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Looking inside the box: using Raman
microspectroscopy to deconstruct microbial
biomass stoichiometry one cell at a time
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Stoichiometry of microbial biomass is a key determinant of nutrient recycling in a wide variety of
ecosystems. However, little is known about the underlying causes of variance in microbial biomass
stoichiometry. This is primarily because of technological constraints limiting the analysis of
macromolecular composition to large quantities of microbial biomass. Here, we use Raman
microspectroscopy (MS), to analyze the macromolecular composition of single cells of two species
of bacteria grown on minimal media over a wide range of resource stoichiometry. We show that
macromolecular composition, determined from a subset of identified peaks within the Raman
spectra, was consistent with macromolecular composition determined using traditional analytical
methods. In addition, macromolecular composition determined by Raman MS correlated with total
biomass stoichiometry, indicating that analysis with Raman MS included a large proportion of a
cell’s total macromolecular composition. Growth phase (logarithmic or stationary), resource
stoichiometry and species identity each influenced each organism’s macromolecular composition
and thus biomass stoichiometry. Interestingly, the least variable peaks in the Raman spectra were
those responsible for differentiation between species, suggesting a phylogenetically specific
cellular architecture. As Raman MS has been previously shown to be applicable to cells sampled
directly from complex environments, our results suggest Raman MS is an extremely useful
application for evaluating the biomass stoichiometry of environmental microorganisms. This
includes the ability to partition microbial biomass into its constituent macromolecules and increase
our understanding of how microorganisms in the environment respond to resource heterogeneity.
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Introduction

Microbial biomass stoichiometry (specifically
carbon (C):nitrogen (N) and phosphorus (P) stoichio-
metry) is a primary determinant of whether mineral
nutrients are sequestered in microbial biomass or
released to the environment during decomposition
(Manzoni et al., 2008). However, little is known
about the how microbial physiology and environ-
mental parameters interact to constrain the range
and variance of microbial biomass stoichiometry.
Microbial biomass is composed of a vast array of

macromolecules, each containing a wide range of
specific functions. These macromolecules can be
assigned to relatively few classes (for example,
carbohydrates, proteins and nucleic acids), each
with a constrained elemental content that can be
linked to its dominant element (Elser et al., 1996).
Proteins are on average relatively rich in N (53% C,
17% N, 0% P by weight), nucleic acids are rich in
P (32.7% C, 14.5% N and 8.7% P), while carbo-
hydrates (37% C, 0% N, 0% P) are rich in C and
contain no N or P (Sterner and Elser, 2002). Shifts
in the relative concentration of these consti-
tuent macromolecule pools ultimately determine
the stoichiometry of microbial biomass. From this
perspective, carbohydrate content should be posi-
tively correlated with biomass C:P and C:N, protein
content should be inversely correlated with biomass
C:N, while nucleic acid content should be inversely
correlated with both biomass C:P and N:P. While
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previous studies have shown a relationship between
microbial biomass P and RNA content in culture
(Makino et al., 2003; Makino and Cotner, 2004) and
in the environment (Hall et al., 2009), few if
any studies have evaluated the effect of changes in
other macromolecular pools on microbial biomass
stoichiometry in an ecological context. Determining
how shifts in constituent macromolecules are
related to changes in biomass stoichiometry will
lead to a more mechanistic understanding of what
controls or constrains microbial biomass stoichio-
metry in nature.

Microbial biomass stoichiometry has been shown
to change in response to physical (for example,
temperature), chemical (for example, resource stoi-
chiometry) and physiological (for example, growth
rate) factors (Makino et al., 2003; Makino and
Cotner, 2004; Cotner et al., 2006). How microbial
biomass changes in response to resource stoichio-
metry is of particular interest because the relation-
ship between biomass stoichiometry and resource
stoichiometry ultimately determines how microor-
ganisms recycle limiting nutrients (Manzoni et al.,
2008), which can markedly affect the growth and
community composition of the surrounding organ-
isms (Danger et al., 2007; Cherif and Loreau, 2009).
The current dearth of information on the relation-
ship between resource stoichiometry and microbial
biomass stoichiometry is due to multiple logistical
constraints. First, most environmental microorgan-
isms cannot be cultured; therefore it is not possible
to follow the response of their biomass stoichio-
metry to experimentally-manipulated resource
treatments. Second, the resource pool of environ-
mental microorganisms is notoriously hard to
define, thus relating resource stoichiometry
to biomass stoichiometry in situ is not feasible.
Third, and perhaps most important, determining
macromolecular biomass composition of micro-
organisms has traditionally required large amounts
of biomass and therefore requires culturing or
enrichment of the organisms of interest or analysis
of undifferentiated microbial communities.

Various technological advances have helped to
overcome these constraints and now allow for direct
measurement of microorganisms and to some extent
their in situ resource pool. For example, advances in
quantitative chemical methods permit high-resolu-
tion analysis of the dissolved organic carbon pool in
aquatic environments (Kim et al., 2006). Although
not widely applied, it is also important to note that
elemental analysis of single microbial cells is
possible using x-ray microanalysis (Norland et al.,
1995), thus avoiding the need to grow organisms in
culture to determine biomass CNP. Also, the recent
application of stable isotope mass spectroscopy to
microbial ecology (see Wagner, 2009 for review) has
allowed for analysis of microbial isotope at unpre-
cedented levels of spatial resolution (30–50nm).
Complementary to these high resolution/single cell
techniques for analysis of the microbial resource

pool and microbial elemental composition, is
Raman microspectroscopy (MS). Raman MS allows
for analysis of macromolecular composition at the
level of the single cell and therefore has the
potential to directly evaluate how constituent
macromolecules contribute to biomass stoichio-
metry, while avoiding the constraints imposed by
isolation and culturing of environmental organisms.
Although X-ray microanalysis and stable isotope
mass spectroscopy can evaluate elemental and
isotopic composition, respectively, Raman MS
has the advantage of eliciting information on
specific classes of macromolecules, and in some
cases specific compounds (De Gelder et al., 2008)
that compose microbial biomass.

Raman MS has been applied to the analyses of
microorganisms for 30 years (Howard et al., 1980).
However, it has only recently been rigorously
applied to environmental microbial communities
(Huang et al., 2007a, b), and its potential to address
key processes in environmental microbiology is only
beginning to be recognized (Wagner, 2009). Here, we
use Raman MS to evaluate the macromolecular
composition of two bacteria, Verrucomicrobium
spinosum and Pectobacterium carotovorum, grown
on minimal media covering a broad range of C:N:P
resource stoichiometry and harvested during log
and stationary growth phase. Specifically we ask:
Is macromolecular composition as determined by
Raman MS comparable to macromolecular composi-
tion derived from traditional analytical methods?
Does macromolecular composition as determined by
Raman MS correlate with total biomass stoichio-
metry in the predicted manner? And finally, what is
the influence of resource stoichiometry, growth
phase and species identity on macromolecular
composition of microbial biomass? Answering each
of the above questions is an important first step
in applying Raman MS to fundamental questions in
microbial stoichiometry and to questions in micro-
bial ecology in general.

Materials and methods

Experimental design and harvesting
V. spinosum Schlesner, 1987 (DSM 4136T) is a
relatively slow growing (0.05–0.15h�1, this study)
member of the bacterial phylum Verrucomicrobia
originally isolated from the epilimnion of a
eutrophic lake (Schlesner, 1987). Members of the
Verrucomicrobia comprise a major group of soil
microorganisms representing up to 10% of the total
bacteria in terrestrial environments (Sangwan et al.,
2004). Pectobacterium carotovorum (subspecies
carotovorum (American Type Culture Collection
100 no. 39048)) previously named E. carotovora is
a relatively fast growing (0.10–0.43 h�1, this study)
gammaproteobacterium from the family entero-
bacteriaceae. It is a plant pathogen (causative agent
of ‘soft rot’) capable of infecting a wide range of host
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tissues (Pérombelon, 1980). We selected these two
environmental organisms as representatives of
bacteria with distinct phylogenetic affiliations,
habitats and growth strategies.

We grew each species in batch cultures
(22 1C±1 1C) in a buffered minimal media contain-
ing varying amounts of C, N and P as described in
Keiblinger et al. (2010). Briefly, C:N:P amendments
resulted in four unique N:P resource ratios repli-
cated at multiple high quantity and low quantity
levels, for a total of twelve unique resource
treatments (Table 1). This design allowed us to
test both the effect of resource stoichiometry and
resource quantity on each species’ macromolecular
composition. To test if the buffer could be used as a
carbon or nitrogen source, we attempted to culture
each species on the complete minimal media
with the exception of glucose and separately in
complete media with the exception of the –NO3

�2

(V. spinosum) or –NH4
þ (P. carotovorum). In each

case, each species was unable to achieve any
significant growth. During the main experiment,
all cultures were harvested by centrifugation during
logarithmic and stationary growth phase as deter-
mined for each resource treatment in a priori growth
experiments. The growth experiments were identi-
cal to the main experiment only that each culture
flask was sub-sampled 7–10 times over the entire
growth phase and evaluated for optical density at
450nm as described in Keiblinger et al. (2010).

Analytical methods
Raman analysis. For analysis with Raman MS
the biomass pellet was preserved by washing with
50ml of 130mM NaCl (vortexed, then centrifuged
at 36700g for 15min) in order to eliminate possible
spectral interference of the medium and resuspended

in 130mM NaCl. An aliquot of 200–500 ml of
the suspension (depending on cell density)
was taken and fixed with paraformaldehyde (final
concentration 3%, 4h, 4 1C; Amann, 1995). The cells
were subsequently washed with phosphate-buffered
saline, transferred to 300–800 ml (depending on cell
density) of a 1:1 (volume:volume) mixture of 96%
ethanol and phosphate-buffered saline and stored
at�20 1C until analysis.

Raman MS analysis are described in detail in the
Supplementary Material, briefly, 1–2 ml of the fixed
cell suspension were dried on a calcium fluoride
slide at 48 1C and dipped into particle-free water to
remove salts and other solutes for 1–2 s before air
drying. For each treatment we collected Raman
spectra from 40 individual cells (20 from each of
two replicate flasks) using a LabRAM HR800 high-
resolution confocal Raman microscope (HORIBA
Jobin-Yvon, Irvine, CA, USA) with an attached
Olympus BX-41 microscope (Mountainview, CA,
USA). From each spectrum we extracted peak
heights at locations, which were previously reported
to represent specific macromolecules belonging to
one of the three classes of interest, that is, proteins,
carbohydrates and nucleic acids (Table 2).

Analytical chemistry of macromolecule composition
Nucleic acids. RNA and DNA were measured by
fluorometry using the fluorescent stain RiboGreen
(Molecular Probes Invitrogen, Carlsbad, CA, USA)
Makino and Cotner, 2004). Centrifuged biomass
samples stored in RNAlater (Ambion, AM7020,
Austin, TX, USA) at�80 1C were first thawed to
room temperature and separated from RNAlater
by centrifugation (32 200 g for 15min). Following
removal of the supernatant, B1mg of biomass
(wet weight) was transferred into a 2ml eppendorf
tube, resuspended in standard buffer, and sonicated
(at 35 kHz, 8min).

Samples were diluted to an appropriate concen-
tration, aliquoted into a microplate and incubated
with RNase and DNase for digestion, or without
enzyme for determination of total nucleic acid
content (1 h, B20 1C). Previous experiments deter-
mined that both the length of the experiment and the
enzyme activity were sufficient to maximize the
degradation of each nucleic acid (data not shown).
After digestion, we added 100 ml of 200�diluted
RiboGreen to each well of a 96-well black poly-
styrene microplate and incubated plates in the dark
for 5min before measuring fluorescence (excitation
480nm, emission 520nm, TECAN infinite M200,
Maennedorf, Switzerland). To calculate the amount
of RNA and DNA in each sample, we compared the
difference in fluorescence between undigested and
digested samples to concurrently determined stan-
dard curves prepared and measured simultaneously
in each plate (Invitrogen Quant iT RiboGreen
Reagent Kit for RNA Lambda DNA Standard,
Invitrogen cat no. R-11490). We quantified RNA at

Table 1 Concentration and molar ratios of each resource
treatment

Treatment C (mM) N (mM) P (mM) C:N C:P N:P

1 150 12.5 0.25 12 600 50
2 150 12.5 0.025 12 6000 500
3 150 1.25 0.25 120 600 5
4 150 1.25 0.025 120 6000 50
5 150 0.125 0.25 1200 600 0.5
6 150 0.125 0.025 1200 6000 5
7 30 5 0.1 6 300 50
8 30 5 0.01 6 3000 500
9 30 0.5 0.1 60 300 5
10 30 0.5 0.01 60 3000 50
11 30 0.05 0.1 600 300 0.5
12 30 0.05 0.01 600 3000 5

Lists the molar concentration of each resource amendment for each
treatment, as well as the intended resource ratios of each treatment at
the beginning of the batch culture experiments. Treatments 1–6 mirror
treatments 7–12 except they contain two- (N and P) to fivefold (C)
more of each element than the higher numbered treatments. There-
fore, treatments 1–6 are referred to as the low-quantity treatments and
treatments 7–12 are referred to as the high-quantity treatments in
the text.
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several time points during the sample processing
and saw no significant degradation during the time
it took us to analyze the samples or for several hours
thereafter.

Protein and carbohydrate analysis. Frozen bio-
mass pellets stored at �80 1C were freeze-dried
(�50 1C, 20 mbar) and weighed before being resus-
pended in Milli-Q water, and pulse-sonicated in
an ice-bath for 100 s with a ‘microtip’ sonicator
(Branson Sonifier W-250D, Danbury, CT, USA).
Sonicated samples were diluted with 0.1M Tris-
HCl buffer (pH 7.5) to a concentration of B50 mg
biomass ml�1, and analyzed using the Bradford
assay (Bradford, 1976) taking bovine gamma globu-
line as a standard.

For carbohydrate analysis, biomass pellets were
freeze-dried, weighed, sonicated (as described above)
and diluted with distilled water to reach a concentra-
tion ofB1mg cells ml�1. Diluted samples (0.5ml) were
mixed with 0.5ml of phenol solution (5g per 100ml)
and 2.5ml of concentrated H2SO4 (95%) and incubated
(50–60 1C, 1h). Samples, glucose standards and blanks
were cooled in an ice bath before photometric
measurement at an absorbance of 488nm with final
carbohydrate content expressed in glucose equivalents
(Daniels et al., 2007).

Biomass CNP analysis. Total P content of bacterial
biomass was determined through acid extraction with
HNO3 (65%) and HClO4 (70%) and subsequent photo-
metric analysis (Schinner et al., 1993). Total biomass N
and C content were measured using an elemental
analyzer (EA1110, CE Instruments, Milan, Italy).

Statistical analysis. We reduced each Raman
spectrum to a series of 15 peaks, which had been

previously identified in the literature (Table 2).
On the basis of their identification we grouped these
peaks into one of three macromolecular classes
(three proteins, eight carbohydrates and four nucleic
acids). For each class of macromolecules we com-
puted the sum of the respective peak heights for
each cell. Mean sums of peak heights (total of 40
cells per treatment) were computed and tested for
correlation (Pearson’s R) with macromolecular con-
tent determined by analytical chemistry. The rela-
tionship between macromolecular composition and
biomass stoichiometry was tested using simple
linear regression, using JMP software (SAS Institute,
Cary, NC, USA). For each analysis we only com-
pared microbial biomass sampled from the same
flask during the same experiment. Experiments for
V. spinosum were repeated on multiple dates but
analysis of wet chemistry was only conducted for a
single date. Therefore, we had fewer observations
for V. spinosum than for P. carotovorum. This
resulted in fewer data points to compare macro-
molecular composition determined by Raman MS
with that determined using traditional analytical
methods for V. spinosum than P. carotovorum
(Figure 1). This was also true, although to a lesser
extent, for comparison of biomass stoichiometry and
macromolecular composition as determined by
Raman MS (Figure 2).

To assess the effect of each treatment on macro-
molecular composition the data mean sum of peak
heights from 15 peaks (Table 2) was used as input for
multivariate analyses. We used Principal compo-
nent analysis (PCA) and Canonical discriminant
analysis (CDA) as unconstrained and constrained
ordination techniques, respectively. The CDA was
carried out on a full-factorial design defined by
two species� two growth phases� two resource

Table 2 Subset of Raman MS peaks used for each analysis

Wave number (cm�1) Code Macromolecular assignment Reference PC 1 loading PC 2 loading

440 ca 1 carbohydrates De Gelder et al., 2007 0.761 0.323
481 ca 2 carbohydrates Goral and Zichy, 1990 0.912 0.354
665 na 1 nucleic acids (guanine) (De Gelder et al., 2007;

Maquelin et al., 2002)
�0.652 0.351

723 na 2 nucleic acids (adenine) (De Gelder et al., 2007;
Maquelin et al., 2002)

�0.769 0.348

785 na 3 nucleic acids (cytosine, uracil) (De Gelder et al., 2007;
Maquelin et al., 2002)

�0.736 0.498

854 ca 3 carbohydrates De Gelder et al., 2007 0.884 0.133
936 ca 4 carbohydrates De Gelder et al., 2007 0.949 0.102
1004 pr 1 phenylalanine in proteins De Gelder et al., 2007 �0.572 �0.754
1030–1130 a 5 carbohydrates, mainly -C-C- (skeletal) Schuster et al., 2000 0.710 �0.287

ca 6 carbohydrates, mainly Schuster et al., 2000 0.931 0.372
ca 7 carbohydrates, mainly Schuster et al., 2000 0.915 0.402
ca 8 carbohydrates, mainly Schuster et al., 2000 0.944 0.144

1254 pr 2 proteins (amide III random) Maquelin et al., 2002 �0.823 �0.046
1575 na 4 nucleic acids (guanine, adenine) (De Gelder et al., 2007;

Maquelin et al., 2002)
�0.881 0.058

1660–1670 pr 3 proteins (amide I) Maquelin et al., 2002 �0.821 �0.518

Lists each of the peaks from the Raman microspectrascopy spectra that were included in the analyses, the position of each peak, their literature
source and the factor loading of each peak for the principal component analysis on each principal component.
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quantities� two resource qualities (as N:P levels).
This was achieved by combining the two lower (0.5
and 5) and the two higher (50 and 500) resource
treatments. Combination of nutrient treatments in
order to simplify analyses was supported by the

results of the PCA suggesting the formation of two
resource N:P groups (upper two resource N:P levels
versus lower two levels) rather than a continuous
response along a resource N:P gradient. The CDA
was complemented by non-parametric permutational
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Figure 1 Compares macromolecular composition measured using analytical chemistry with that generated from Raman microspectro-
scopy (sum of mean peak height for all peaks in each macromolecular category). V. spinosum are presented in the top row (a, c and e) and
P. carotovorum are presented in the bottom row (b, d and f).
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Figure 2 Compares biomass stoichiometry (atomic ratios) with relative macromolecular composition generated from Raman
microspectroscopy (sum of mean peak height for all peaks in each macromolecular category). Lines represent least square regressions
with associated r2 and P-values. V. spinosum data are presented in the top row (a, c and e) and P. carotovorum data are presented in the
bottom row (b, d and f).
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MANOVA (Anderson, 2001) on the basis of Eucli-
dean distance. Variation of macromolecular compo-
sition among cells from a given treatment
was determined by computing Euclidean distances
(Legendre and Legendre, 2003) to a multivariate
mean (the centroid) on the basis of the 15 standar-
dized Raman peaks (see Supplementary Material
for details). All multivariate statistics were carried
out using the statistical language environment R
(R-Development-Core-Team, 2005).

Results

Variance in resource stoichiometry resulted in
significant phenotypic plasticity of each organism’s
growth rate. Specifically, V. spinosum showed a
threefold difference in growth rate (ranging from
0.05–0.15 h�1) and nearly 300-fold difference in
biomass yield (0.003 and 1.03 g dry mass l�1).
P. carotovorum had a more constrained but still
variable physiology growing between 0.1–0.43h�1

and yielding 0.18–0.35 g dry mass l�1.
We compared macromolecular composition deter-

mined by Raman MS with traditional methods by
plotting values from each method against each other
(Figure 1). For each species carbohydrate content, as
determined by Raman MS, was significantly and
positively correlated with carbohydrate content
determined by chemical analysis (Figures 1a and b).
Similarly, nucleic acid content determined by
each method was also significantly and positively
correlated (Figures 1e and f). Protein content
determined by Raman MS, however, did not corre-
late with protein content as determined by the
Bradford assay for either species (Figures 1c and d).
For P. carotovorum, when only the low resource N
treatments (treatments 5, 6, 11 and 12) were
considered there was a significant correlation bet-
ween protein content determined by each method
(Figure 1f). It was not possible to do the same
analysis for V. spinosum because of missing data
in the low resource N treatment groups.

We next evaluated relationships between each
of the three macromolecular classes and biomass
stoichiometry to see if analysis with Raman MS
could be used to partition total biomass stoichio-
metry as hypothesized. For each species, carbo-
hydrate content was positively and significantly
correlated with biomass C:N (Figures 2a and b).
Similarly, proteins were significantly and negatively
correlated with C:N, as hypothesized (Figures 2c
and d). The nucleic acid—biomass C:P relationship
were in the hypothesized direction for both species,
however in both cases the relationship was notice-
ably weaker. Specifically, for V. spinosum there was
a weak, negative but not significant correlation
between nucleic acid content and biomass C:P
(Figure 2e). Although for P. carotovorum the rela-
tionship was negative and significant (Figure 2f).

By using PCA we investigated how macromole-
cular composition differed between growth phase,
resource treatment and species. The first two
principal components (PC 1 and 2, Table 2)
explained 80.7% of variation in Raman MS-derived
macromolecular composition with PC 1 alone
explaining over two-thirds of the variation (Figure 3).
Raman peaks within a macromolecular class (carbo-
hydrates, proteins and nucleic acids) loaded in
similar directions in PC space, but loaded in
different directions from each other (Figure 3d).
Specifically, carbohydrates were positively associ-
ated with PC 1, whereas nucleic acids and proteins
loaded negatively on PC 1. In addition, differences
in nucleic acids and proteins were the cause of the
majority of the separation along PC 2 (Figure 3d).
Coding data points (that is, single cells) by the
various treatments showed a shift in growth phases
along PC 1 (Figure 3b), and a separation of resource
N:P levels along PC 2 (Figure 3a). Thus, a shift from
the log to the stationary phase was associated with an
increase in carbohydrates, while cells growing loga-
rithmically were richer in nucleic acids and proteins
(Figure 3b). Also, variation in macromolecular com-
position was higher for cells in stationary growth
phase than for the logarithmically growing cells,
which were more constrained in macromolecular
composition (Figure 4). This result was further
corroborated by the higher distances to centroids in
Euclidean space (a metric that compares multivariate
variation within a treatment) for stationary cells
relative to logarithmic cells (Figure 5). A two-way
ANOVA on these distances confirmed a significant
difference in variation of macromolecular composi-
tion between growth phases (F1,1996¼ 470.3, Po0.001)
and also indicated a significant difference in variation
between species (F1,1696¼ 99.4, Po0.001) with
V. spinosum cells having greater variability in macro-
molecular composition than P. carotovorum cells
(Figures 4 and 5). A significant interaction term
(F1,1696¼ 80.5, Po0.001) between species and growth
phase was supported by Tukey (Honestly Significant
Difference) post-hoc tests, indicating significant dif-
ferences between each species and growth phase
combination (all Po0.001), except for log-phase in
which the composition of each species was not
significantly different from each other (Table 3).

The PCA plots also suggested that cells grouped
distinctly between the two lower and the two higher
resource N:P treatments. To evaluate this we con-
densed resource N:P levels to a two-level factor
(high N:P¼ 50 and 500 and low N:P¼ 0.5 and 5).
A permutational ANOVA (Table 3) found macro-
molecular composition to be significantly different
between high and low resource N:P levels, with a
stronger effect of resource N:P on biomass composi-
tion of P. carotovorum and in logarithmic phase.
These differences in macromolecular composition
driven by resource N:P separated primarily along
PC 2 with high resource N:P associated with
higher abundance of proteins and lower abundance
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of nucleic acids, as would be expected on the basis
of stoichiometric principles (Figure 4). This pattern
was clear for both species in stationary phase

(Figures 4c and d). In logarithmic phase, a similar
pattern was found for P. carotovorum with clear
shifts between resource N:P levels along PC 2, but
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Figure 4 Shows the effect of resource stoichiometry on macromolecular composition as determined by Raman microspectrascopy. Data
is sorted in each panel by log and stationary phase and by species. Logarithmic phase for (a) V. spinosum and (b) P. carotovorum,
stationary phase for (c) V. spinosum and (d) P. carotovorum.
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Figure 3 Principal component analysis (PCA) was computed on 15 Raman peaks belonging to specific macromolecule classes. Scores
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not for V. spinosum, which showed very stable
macromolecular composition in logarithmic phase
(Figures 4a and b).

We further analyzed the selected Raman spectra
with CDA to evaluate if we could use the Raman MS
data to discriminate between species and levels of
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Figure 5 Analyses of distances indicating differences in macromolecular composition. (a) For each unique treatment (Table 1)
multivariate distances of individual cells to the treatment centroid in Euclidean space were computed based on the 16 Raman peaks.
Histograms of distances to the centroid express the variation of macromolecular composition among individual cells of the various
treatments. Data of one treatment (marked by an arrow) was excluded to allow computation of the two-way ANOVA testing effects
of growth phase and species. (b) For each factor, distances between centroids were calculated while holding all other factors constant.
All boxplots show median (black line), 1st and 3rd quartiles (box), and 5 and 95% quantiles (whiskers).

Table 3 Permutational non-parametric ANOVA comparing individual treatments

Effect V. spinosum P. carotovorum

log-phase stationary phase log-phase stationary phase

Resource quantity F1,376¼ 5.9 F1,396¼3.6 F1,476¼ 56.7 F1,476¼5.6
P o0.01 P o 0.05 P o 0.001 P o 0.001

N:P resource quality F1,376¼ 8.4 F1,396¼ 92.2 F1,476¼ 216.0 F1,476¼ 160.4
P o 0.01 P o 0.001 P o 0.001 P o 0.001

Interaction F1,376¼36.6 F1,396¼4.7 F1,476¼ 38.3 F1,476¼10.9
P o 0.001 P o 0.05 P o 0.001 P o 0.001

Post-hocs all tests significant one test nonsignificant*,a one test nonsignificant*,b all tests significant
Fmin¼8.5 Fmin¼ 11.1 Fmin¼ 54.8 Fmin¼8.2

Pmax¼ 0.006 Pmax¼0.006 Pmax¼ 0.006 Pmax¼ 0.006

a,*No effect of resource quantity at low resource N:P (F1,238¼ 1.4 P¼1.0).
b,*No effect of resource quantity at high resource N:P (F1,238¼ 3.6 P¼0.06).
Separate analyses were run for each species and each growth phase because of differences in dispersion between species and growth phases.
Given are F-values (subscripts are degrees of freedom) and significances (from 1000 permutations) for effects of resource quantity, resource N:P
(as condensed two-level factor) and the interaction effect. Because of significant interaction effects, all analyses were followed by post-hoc
multiple pair-wise comparisons using a Bonferroni adjustment of significance values. All post-hoc tests were significant except two (see footnote
in table). The last line of the table gives minimum F and maximum P-values for all significant post-hoc tests.
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resource quantity, which we were unable to do with
PCA (Table 4). We related the dimensions hosting
variability (that is, the PCA axes) to those hosting
treatment differentiation (that is, the CDA axes) by
projecting PC axes onto the CDA ordination plots
(Figures 6c and d).

The first CDA axis explained over 40% of among
group variation and was able to successfully classify
species with a success rate of 96.7% (Figure 6a).
Species primarily differed in the abundance of a subset
of the carbohydrate peaks (ca 1, ca 2, ca 3 and ca 8, as
defined in Table 2) and P. carotovorum was generally
enriched in nucleic acids and proteins relative to
V. spinosum. Interestingly, CDA axis 1 was found to

correlate with PC 3, 4 and 5 (Figure 6c) indicating that
the differences between species were not because of
the most variable Raman peaks but rather those that
changed little across resource treatments.

CDA axis 2 explained a similar amount of
variation (36.7%) as CDA axis 1 and successfully
discriminated between high and low resource N:P
with a success rate of 89.7% (Figure 6a). Differences
between resource treatments were again associated
with differences in proteins and nucleic acid
content and to a lesser extent some carbohydrate
peaks (Figure 6c). Also, differences between
resource N:P levels were greater for P. carotovorum
than for V. spinosum and cells in the high resource

Table 4 Results of the CDA analysis

Canonical axis Eigenvalue Canonical R Percentage variance
among groups

Cumulative
percentage

w2 value Df Significance

CD_1 4.02 0.9 40.5 40.5 8536.4 225 o0.001
CD_2 3.65 0.89 36.7 77.2 5755.1 196 o0.001
CD_3 1.05 0.72 10.6 87.8 3105.8 169 o0.001
CD_4 0.38 0.52 3.8 91.6 1864.5 144 o0.001
CD_5 0.33 0.42 3.3 94.9 1311.0 121 o0.001
CD_6 0.21 0.4 2.1 97.0 825.5 100 o0.001
CD_7 0.13 0.3 1.3 98.3 494.9 81 o0.001

Results of canonical discriminant analysis (CDA) using the factors: species, growth phase, resource quantity and resource N:P in a combined
factor as grouping criterion. For the first seven canonical axes the table gives Eigenvalues, canonical correlation coefficients, percentage of among
group variation explained by each canonical axis, cumulative percentages of variation explained and the results of tests of significance for
each axis. In all, 14 of a maximum possible of 15 canonical axes were significant. The first four axes explained more than
91% of among group variation.
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Figure 6 Canonical discriminant analysis (CDA) was computed on 16 Raman peaks belonging to specific macromolecule classes. Scores
on CDA axes 1 and 2 (a), and 3 and 4 (b), respectively. Symbols are shaded according to major factor discriminated by the respective CDA
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Deconstructing microbial biomass with Raman MS
EK Hall et al

204

The ISME Journal



N:P treatments had higher protein content and lower
nucleic acid content than cells in the low resource
N:P treatments, corroborating the results of the
PCA (Figure 6a).

Additional CDA axes had limited but not negli-
gible predictive power. CDA axis 3 explained a
comparably small amount of between-treatment
variation (B10.6%) but it was able to correctly
assign growth phases (Figure 6b) with a success
rate of B76%. CDA axis 3 was positively associated
with carbohydrates and negatively with proteins
and nucleic acids (Figure 6d) and correlated with
PC 1, supporting the conclusion of the PCA that the
majority of variation in macromolecular composi-
tion was because of differences in growth phases.

Discrimination in resource quantity was not visible
along any CDA axis (Supplementary Figure 1),
consistent with the PCA results (Figure 3c), even
though permutational ANOVA did identify signi-
ficant effects of resource quantity for all species
and growth phases (Table 3). However, these were
comparably weak (low F-values) and classification
success for resource quantity (B66% success rate)
was close to, but still significantly different from, the
random success rate of 50% (Table 5). When using
all CDA axes with significant discriminatory power
for a leave-one-out-cross-validation scheme, overall
classification success was maximal for species and
resource N:P levels (both 490%), followed closely
by growth phase with approximately 82% (Supple-
mentary Figure 1, Table 5).

Discussion

Our results show that analysis of a subset of iden-
tified peaks from the Raman spectra was sufficient
to link variance in constituent macromolecular

pools to variance in biomass stoichiometry. With
minor exceptions, macromolecular composition as
determined by Raman MS correlated well with
macromolecular composition determined by tradi-
tional methods and showed predictable relationships
with microbial biomass stoichiometry. In addition,
Raman MS gave information indicative of an organ-
ism’s resource environment and physiological status
(that is, growth phase) and provided insight into how
microbes respond to differences in resource stoichio-
metry. This suggests that analysis with Raman
includes the majority of the macromolecule pools
responsible for variance in biomass stoichiometry
and is potentially a useful tool for evaluating the
ecology of environmental microorganisms.

The relationships between macromolecular com-
positions as analyzed by Raman MS and traditional
analytical techniques showed that Raman MS gave
a reliable signal of macromolecular composition for
carbohydrates and nucleic acids but not for proteins
(Figure 1). We propose three possible explanations
for the differences between protein content as
determined by Raman MS versus that determined
by the Bradford assay. First, we used peak identities
that had been assigned in the literature (Table 2).
These identifications came from a variety of organ-
isms, which did not include either species consi-
dered here. Therefore, it is possible that the peaks
we identified as proteins may actually represent
macromolecules other than proteins in our
organisms. Similarly, it is possible that non-protein
macromolecules occurred in the range of the Raman
spectra that also included one or more protein peaks
used in the analysis and had a masking effect on
the identified peak(s). Third, protein peaks we used
from the Raman spectra may have only represented
a portion of the total protein content of the entire
cell, that is, variance in protein content was driven
by proteins not identified in the subset of peaks we
used in this analysis. This third possibility is at least
partly corroborated by the close correlation between
the sum of Raman protein peak heights and protein
concentration determined by the Bradford assay
for low N treatments but not for high N treatments
(Figure 1d). This suggests that when excess N
was present, cells may have synthesized protein
not identified by the peaks in Table 2, for example,
storage proteins. However, the sum of Raman
protein peak heights was negatively and signi-
ficantly correlated to biomass C:N (Figures 2c and d)
and responded to N:P resource treatments in
a manner consistent with stoichiometric predictions
(Figure 3a and 4). These final two results suggest
that even in the absence of agreement with the
Bradford assay Raman MS captured the portion of
the protein pool responsible for variance in bio-
mass N and those that were most likely to respond
to N additions.

Although protein and carbohydrate content
derived from analysis with Raman MS showed
significant relationships with C:N as predicted

Table 5 Classification success of the canonical discriminant
analysis (CDA)

CDA
classification
success (%)

Expected classification
success upon random
group allocation (%)

Combined factor
(16 factorial
combinations)

53.8 6.6

Species 98.6 50.5
Growth phase 82.9 50.0
Resource quantity 66.4 50.3
Resource N:P level 93.3 50.5

Classification success of the canonical discriminant analysis (CDA)
following a leave-one-out-cross-validation scheme. Percentage of
correctly classified cells are given for the combined factors used as
grouping criterion in the CDA, and the four factors (species, growth
phase, resource quantity and resource N:P), separately. The first
column gives percentages of cells correctly classified to each level of
the respective factor using all axes of the CDA identified as significant
(see Table 4). The second column gives expected classification
success on random group allocation analytically computed from the
respective group sample sizes. Permutational tests indicated that
achieved classification success was significantly different from
expected success for all factors (all P o0.001).
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(Figures 2a–d), the negative relationship between
nucleic acid content and biomass C:P was relatively
weaker for both species and only significant for
P. carotovorum (Figures 2e and f). The weaker
relationship between biomass P and nucleic acid
content has two probable sources. First, RNA and
DNA were analyzed per unit wet mass. Therefore,
some of the variation in the nucleic acid—biomass P
relationship may have been because of differences
in water content of the biomass used for nucleic
acid analyses. In addition, it is possible that some of
the RNA in the samples analyzed for RNA quantity
by chemical analyses had disproportionate RNAse
activity compared with those samples analyzed by
Raman MS. However, we did conduct a time-series
analysis where we measured RNA at several inter-
vals during sampling handling and preparation and
saw no decrease in RNA quantity during the time it
took to prepare the samples and for several hours
beyond that period (data not shown). Therefore, it
is unlikely that RNA in the samples processed for
chemical analysis experienced disproportionate
RNA degradation compared with those samples
processed for Raman MS. More likely, bacteria are
known to accumulate significant quantities of P
as polyphosphates when P is available in excess of
immediate biomass requirements (Kornberg et al.,
1999). The relationship between biomass P and
nucleic acid content has been shown to decouple
when cells are grown on P-rich media (Makino and
Cotner, 2004). However separating the data by
growth phase or by P-treatment did not reveal an
effect of either on the nucleic acid—biomass C:P
relationship (data not shown). Regardless, it is still
likely that for some treatments nucleic acids were
not the main pool of P in the cell, and therefore
a weaker relationship between biomass C:P and
nucleic acid content would be expected.

In addition to a clearer understanding of the
contribution of macromolecular composition to
biomass stoichiometry, analysis with Raman MS
gave insight into how variance in resource stoichio-
metry affected microbial physiology. Previous
studies have shown that cells in logarithmic
and stationary phase differed significantly in their
Raman spectra but the differences were not greater
than the differences between species (Huang et al.,
2004). In our study, PCA and CDA analyses revealed
greater variation of macromolecular composition
between growth phases and between resource treat-
ments than between species (Figure 3). Moreover,
cells in stationary phase had highly variable macro-
molecular composition, showing significant popu-
lation heterogeneity (Figure 5). These results suggest
that microorganisms sampled from the natural
environment, where many cells are quiescent (for
example, in stationary phase) and resources are
heterogeneous, are unlikely to be taxonomically
distinguishable on the basis of Raman MS spectra
alone. Although an unconstrained analysis (PCA)
was unable to differentiate between species, the

CDA using just the two species as a grouping crite-
rion was able to accurately assign species identity
to a cell in 97.9% of the cases. This constrained CDA
allowed to ask in which manner the macromolecular
composition of species differed from each other.

Successful species differentiation by the CDA
was because of differences in the least variable
Raman peaks. This result has interesting and some-
what intuitive implications. If differences between
phylogenetically distinct organisms are present
in macromolecules that show low phenotypic plasti-
city (that is, are conserved across a variable resource
environment), this suggests that there may be a basic
cellular architecture that defines a species, or at
least is conserved within a given phylum. Although
this is somewhat intuitive, that is, species are
‘different’, it suggests that analysis with Raman MS
using a limited subset of identified peaks from
the complete Raman spectra, can identify in which
manner the macromolecular composition of species
differ from one another. This provides independent
empirical and mechanistic support for the hypo-
thesis that individual species should differ in their
biomass stoichiometry (Makino et al., 2003; Danger
et al., 2008). Such linkages between phylogeny and
biomass composition are aided by the ability of
Raman MS to be coupled with fluorescence in situ
hybridization and to detect shifts in isotopic
composition of different macromolecules, thus
lending itself to isotope-labeled substrate studies
(Huang et al., 2007b). The combination of fluores-
cence in situ hybridization and Raman MS allows
information on macromolecular composition to be
collected from a well-defined group of target organ-
isms and to identify compositional variability with-
in and between microbial populations. In addition,
studies with isotope-labeled substrates can identify
how specific resources alter the macromolecular
composition of microbial populations organisms,
thus linking group specific resource use to shifts in
community biomass stoichiometry.

In addition to differences in their least variable
peaks, species also differed in their range of macro-
molecular composition, that is, phenotypic plasti-
city, in a manner that was consistent with their
physiology. Over the full range of resource treat-
ments V. spinosum had a more variable macro-
molecular composition during stationary phase and
a more constrained macromolecular composition
during logarithmic phase (Figure 4). These differences
in biomass composition are consistent with the
significantly (F¼ 18.04, Po0.0001) lower mean
growth rate of V. spinosum (0.08h�1) compared with
P. carotovorum (0.20h�1). Variation in composition of
logarithmically growing cells was spread primarily
along the second PC indicating differences in protein
and nucleic acid content. Compared with the hetero-
geneous P. carotovorum population, logarithmically
growing V. spinosum cells had a relatively high
protein and low nucleic acid content independent
of resource N:P level (Figure 4), indicating that it may
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be incapable of realizing a fast growth response and
invests into protein-based cellular machinery. These
results are consistent with our general understanding
of each organism’s growth strategy. On an average,
fast-growing organisms show a high investment in
nucleic acids to maximize growth (Elser et al., 2003).
This general pattern among microorganisms provides
a physiological basis that links life history to biomass
stoichiometry through macromolecular composition.
Similar relationships between life history, macromo-
lecular composition and biomass stoichiometry have
been identified in metazoans (Gorokhova et al.,
2002), however these links have rarely been con-
sidered in microorganisms, in part because of the
difficulty of evaluating differences in macromolecu-
lar composition between microbial species.

The CDA and the PCA both suggest that although
species were indistinguishable in an unconstrained
analysis, actively growing cells had Raman spectra
that were statistically distinguishable from quiescent
cells, even when multiple species from a hetero-
geneous resource environment were considered
simultaneously. Although there was significant over-
lap between the two groups, in the unconstrained
PCA log and stationary cells could be visually
differentiated (Figure 3b). Using only growth phase
as a grouping criterion, the CDA was able to
successfully classify 81.2% of all cells. From a
biogeochemical perspective, understanding the pro-
portion of the microbial community that is actively
growing is a valuable parameter and provides a
complementary technique to staining methods that
evaluate cellular activity (for example, Lopez-Amores
et al., 1998). The ability to visualize cells directly
before Raman MS analysis allows for complementary
staining (to indicate cellular activity) and Raman MS
analysis of undefined microbial communities.

Finally, the position of the loading vectors in
principal component space suggested additional
information about microbial physiology and eco-
logy. The orthogonal positioning of the proteins
and nucleic acids along the second PC indicated
that cells with higher protein content had relatively
lower nucleic acid content. To some extent both
species were able to allocate resources to either
proteins or nucleic acids but less so to both
macromolecular classes simultaneously. We inter-
pret this as a strategic response to the resource
environment and possibly evidence of a physiologi-
cal trade-off. While low resource N:P treatments
led to an investment in nucleic acids, presumably
to maximize growth, high resource N:P resulted in
investment into proteins, perhaps to increase re-
source P acquisition. In both species, an increase in
protein content was accompanied by a decrease in
nucleic acid content, and vice-versa. As proteins
and nucleic acids also loaded negatively along the
first PC, some cells in our study were rich in both
nucleic acids and proteins. However, the cells that
were richest in proteins were not also the richest in
nucleic acids, consistent with a physiological trade-

off. Such trade-offs are well-studied ecological
phenomena that have been shown to structure
communities in time and space (Tilman, 1982). A
study of marine algae revealed that optimization of
macromolecules for either light-harvesting, growth
or resource acquisition provided a mechanistic
explanation of mean algal biomass stoichiometry
in marine ecosystems (Klausmeier et al., 2004).
Although the study presented here provides only
limited evidence of a trade-off between an invest-
ment in nucleic acids versus an investment in
proteins in these species, it does suggest Raman
MS may be a useful tool to evaluate the presence of
such trade-offs in a wide variety of microorganisms.

In conclusion, analysis of a subset of defined peaks
within the Raman spectra gave insight into how
resource stoichiometry affected microbial biomass
composition, metabolism and ecology. Differences in
macromolecular composition as determined by Ra-
man MS correlated with species level traits and
physiology. The link between macromolecular com-
position as determined by Raman MS and elemental
biomass composition suggests that Raman is a useful
tool for evaluating underlying variance in microbial
biomass stoichiometry. This ability is further com-
plemented by the ability of Raman MS to be coupled
with phylogenetic identification and labeled sub-
strate studies (Huang et al., 2007b) thus, providing
the opportunity to link stoichiometric analyses with
phylogenetic identification at the level of the single
cell. The application of Raman MS to environmental
microorganisms allows ecological stoichiometry,
an increasingly utilized body of ecological theory,
to be applied to microbial ecology in the absence
of culture enrichment, making it complementary
to molecular techniques currently driving the micro-
bial revolution.
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