloroplasts rooted with (a) Gloeobacter violaceus (rbcL and concatenated set),
(b) Chlorobium tepidum and (c) Chloroflexus aurantiacus (16S rDNA). Clades represent chloroplasts, unicellular cyanobacteria with the
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sometime before 2720 MYA. This event eventually
triggered the rise of aerobic ecosystems, fueling their
expansion from anaerobic settings into the photic
zone between 2720 and 2450 MYA. Proterozoic
ocean simulations (Fennel et al., 2005) suggest that
rise of oxygen was delayed due to feedbacks on the
N-cycle. Ammonium, in presence of oxygen, would
be biologically converted to nitrate, and denitrifica-
tion would have rapidly deprived the oceans of
fixed inorganic nitrogen, shifting the Proterozoic
ocean to a N-depleted state. In this scenario, a free-
living cyanobacterium with the capacity to store
starch through oxygenic CO2 fixation, plus fix
atmospheric N2, would be a very important intra-
cellular acquisition. As can be recounted today from
several lines of evidence, this cyanobacterium
would have become the chloroplast through endo-
symbiosis.

Our results propose the existence of oxygen-
evolving cyanobacteria back to the Archaean
B2700—2500 MYA. Our results coincide with the
conclusion of Eigenbrode and Freeman (2006) that
the origin of oxygenic photosynthesis must have
remained contrived to microbial communities,
which led a transition away from purely anaerobic
metabolism, fueling atmospheric oxygenation. The
delay between the appearance of oxygen-evolving
photosynthesis and accumulation of oxygen in
Earth’s atmosphere must have been of several

hundred million years, as suggested by geochemical
evidence (Fennel et al., 2005).

Cyanobacterial N2 fixation and climate
The molecular clock dates of appearance of N2

fixation in cyanobacteria correspond to the late
Archaean and the early Proterozoic eons at B3000—
2500 MYA, coinciding with those estimated by Shi
and Falkowski (2008).

Current global rates of N2 fixation are estimated to
be much smaller than global denitrification. The
balance between both processes during glacial/
interglacial periods has an effect on the amount of
nitrate in the ocean, influencing the rate of carbon
sequestration, which is controlled by iron availa-
bility (Michaels et al., 2001). A feedback system that
controls carbon sequestration dynamics due to N2

fixation/denitrification rates has been proposed,
coupled with iron availability and climate on
millennium time scales.

Most of the N2 fixation (B80%) in today’s oceans
is attributed to Trichodesmium spp. These are
colonial, filamentous, non-heterocystous cyanobac-
teria with specialized cells for N2 fixation (Capone
et al., 1997; Michaels et al., 2001). Molecular clock
estimated the dates of appearance of Trichodesmium
to range between 775 and 504 MYA. The 700- to 500-
MYA time interval is associated to the Pan African
period and it represents in the fossil record the onset
of the Cambrian explosion. The increase in biodi-
versity within the Ediacaran and Cambrian periods
is presumed to have been triggered by the split of the
supercontinent Rodinia (1100—750 MYA), which
preceded Pangea (Maruyama and Santosh, 2008).

Our results suggest that whereas cyanobacteria
such as Trichodesmium could be responsible for
major changes in the Earth’s climate during the last
B700 MYA through their global influence on the C
and N cycles, other biogeochemically relevant
bacteria, such as heterocyst-forming and unicellular,
N2-fixing cyanobacteria, were possibly determinant
in Earth’s functioning during the last 2500 MYA,
making them fundamental players in the global C
and N cycles. Unicellular cyanobacteria related to
the chloroplast line of descent have been acknowl-
edged as important players in oceanic N2 fixation
(Falcón et al., 2004; Montoya et al., 2004). Recently,
members of this clade have been reported to lack
genes for the oxygen-evolving PSII and C-fixation,
with implications on their evolutionary history and
influence on the global C and N cycles (Zehr et al.,
2008).

The dates of the split between Trichodesmium
erythraeum, now present in the Red Sea, and
Trichodesmium havanum, from the Caribbean Sea,
range between 214 and 94 MYA. The above suggests
that these species of Trichodesmium shared a
genetic pool in the Sea of Thetys and diverged with
the split of Pangea. This result again places the
temporality of modern biogeochemically relevant

Table 1 Dates for the chloroplast lineage and related cyanobac-
terial clades represented in MYA, calculated for 16S rDNA, rbcL
and the concatenated set, showing mean and standard deviations
from 100 identical topologies to the maximum a posteriori
topology. Results rooting the cyanobacterial lineage at 3500 and
2700 MYA are shown

3500
MYA
(mean)

s.d. 2700
MYA
(mean)

s.d.

16S rDNA Appearance of 3056 95 2481 52
16SrbcL N2 fixation 3037 106 2614 40
rbcL 2991 80 2463 68

16S rDNA Heterocysts/unicellulars+ 2844 92 2584 41
16SrbcL chloroplasts 2715 102 2658 27
rbcL 2550 66 2497 37

16S rDNA Chloroplasts/ 2743 111 2099 81
16SrbcL unicellulars 2416 107 2131 46
rbcL 2685 73 2070 76

16S rDNA Heterocysts 2092 116 1975 57
16SrbcL 2268 141 2019 53
rbcL 2274 117 2177 92

16S rDNA Chloroplasts 1249 121 1217 73
16SrbcL 1476 98 1242 83
rbcL 1271 36 1236 74

16S rDNA N2-fixing unicellulars 2399 114 1850 85
16SrbcL 2300 135 1806 60
rbcL 2324 86 1841 60
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cyanobacteria and suggests how global arrangement
of emerged continents and oceanic regions had
an important role in biogeography and biogeo-
chemistry.

The closest living relatives of the plastid lineage
are fundamental components of past and modern

oceanic ecosystems. Their double capacity to fix N2

through starch formation had a pivotal role in the
instauration of the primary symbiosis. Our study
suggests early time points of appearance of the
plastid lineage and its sister clades, as well as of the
cyanobacterial capacity to fix atmospheric C and N.
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We conclude that small, gradual changes must have
operated during the millennia after the advent of
biogeochemically important cyanobacteria, through-
out the history of life on Earth. The existence of
different biogeochemically important metabolisms,
such as oxygen-evolving photosynthesis and N2

fixation, eventually changed the redox chemistry
of the planet.

Acknowledgements

We thank E J Carpenter, M Clegg, LE Eguiarte, MF Campa,
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