Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Integrated Genomics and Post-Genomics Approaches in Microbial Ecology

Multiple syntrophic interactions in a terephthalate-degrading methanogenic consortium

Abstract

Terephthalate (TA) is one of the top 50 chemicals produced worldwide. Its production results in a TA-containing wastewater that is treated by anaerobic processes through a poorly understood methanogenic syntrophy. Using metagenomics, we characterized the methanogenic consortium inside a hyper-mesophilic (that is, between mesophilic and thermophilic), TA-degrading bioreactor. We identified genes belonging to dominant Pelotomaculum species presumably involved in TA degradation through decarboxylation, dearomatization, and modified β-oxidation to H2/CO2 and acetate. These intermediates are converted to CH4/CO2 by three novel hyper-mesophilic methanogens. Additional secondary syntrophic interactions were predicted in Thermotogae, Syntrophus and candidate phyla OP5 and WWE1 populations. The OP5 encodes genes capable of anaerobic autotrophic butyrate production and Thermotogae, Syntrophus and WWE1 have the genetic potential to oxidize butyrate to CO2/H2 and acetate. These observations suggest that the TA-degrading consortium consists of additional syntrophic interactions beyond the standard H2-producing syntroph–methanogen partnership that may serve to improve community stability.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1
Figure 2
Figure 3

References

  1. 1

    Anderson I, Rodriguez J, Susanti D, Porat I, Reich C, Ulrich LE et al. (2008). Genome sequence of Thermofilum pendens reveals an exceptional loss of biosynthetic pathways without genome reduction. J Bacteriol 190: 2957–2965.

    CAS  Article  Google Scholar 

  2. 2

    Angelidaki I, Petersen SP, Ahring BK . (1990). Effects of lipids on thermophilic anaerobic-digestion and reduction of lipid inhibition upon addition of bentonite. Appl Microbiol Biotechnol 33: 469–472.

    CAS  Article  Google Scholar 

  3. 3

    Boll M, Fuchs G . (1995). Benzoyl-coenzyme A reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism—ATP dependence of the reaction, purification and some properties of the enzyme from Thauera aromatica strain K172. Eur J Biochem 234: 921–933.

    CAS  Article  Google Scholar 

  4. 4

    Butler JE, He Q, Nevin KP, He ZL, Zhou JZ, Lovley DR . (2007). Genomic and microarray analysis of aromatics degradation in Geobacter metallireducens and comparison to a Geobacter isolate from a contaminated field site. BMC Genomics 8: 180.

    Article  Google Scholar 

  5. 5

    Chan OC . (2000). Characterization of microbial consortia in anaerobic granular sludge—a ribosomal RNA-based molecular approach. In: Civil and Environmental Engineering. University of Hong Kong: Hong Kong, p. 221.

    Google Scholar 

  6. 6

    Chen CL, Macarie H, Ramirez I, Olmos A, Ong SL, Monroy O et al. (2004). Microbial community structure in a thermophilic anaerobic hybrid reactor degrading terephthalate. Microbiology 150: 3429–3440.

    CAS  Article  Google Scholar 

  7. 7

    Conrad R . (1999). Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol Ecol 28: 193–202.

    CAS  Article  Google Scholar 

  8. 8

    Dolfing J . (2001). The microbial logic behind the prevalence of incomplete oxidation of organic compounds by acetogenic bacteria in methanogenic environments. Microbial Ecol 41: 83–89.

    CAS  Google Scholar 

  9. 9

    Dolfing J, Jiang B, Henstra AM, Stams AJM, Plugge CM . (2008). Syntrophic growth on formate: a new microbial niche in anoxic environments. Appl Environ Microbiol 74: 6126–6131.

    CAS  Article  Google Scholar 

  10. 10

    Imachi H, Sakai S, Sekiguchi Y, Hanada S, Kamagata Y, Ohashi A et al. (2008). Methanolinea tarda gen. nov., sp nov., a methane-producing archaeon isolated from a methanogenic digester sludge. Int J Syst Evol Microbiol 58: 294–301.

    CAS  Article  Google Scholar 

  11. 11

    Kleerebezem R, Pol LWH, Lettinga G . (1999). Anaerobic degradation of phthalate isomers by methanogenic consortia. Appl Environ Microbiol 65: 1152–1160.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Kung JW, Loffler C, Dorner K, Heintz D, Gallien S, Van Dorsselaer A et al. (2009). Identification and characterization of the tungsten-containing class of benzoyl-coenzyme A reductases. Proc Natl Acad Sci USA 106: 17687–17692.

    CAS  Article  Google Scholar 

  13. 13

    Lupa B, Lyon D, Gibbs MD, Reeves RA, Wiegel J . (2005). Distribution of genes encoding the microbial non-oxidative reversible hydroxyarylic acid decarboxylases/phenol carboxylases. Genomics 86: 342–351.

    CAS  Article  Google Scholar 

  14. 14

    Martin HG, Ivanova N, Kunin V, Warnecke F, Barry KW, McHardy AC et al. (2006). Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nat Biotechnol 24: 1263–1269.

    CAS  Article  Google Scholar 

  15. 15

    McHardy AC, Martin HG, Tsirigos A, Hugenholtz P, Rigoutsos I . (2007). Accurate phylogenetic classification of variable-length DNA fragments. Nat Methods 4: 63–72.

    CAS  Article  Google Scholar 

  16. 16

    McInerney MJ, Rohlin L, Mouttaki H, Kim U, Krupp RS, Rios-Hernandez L et al. (2007). The genome of Syntrophus aciditrophicus: life at the thermodynamic limit of microbial growth. Proc Natl Acad Sci USA 104: 7600–7605.

    Article  Google Scholar 

  17. 17

    Pelletier E, Kreimeyer A, Bocs S, Rouy Z, Gyapay G, Chouari R et al. (2008). ‘Candidatus Cloacamonas acidaminovorans’: genome sequence reconstruction provides a first glimpse of a new bacterial division. J Bacteriol 190: 2572–2579.

    CAS  Article  Google Scholar 

  18. 18

    Peters F, Shinoda Y, McInerney MJ, Boll M . (2007). Cyclohexa-1,5-diene-1-carbonyl-coenzyme A (CoA) hydratases of Geobacter metallireducens and Syntrophys aciditrophicus: evidence for a common benzoyl-CoA degradation pathway in facultative and strict anaerobes. J Bacteriol 189: 1055–1060.

    CAS  Article  Google Scholar 

  19. 19

    Qiu YL, Hanada S, Ohashi A, Harada H, Kamagata Y, Sekiguchi Y . (2008). Syntrophorhabdus aromaticivorans gen. nov., sp. nov., the first cultured anaerobe capable of degrading phenol to acetate in obligate syntrophic associations with a hydrogenotrophic methanogen. Appl Environ Microbiol 74: 2051–2058.

    CAS  Article  Google Scholar 

  20. 20

    Qiu YL, Sekiguchi Y, Hanada S, Imachi H, Tseng IC, Cheng SS et al. (2006). Pelotomaculum terephthalicum sp. nov. and Pelotomaculum isophthalicum sp. nov.: two anaerobic bacteria that degrade phthalate isomers in syntrophic association with hydrogenotrophic methanogens. Arch Microbiol 185: 172–182.

    CAS  Article  Google Scholar 

  21. 21

    Razo-Flores E, Macarie H, Morier F . (2006). Application of biological treatment systems for chemical and petrochemical wastewaters. In: Cervantes FJ, Pavlostathis SG, van Haandel AC (eds). Advanced Biological Treatment Processes for Industrial Wastewaters. IWA Publishing: London, UK pp. 267–297.

    Google Scholar 

  22. 22

    Sato T, Atomi H, Imanaka T . (2007). Archaeal type IIIRuBisCOs function in a pathway for AMP metabolism. Science 315: 1003–1006.

    CAS  Article  Google Scholar 

  23. 23

    Schink B . (1997). Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61: 262–280.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Smith KS, Ingram-Smith C . (2007). Methanosaeta, the forgotten methanogen? Trends Microbiol 15: 150–155.

    CAS  Article  Google Scholar 

  25. 25

    Stams AJM . (1994). Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 66: 271–294.

    CAS  Article  Google Scholar 

  26. 26

    Tabita FR, Hanson TE, Li HY, Satagopan S, Singh J, Chan S . (2007). Function, structure, and evolution of the RuBisCO-like proteins and their RubisCO homologs. Microbiol Mol Biol Rev 71: 576–599.

    CAS  Article  Google Scholar 

  27. 27

    Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R . (2008). Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6: 579–591.

    CAS  Article  Google Scholar 

  28. 28

    Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM et al. (2004). Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428: 37–43.

    CAS  Article  Google Scholar 

  29. 29

    van Lier JB, Rebac S, Lettinga G . (1997). High-rate anaerobic wastewater treatment under psychrophilic and thermophilic conditions. Water Sci Technol 35: 199–206.

    CAS  Article  Google Scholar 

  30. 30

    Wischgoll S, Heintz D, Peters F, Erxleben A, Sarnighausen E, Reski R et al. (2005). Gene clusters involved in anaerobic benzoate degradation of Geobacter metallireducens. Mol Microbiol 58: 1238–1252.

    CAS  Article  Google Scholar 

  31. 31

    Wu JH, Liu WT, Tseng IC, Cheng SS . (2001). Characterization of microbial consortia in a terephthalate-degrading anaerobic granular sludge system. Microbiology 147: 373–382.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wen-Tso Liu.

Additional information

This paper was corrected on 21st December 2010 to include contributing authors inadvertently ommitted from the original version of the paper

Supplementary Information accompanies the paper on The ISME Journal website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lykidis, A., Chen, CL., Tringe, S. et al. Multiple syntrophic interactions in a terephthalate-degrading methanogenic consortium. ISME J 5, 122–130 (2011). https://doi.org/10.1038/ismej.2010.125

Download citation

Keywords

  • metagenomics
  • methanogenesis
  • syntroph
  • microbial diversity
  • carbon cycling

Further reading

Search

Quick links