www.nature.com/ismej

ORIGINAL ARTICLE Community shifts of soybean stem-associated bacteria responding to different nodulation phenotypes and N levels

Seishi Ikeda¹, Takashi Okubo¹, Takakazu Kaneko², Shoko Inaba¹, Tomiya Maekawa³, Shima Eda¹, Shusei Sato², Satoshi Tabata², Hisayuki Mitsui¹ and Kiwamu Minamisawa¹ ¹Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi, Japan; ²Kazusa DNA Research Institute, Kazusa-kamatari, Kisarazu, Chiba, Japan and ³Graduate School of Agricultural Science, Tohoku University, Amamiya-machi, Sendai, Miyagi, Japan

The diversity of stem-associated bacteria of non-nodulated (Nod⁻), wild-type nodulated (Nod⁺) and hypernodulated (Nod⁺⁺) soybeans were evaluated by clone library analyses of the 16S ribosomal RNA gene. Soybeans were dressed with standard nitrogen (SN) fertilization (15 kg N ha⁻¹) and heavy nitrogen (HN) fertilization (615 kg N ha-1). The relative abundance of Alphaproteobacteria in Nod⁺ soybeans (66%) was smaller than that in Nod⁻ and Nod⁺⁺ soybeans (75–76%) under SN fertilization, whereas that of Gammaproteobacteria showed the opposite pattern (23% in Nod + and 12-16% in Nod⁻ and Nod⁺⁺ soybeans). Principal coordinate analysis showed that the bacterial communities of Nod⁻ and Nod⁺⁺ soybeans were more similar to each other than to that of Nod⁺ soybeans under SN fertilization. HN fertilization increased the relative abundance of Gammaproteobacteria in all nodulation phenotypes (33-57%) and caused drastic shifts of the bacterial community. The clustering analyses identified a subset of operational taxonomic units (OTUs) at the species level in Alpha- and Gammaproteobacteria responding to both the nodulation phenotypes and nitrogen fertilization levels. Meanwhile, the abundance of Betaproteobacteria was relatively constant in all libraries constructed under these environmental conditions. The relative abundances of two OTUs in Alphaproteobacteria (Aurantimonas sp. and Methylobacterium sp.) were especially sensitive to nodulation phenotype and were drastically decreased under HN fertilization. These results suggested that a subpopulation of proteobacteria in soybeans is controlled in a similar manner through both the regulation systems of plant-rhizobia symbiosis and the nitrogen signaling pathway in plants.

The ISME Journal (2010) **4**, 315–326; doi:10.1038/ismej.2009.119; published online 19 November 2009 **Subject Category:** microbial population and community ecology

Keywords: autoregulation; community analysis; *Glycine max*; nitrogen; stem

Introduction

Diverse microorganisms live as endophytes and epiphytes of plants in nature. However, many questions regarding the driving forces and ecological rules underlying these relationships remain unanswered (Saito *et al.*, 2007; Hardoim *et al.*, 2008). During their evolution, legumes developed nodulation and mycorrhization systems to attain mutual symbiosis with rhizobia and mycorrhizae (Harrison, 2005; Stacey *et al.*, 2006). Although plants are known to control the degrees of nodulation and mycorrhization of roots by rhizobia and mycorrhizae, respectively, through autoregulation

Correspondence: K Minamisawa, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.

E-mail: kiwamu@ige.tohoku.ac.jp

Received 15 June 2009; revised 5 October 2009; accepted 9 October 2009; published online 19 November 2009 systems (Carroll et al., 1985; Meixner et al., 2007), the effects of the autoregulation systems on the other plant-associated microorganisms in the phytosphere remain unclear (Parniske, 2000). Recent studies have shown that the wild-type and symbiosisdefective mutants of legumes such as Medicago truncatula and Glycine max have different microbial community structures, and certain microbes associate preferentially with nodulated or mycorrhizal root systems (Offre et al., 2007; Ikeda et al., 2008a). Furthermore, transcriptional analyses revealed that both nodulation and mycorrhization systemically induced a series of defense genes in a host plant and consequently increased its disease resistance (Liu et al., 2007; Kinkema and Gresshoff, 2008). These examples indicate that genetic alteration in the nodulation or mycorrhization signaling pathways can in turn alter the accompanying plant microflora, aside from rhizobia and mycorrhizae.

The autoregulatory mechanism in plants occurs through long-distance signaling between shoot and root (Oka-Kira and Kawaguchi, 2006), and a heavy supply of nitrate to the roots of leguminous plants inhibits nodulation through autoregulation (Carroll et al., 1985; Okamoto et al., 2009). Thus, there is a possibility that nodulation phenotype and host nitrogen status may affect the structure of the microbial community in shoots, as observed earlier in roots (Ikeda et al., 2008a). However, the cultureindependent analysis of soybean stem-associated microbial communities failed because of serious interference by plant DNA in the PCR amplification (Ikeda et al., 2008a). To overcome this problem, a method was recently developed for enriching the bacterial cells collected from soybean stems (Ikeda *et al.*, 2009). The enrichment method allows the construction of a clone library of the bacterial 16S ribosomal RNA (rRNA) genes, which provides better resolution for examining the microbial community structures compared with the limited analyses in previous studies based mainly on fingerprinting methods (Offre et al., 2007; Ikeda et al., 2008a).

In this study, the effects of nodulation phenotypes and nitrogen application levels were examined on the stem-associated bacterial community including both epiphytes and endophytes in field-grown soybeans. Clone libraries of the 16S rRNA genes were constructed in conjunction with the method of enriching bacterial cells from soybean stems, and the bacterial diversities in different nodulation phenotypes were evaluated based on 16S rRNA gene sequences.

Materials and methods

Plant materials and field experimental design

The plants included cultivar Enrei (wild-type nodulating cultivar, Nod⁺), lines En 1314 and En 1282 (non-nodulating mutants derived from Enrei, Nod⁻; Francisco and Akao, 1993) and lines En 6500 and Sakukei 4 (hypernodulating mutants derived from Enrei, Nod⁺⁺; Akao and Kouchi, 1989; Matsunami et al., 2004). Mutations in En 1314 and En 1282 soybeans were found in the NFR1 gene, which is known to be responsible for a LysM-type receptor kinase for Nod factor recognition (Radutoiu et al., 2003 Masaki Hayashi (National Institute of Agrobiological Sciences, Tsukuba, Japan), personal communication). A mutation in En 6500 was found in the GmNARK (NTS1) gene (Nishimura et al., 2002), which mediates systemic autoregulation of nodulation (Searle et al., 2003), and Sakukei 4 is a descendant with a hypernodulating phenotype that was derived from En 6500 (Matsunami et al., 2004).

The seeds were planted on 10 June 2008 in the experimental field at Tohoku University (Kashimadai, Miyagi, Japan), which has been cultivated with a rotation of rice (paddy field condition) and soybeans (upland field condition) every year

Figure 1 Time table and design of the field experiment. Basal fertilization was supplied for both standard and heavy nitrogen (HN) fields with $15 \text{ kg} \text{ N} \text{ ha}^{-1}$ of a commercial fertilizer. The HN field was also supplied with nitrogen fertilization as urea four times (N1 to N4; $150 \text{ kg} \text{ N} \text{ ha}^{-1}$ for each fertilization). GE1 to GE4 represent the days on which soybean growth indexes (Supplementary Figure 1) were measured. GS1 and GS2 indicate growth stages 1 and 2 for measuring dry weights and nitrogen contents of soybean tissues (Supplementary Figure 2). The sampling for the DNA extraction was carried out at GS2.

since 1997. The field soil was classified as gray lowland soil (pH(H₂O), 5.9; pH(KCl), 4.3; total carbon content, 1.21%; total nitrogen content, 0.11%; Truog phosphorus content, 69 mg P_2O_5 kg⁻¹). Soybeans of each nodulation genotype were grown in two neighboring fields (standard nitrogen (SN) and heavy nitrogen (HN) fields). The SN field was dressed with SN fertilization (15 kg N ha⁻¹) as a basal fertilization, and the HN field was also dressed four times with HN fertilization (N1 to N4 in Figure 1; each application 150 kg N ha⁻¹ as urea, total 600 kg N ha⁻¹) in addition to the basal fertilization.

Growth evaluation and sampling

To define the environmental factors that are relevant to changes in bacterial community structures, the plant growth stage was monitored by measuring vegetative and reproductive indexes, plant dry weights, and nitrogen contents in plant tissues (GE1 to GE4 in Figure 1) and in field soils. Plant growth stages were evaluated according to the criteria of Fehr et al. (1971) four times throughout the growing period (GE1 to GE4 in Figure 1). Dry weights of shoots, roots, and nodules as well as the number of nodules were measured twice during the growing period (GS1 and GS2 in Figure 1). Total nitrogen of soybean shoots at GS1 was analyzed by the Kjeldahl method. Two plants were processed as a composite sample for measuring the N content of soybean shoots. The nitrogen content in soils under the SN and HN fertilization conditions was also measured three times before the additional fertilization of the HN field (N2, N3 and GS2 in Figure 1). Soil was air-dried and sieved through a 2-mm mesh. Dried soil was extracted by shaking with 2 M KCl solution for 30 min and then filtered through a filter paper (No. 2, Advantec, Tokyo, Japan). Contents of NH_4^+ and NO_3^- in the filtrates were determined by titrimetry after steam distillation (UDK127, Actac, Tokyo, Japan).

The aerial parts of soybean plants were harvested on 3 September 2008 (GS2 in Figure 1) and immediately transported on ice to the laboratory. Leaves were removed manually. The stems were serially washed well with tap and distilled water and stored at -80 °C until they were used. Four plants were processed as a composite sample for the DNA extraction. Three composite samples were analyzed for each genotype as a triplicate.

Clone library construction and sequencing

Stems (approximately 100g) of a composite sample were homogenized without surface sterilization to prepare the stem-associated bacterial cells containing both epiphytes and endopytes, and the bacterial cells were extracted and purified using an enrichment method (Ikeda et al., 2009). Total bacterial DNA was extracted from each bacterial cell fraction by the DNA extraction method described by Ikeda et al. (2008b). The final DNA samples were resuspended in 100 µl of sterilized water. The quality and quantity of DNA were assessed spectrophotometrically by calculating absorbance at a wavelength of $260 \text{ nm} (A_{260})$ and the A_{260}/A_{230} and A_{260}/A_{280} ratios. The triplicate DNA samples were prepared from composite samples for each soybean genotype under the SN and HN fertilization conditions.

PCR clone libraries for 16S rRNA genes were constructed as follows. Briefly, 50 ng of total bacterial DNA was used as a template in a final reaction volume of $60\,\mu$ l, including 90 pmol of each primer and 9 U of Ex Taq DNA polymerase (Takara Bio, Otsu, Japan). The universal primers 27F (5'-AGAGTTTGATCMTGGCTCAG-3') and 1525R (5'-AAGGAGGTGWTCCARCC-3') were used (Lane, 1991). Cycling conditions were as follows: initial denaturation for 2 min at 94 °C; then 25 cycles consisting of 30s at 94 °C, 30s at 55 °C and 2 min at 72 °C; and a final extension for 10 min at 72 °C. Three PCR products derived from triplicate DNA samples were combined into a sample, and the PCR products were resolved by 1% agarose gel electrophoresis in $1 \times$ TAE buffer. PCR products of the predicted size (approximately 1400 bp) were extracted from the gels using a QIAquick Gel Extraction Kit (Qiagen, Tokyo, Japan) and ligated into the plasmid vector pGEM-T Easy (Promega Japan, Tokyo, Japan) at 16 °C overnight using a DNA ligation kit, Mighty Mix (Takara Bio). ElectroTen-Blue Electroporation-Competent Cells (Stratagene, La Jolla, CA, USA) were then electroporated with the ligated DNA using a Gene Pulser (Bio-Rad Laboratories, Tokyo, Japan). After the transformants were cultured overnight at 37 °C on Luria-Bertani agar plates containing ampicillin (50 µg ml⁻¹), 384 colonies were randomly selected from each library for sequencing. Sequencing analysis was conducted using a Type $3730 \times l$ DNA Analyzer (Applied Biosystems, Foster City, CA, USA) using a BigDye Terminator Cycle Sequencing Reaction Kit (Applied Biosystems). Template DNAs were prepared using an Illustra TempliPhi DNA Amplification Kit (GE Healthcare, Uppsala, Sweden). A partial sequence of the 16S rRNA gene was obtained using the 27F primer. Sequences were processed with Phred (Ewing and Green, 1998; Ewing *et al.*, 1998) at a cutoff value of 0.001 for eliminating low-quality regions. Then the 5' region of the 16S rRNA gene (corresponding to bp 109–665 of the *Escherichia coli* 16S rRNA gene) was used for the sequence analyses.

Additional cloning and sequencing was carried out for three samples (Enrei of SN, Enrei of HN and En 1282 of HN) because of heavy contamination of chloroplast DNA. Libraries of these samples were screened by PCR with a soybean chloroplast-specific primer set, SCS-F (5'-AGGCGGTGGAAACTACCA AG-3'), and SCS-R (5'-CAGCGCTAGTATCCATC GT-3'), designed in this study to eliminate clones derived from the chloroplast 16S rRNA gene. After the negative screening by PCR with the soybean chloroplast-specific primer set, 192, 96, and 96 clones were additionally subjected to sequencing for Enrei of SN, Enrei of HN and En 1282 of HN, respectively, as potentially nonbacterial clones.

Sequence analysis

The sequences were analyzed for orientation and detection of non-16S rDNA sequences using OrientationChecker (Ashelford et al., 2006). The presence of chimeras was assessed using MALLARD (Ashelford et al., 2006). A sequence identified at the 99.9% and 99% cutoffs or suspected at the 99.9% cutoff as a chimeric sequence was discarded. The remaining sequences were aligned using CLUSTAL W (Thompson et al., 1994). On the basis of the alignment, a distance matrix was constructed using the DNADIST program from PHYLIP ver. 3.66 (http://evolution.genetics.washington.edu/phylip. html) with the default parameters. The resulting matrices were run in DOTUR (Schloss and Handelsman, 2005) to generate diversity indexes. The default DOTUR settings were used with threshold values of 97% sequence identity for the definition of operational taxonomic units (OTUs). Library coverage was calculated with the non-parametric estimator C (Good, 1953), as described by Kemp and Aller (2004). The reciprocal of Simpson's index (1/D) was used as a measure of diversity to evaluate the level of dominance in a community (Zhou et al., 2002). The number of shared OTUs between libraries was calculated using SONS (Schloss and Handelsman, 2006).

UniFrac (Lozupone and Knight, 2005) was applied to examine the differences between clone libraries. A tree file generated by CLUSTAL W (Thompson *et al.*, 1994) and an environment file, which links a file to a library, were uploaded to UniFrac (Lozupone and Knight, 2005). Principal coordinate analysis (PCoA) was performed by using UniFrac

with the abundance-weighted option (Lozupone and Knight, 2005).

Phylogenetic analysis

The phylogenetic composition of the sequences in each library was evaluated using the Classifier program of RDP-II release 10 (Wang *et al.*, 2007), with confidence levels of 80%. BLASTN (Altschul *et al.*, 1990) was also used to classify the clones and to identify the closest relatives in the GenBank database.

For the phylogenetic analysis, sequences were aligned using the CLUSTAL W program (Thompson *et al.*, 1994). The neighbor-joining method was used for building the trees (Saitou and Nei, 1987). The PHYLIP format tree output was obtained using the bootstrapping procedure (Felsenstein, 1985); 1000 bootstrap trials were used. The trees were constructed using TreeView software (Page, 1996).

Accession numbers of nucleotide sequences

Nucleotide sequences of 16S rRNA genes for the clone libraries have been deposited in the DDBJ database under accession numbers shown in Table 1.

Results

Soybean growth

The sovbean stem-associated bacteria including endophytes and epiphytes at the reproductive stage (GS2 in Figure 1) were subjected to clone library analyses. The growth indexes revealed no difference in the stages of the reproductive growth phase among the soybean genotypes or nitrogen treatments throughout the growth period, although slight variations were observed for the vegetative growth stages among the soybean genotypes in the early phase of growth (Supplementary Figure 1). At the sampling time, the reproductive growth indexes were R6 (pod-maturing stage; Fehr et al., 1971) for all samples in the SN and HN fields, and the vegetative growth indexes ranged approximately from 12 to 15 for most samples. Thus, we concluded that the effects of soybean growth stage on the community analysis would not be significant among the genotypes examined under the SN or HN field conditions.

Statistics of clone libraries

The statistics of the clone libraries are summarized in Table 2. The library coverage ranged from 87.8 to 94.9%, showing a relatively high coverage for all libraries. Under the SN fertilization condition, Nod⁺ soybeans (Enrei) showed the highest number of OTUs and slightly higher diversity for all indexes compared with those of mutants, whereas no clear effect of nodulation phenotype was observed for the number of OTUs and diversity indexes under the HN fertilization condition.

 Table 1
 Accession numbers of sequences deposited in the DDBJ

Genotypes	N fertiliza	N fertilization levels								
	SN level	HN level								
Enrei En 1282 En 1314 En 6500 Sakukei 4	AB482224–AB482598 AB482599–AB482867 AB482868–AB483207 AB483208–AB483518 AB483519–AB483852	AB483853–AB484222 AB484223–AB484583 AB484584–AB484930 AB484931–AB485234 AB485235–AB485589								

Abbreviations: HN, heavy nitrogen; SN, standard nitrogen.

Phylogenetic diversities of stem-associated bacteria with different nodulation phenotypes under standard nitrogen fertilization condition

The assessment of phylogenetic compositions using RDP Classifier revealed that proteobacteria was the most dominant taxon (88.7–96.5%) in all libraries at the phylum level under the SN fertilization condition (Figures 2a). In proteobacteria, the relative abundances of Alphaproteobacteria and Gammaproteobacteria varied according to either nodulation phenotype, whereas the abundance of Betaproteobacteria was relatively constant in all libraries constructed under these environmental conditions (Figure 2a). The ratio of Alpha/Gammaproteobacteria in Nod⁻ and Nod⁺⁺ soybeans (4.6– 6.1) was higher than that in Nod⁺ soybeans (2.9; Figure 2a).

Further analyses of phylogenetic compositions at lower taxonomic levels revealed that three genera (Aurantimonas, Methylobacterium and Rhizobium) in the order Rhizobiales for Alphaproteobacteria (Figure 2c) and three orders (Pseudomonadales, Xanthomonadales and Enterobacteriales) for Gammaproteobacteria (Figure 2e) were mainly responsible for the community shifts of Alpha/Gammaproteobacteria under the SN fertilization condition.

The results of PCoA showed two tight clusters for Nod⁺⁺ and Nod⁻ soybeans distinctly separated from Nod⁺ soybeans, suggesting that the community structures of stem-associated bacteria were mainly dependent on nodulation phenotype under SN fertilization (Figure 3). In addition, the overall structures of the microbial communities in Nod⁺⁺ and Nod⁻ soybeans were more similar to each other than to that of Nod⁺ soybeans under the SN fertilization condition (Figure 3).

Clustering analysis of 16S rRNA sequences allowed the identification of the OTUs responsible for the population shifts of Alpha- and Gammaproteobacteria at the species level. Two OTUs (AP6 and AP30) noticeably increased the ratio of the Alphaproteobacterial population in mutants of both Nod⁻ and Nod⁺⁺ soybeans compared with Nod⁺ soybeans under the SN fertilization condition (Figures 4 and 5). The representative clones for these two OTUs were identical to *Aurantimonas ureilytica* (DQ883810) and *Methylobacterium chloromethanicum* (CP001298), respectively.

Libraries			SN condit	tion		HN condition					
Nodulation phenotypes	Enrei Nod+	En 1282 Nod ⁻	En 1314 Nod ⁻	En 6500 Nod++	Sakukei 4 Nod ⁺⁺	Enrei Nod+	En 1282 Nod ⁻	En 1314 Nod ⁻	En 6500 Nod++	Sakukei 4 Nod ⁺⁺	
Statistics											
No. of sequences	375	269	340	311	334	370	361	347	304	355	
Library coverage (%) ^a	89.3	91.1	91.2	91.1	94.9	90.5	87.8	92.5	92.1	90.1	
No. of OTUs ^b	$f OTUs^b$ 75 52		60	60	57	71	91	56	55	71	
Diversity indexes											
Chaoí	153.0	86.5	114.4	97.8	88.7	130.5	143.6	110.2	85.7	130.5	
ACE	158.7	83.5	110.2	101.1	75.3	132.3	164.0	95.6	87.9	132.3	
Shannon index	3.5	3.1	3.0	3.3	3.3	3.4	3.8	3.2	3.2	3.4	
Simpson index (1/D)	19.7	12.5	11.0	15.6	14.5	16.9	27.4	14.8	15.2	16.9	

 Table 2
 Statistical analysis of 16S rRNA gene clone libraries derived from soybean stems

Abbreviations: HN, heavy nitrogen; OTUs, operational taxonomic units; rRNA, ribosomal RNA; SN, standard nitrogen.

 ${}^{a}C_{x} = 1 - (n/N)$, where n_{x} is the number of singletons that are encountered only once in a library and N is the total number of clones.

^bOTUs were defined at 97% sequence identity.

In contrast, the relative abundance of OTU GP39 in Enterobacteriales was lower in mutants of both Nod⁻ and Nod⁺⁺ soybeans compared with that in Nod⁺ soybeans (Figures 4 and 6). The representative clone of OTU 39 was classified as *Enterobacter* sp. and was identical to an isolate (AY822505) that was derived from a plant-associated bacterium, and its closest relative in known species was *Klebsiella oxytoca* (EU982878) with 99% identity (Figure 6).

Comparisons of phylogenetic diversity of stem-associated bacteria between standard and heavy nitrogen fertilization conditions

The HN fertilization condition was designed to compare the community structures of shoot-associated bacteria among different nodulation phenotypes by eliminating the bias of nitrogen status of host plants and to suppress the nodulation. When HN fertilization was applied to the soybeans, the effect of nodulation phenotype on the bacterial communities was obscured (Figure 2b). However, the ratio of Alpha/Gammaproteobacteria was drastically decreased for all nodulation phenotypes under HN fertilization (ranging from 0.8 to 2.1) compared with those under SN fertilization (2.9-6.1; Figures 2a and b). Further analyses of phylogenetic compositions at lower taxonomic levels revealed that the same taxonomic groups that were responding to the community shifts between the Nod+ soybeans and the mutants (Nod- and Nod++ soybeans) under SN fertilization were also responding to the effects of HN fertilization. Thus, three genera (Aurantimonas, Methylobacterium and Rhizobium) in the order of Rhizobiales for Alphaproteobacteria (Figure 2d) and three orders (Pseu-Xanthomonadales and domonadales. Enterobacteriales) for Gammaproteobacteria (Figure 2f) were responding to the population shifts of Alphaand Gammaproteobacteria in all libraries under the HN fertilization condition.

The results of PCoA clearly showed that HN fertilization caused drastic shifts of community structures of shoot-associated bacteria for all nodulation phenotypes from those found under SN fertilization (Figure 3). PC1 (49.4%) explained the effects of HN fertilization on the community structures. In addition, the community structures among the soybean genotypes under HN fertilization were far more dissimilar to each other than those under SN fertilization.

Clustering analysis of 16S rRNA sequences identified the same three OTUs (AP6, AP30 and GP39) that were responding to the population shifts of Alpha- and Gammaproteobacteria between the Nod⁺ soybeans and the mutants (Nod⁻ and Nod⁺ sovbeans) under SN fertilization were also responding markedly to the effects of HN fertilization for all soybean genotypes (Figures 4–6). In addition, OTUs GP7, GP37 and GP38 were identified as responsible for the increase of the relative abundance of Gammaproteobacteria in all soybean genotypes under HN fertilization (Figures 4 and 6). The representative clone of OTU GP7 was classified as Lysobacter sp. and its closest relative among known species was Lysobacter koreensis (AB166878) with 96% identity (Figure 6). The representative clone of OTU GP37 was identical to several Enterobacter spp., including Enterobacter aerogenes (FJ796202) and Enterobacter asburiae (AB004744). The representative clone of OTU GP38 was identical to several species of Enterobacteriaceae, including Pantoea agglomerans (FJ603033), Enterobacter ludwigii (FJ462703), Enterobacter cloacae (FJ194527), Enterobacter asburiae (EU301774) and Citrobacter freundii (DQ133536). OTUs GP37, GP38 and GP39 were shown to be closely related to each other, as indicated by clustering in a branch of the Enterobacteriales (Figures 4 and 6).

Figure 2 The phylogenetic compositions of 16S ribosomal RNA (rRNA) gene clone libraries of soybean shoot-associated bacteria in different nodulation phenotypes under standard and heavy nitrogen (HN) fertilization conditions. (\mathbf{a} , \mathbf{b}) Phylogenetic compositions at the phylum level; (\mathbf{c} , \mathbf{d}) relative abundance of three genera of Rhizobiales; (\mathbf{e} , \mathbf{f}) relative abundance of three orders of Gammaproteobacteria. Genotype stand for the name of plant materials: Enrei (\mathbf{e}), En 1282 (12), En 1314 (13), En 6500 (65), Sakukei 4 (S4). Nod stands for the nodulation phenotype: wild-type (+), non-nodulated (-) and hypernodulated (+ +).

Discussion

The phylogenetic analyses based on 16S rRNA gene sequences revealed the striking effects of both nodulation phenotype and HN fertilization on bacterial communities in soybean stems (Figures 2 and 3). The population shifts of Alphaand Gammaproteobacteria under SN fertilization indicated that the nodulation phenotypes affected the bacterial community structures not only in roots (Ikeda *et al.*, 2008a), in which nodule formation occurs, but also systemically in shoots.

PC2 (12.4%)

PC1 (49.4%)

Figure 3 Principal-coordinate analysis for the 16S ribosomal RNA (rRNA) gene clone libraries of soybean stem-associated bacteria in different nodulation phenotypes. The ordination was constructed using Unifrac distances weighted by the relative abundances. Each number represents the phylogenetic composition of soybean stem-associated bacteria in different soybean genotypes under standard and heavy nitrogen (HN) conditions. Numbers 1 to 5 and 6 to 10 were sampled under standard and HN conditions, respectively. Soybean genotypes: 1 and 6: wild-type (Enrei, Nod⁺); 2 and 7: non-nodulated (En 1282, Nod⁻); 3 and 8: non-nodulated (En 1314, Nod-); 4 and 9: hypernodulated (En 6500, Nod⁺⁺); 5 and 10: hypernodulated (Sakukei 4, Nod⁺⁺).

Surprisingly, further phylogenetic analyses at lower taxonomic levels and the results of PCoA revealed that soybeans of two very different nodulation phenotypes, Nod⁻ and Nod⁺⁺, hosted highly similar microbial community structures under the SN fertilization condition, even at the species level (Figures 3 and 4). A possible explanation for this may be the absence of mycorrhization in Nodsoybeans under the present experimental conditions (data not shown). The rotation of the experimental field between upland and paddy conditions could reduce the population of mycorrhizal fungi. In the absence of mycorrhization, Nod- soybeans do not need to activate autoregulation systems, whereas the autoregulation systems of Nod⁺⁺ soybeans were genetically impaired. Thus, both Nod⁻ and Nod⁺⁺ soybeans may be considered as hosts with no activated autoregulation in this study. Therefore, a bacterial population related to rhizobia may be passively affected by a part of the autoregulation systems for regulating rhizobia. In fact, the three genera (Aurantimonas, Methylobacterium and Rhi*zobium*) in Rhizobiales found in the present study are all closely related to Bradyrhizobium spp., endosymbionts of soybeans (Gupta and Mok, 2007). Another surprising finding was the high similarity observed for the population shifts of Alpha- and Gammaproteobacteria between two different environmental factors: the effects of genotypes under SN fertilization and the effects of the nitrogen fertilization under the HN fertilization

321

condition. Thus, the same taxonomic groups that were found in the population shifts of Alpha- and Gammaproteobacteria among different nodulation phenotypes under the SN fertilization condition were also responsible for the drastic population shifts of Alpha- and Gammaproteobacteria between the SN and HN fertilization conditions, regardless of nodulation phenotype. These results suggest that exogenous or endogenous nitrogen levels could be an important signal for regulating a subpopulation of proteobacteria by activating a plant signaling pathway, such as autoregulation systems in legumerhizobia symbiosis.

The clustering analysis of 16S rRNA sequences (Figure 4) identified OTUs responsible for the population shifts of Alpha- and Gammaproteobacteria at the species level. The type strain of A. ureilytica was originally reported as an isolate from air dust (Weon et al., 2007), but the closely related isolates (AB291857 and AB291900) have been identified on the surface and inside of rice leaves (Mano et al., 2007). The genus Aurantimonas has been recently established (Denner *et al.*, 2003), and the biology of this genus in relation to the plant symbiosis is largely unknown, and needs to conduct further study. *Methylobacterium chloromethanicum* is currently considered as a synonym of Methylobacterium extorquens (Kato et al., 2005). Several *Methylobacterium* spp., including *M. extorquens*, are well-known plant-associated bacteria (Corpe, 1985) as both an epiphyte and an endophyte, and the scavenging monocarbon wastes such as methanol in plant tissues is speculated for the putative role of this bacterial group (Corpe and Basil, 1982). Therefore, the population shifts of Methylobacter*ium* sp. could be considered as an indication for the change of physiological status in plants. In fact, it has been reported that both the nodulation and the nitrate sensing in plant activate the autoregulation system that causes the drastic shift of internal hormone balance in plants (Caba *et al.*, 2000; Okamoto *et al.*, 2009). The representative clones for these OTUs showed high similarity to known species. Therefore, it would be feasible to isolate bacteria corresponding to these OTUs and to examine the interactions of these bacteria with soybeans by an inoculation test to clarify the speculations described above. In particular, it would be interesting to analyze the interaction between the Aurantimonas sp. representing OTU AP6 and soybeans because of its high sensitivity to nodulation genotype and nitrogen fertilization level.

On the basis of a culture-dependent method, Gammaproteobacteria were reported as the most dominant group of stem-associated bacteria in soybeans (up to 94% and 100% for epiphyte and endophyte isolates, respectively), whereas the Alphaproteobacteria isolated from shoots were shown to be far less abundant (5.9% for epiphytes; Kuklinsky-Sobral et al., 2004). Okubo et al. (2009) also reported similar results of the strong dominance

Figure 4 Heat map for the relative abundance of operational taxonomic units (OTUs) for the 16S ribosomal RNA (rRNA) gene clone libraries of soybean stem-associated bacteria under standard and heavy nitrogen (HN) fertilization conditions. Soybean genotypes are as follows: E: Enrei; 12: En 1282; 13: En 1314; 65: En 6500; and S4: Sakukei 4. Nod stands for the nodulation phenotype: wild-type (+), non-nodulated (-) and hypernodulated (+ +). The relative abundance of each OTU in each library is indicated by different colors: sky blue (<1%), orange (1–3%) and red (>3%), with a background of dark blue (0%). The relative abundance for the OTUs described in the main text is shown at the right side.

		Sta	andar	dN		Heavy N							
Librari	es E	12	13	65	S4	Е	12	13	65	S4			
Nod	+	-	-	++	++	+	-	-	++	++	Closest relatives in known species	Acc. No.	Identity (%)
Aurant	monas	/ Rhi	izobit	ım /	Methy	lobad	cteriu	im sp)				
J AP1	0.3						0.3				Methylobacterium suomiense	AB175645	99.0
AP2						0.3					Methylobacterium suomiense	AB175645	95.0
AP3					0.3						Aurantimonas ureilytica	DQ883810	95.0
									0.3	0.3	Methylobacterium adhaesivum	AM040156	95.0
				0.3							Aurantimonas ureilytica	DQ883810	93.0
Lr AP6	0.5	13	2.6	4.5	9.6	0.5	0.3	0.3	0.3	0.6	Aurantimonas ureilytica	DQ883810	100.0
AP7	1.9	1.9	3.2	1.6	0.3	0	1.7	0.3	2	0.3	Aurantimonas ureilytica	DQ883810	97.0
	0.5	0.7	0.9			0.8	0.6			0.3	Aurantimonas kwangyangensis	EF373540	99.0
L APS	0.8	0.4									Aurantimonas altamirensis	EU544515	98.0
AP10	0.3										Allorhizobium undicola	Y17047	96.6
AP1	1 1.1			0.3	1.2						Aurantimonas altamirensis	EU697964	95.0
	2 2.4	0.7			0.3		1.1	0.3	0.3	0.3	Rhizobium oryzae	EU056822	97.0
AP1:	3	1.1									Rhizobium oryzae	EU056822	97.0
AP1	4					0.3					Rhizobium mongolense	DQ922740	99.0
I J AP1	5	0.4	1.2	1	0.3	0.8	1.1	3.5	0.7	0.6	Agrobacterium tumefaciens	FJ447494	98.0
	5					0.3	0.3				Agrobacterium vitis	AY826796	97.0
	7 10	3.3	15	1.3	3.3	7	3.6	3.7	6.6	3.7	Agrobacterium tumefaciens	FJ785222	99.0
	3 0.3	0.4	2.4	11	4.8	1.6		1.2	0.3	0.3	Agrobacterium tumefaciens	FJ719366	99.0
AP1	9		0.3								Rhizobium cellulosilyticum	DQ855276	99.0
AP2)						0.3				Aurantimonas ureilytica	DQ883810	97.0
AP2	1				0.6	0.3					Agrobacterium tumefaciens	FJ785222	96.0
	2					0.5					Agrobacterium larrymoorei	Z30542	97.5
	3								0.3		Agrobacterium larrymoorei	Z30542	96.2
	4 11	18	19	12	15	8.1	8	12	17	10	Agrobacterium larrymoorei	Z30542	99.8
AP2	5 0.5		0.3	0.3		0.3					Agrobacterium larrymoorei	Z30542	99.2
	6 0.5										Sinorhizobium medicae	EU445239	98.0
AP2	7								0.3		M coplana peli	EU256383	96.0
r AP2	3 0.8	2.6	0.3	1		0.3	0.3		0.3		Rhizobium soli	EF363715	100.0
L AP2	9							0.3			Rhizobium huautlense	AM237359	96.0
Methyl	obacteri	um s	sp.										
AP3	0 8.3	14	13	14	9.9	4.3	3	1.7	6.3	2.3	Methylobacterium chloromethanicum	CP001298	100.0
_ AP3	1			0.3							Methylobacterium populi	EF116588	95.0
	2 0.3	3		2.6	2.1	0.3	0.3	0.3	1		Methylobacterium aquaticum	AJ785571	98.0
d haps	3		0.3								Methylobacterium aquaticum	AJ635303	97.0
	4 1.6	0.7	1.2	1.9	2.1		0.3		2.3	1.1	Methylobacterium fujisawaense	EF116592	99.0
	5 1.6		0.9		0.6				0.3		Methylobacterium komagatae	AB252201	100.0
AP3	6 0.8	0.7	2.9	2.6	1.5		0.3		2.3	1.1	Methylobacterium adhaesivum	AM040156	98.0
AP3	7 1.1						0.6				Bosea thiooxidans	DQ424863	100.0
AP3	3		0.3		0.3						Methylobacterium extorquens	DQ922747	100.0
AP3	Э								0.3		Methylobacterium lusitanum	EU741086	95.0
AP4)					0.5					Agrobacterium tumefaciens	FJ785222	99.0

Figure 5 Phylogenetic distribution of operational taxonomic units (OTUs) for Alphaproteobacteria of the clone libraries of 16S ribosomal RNA (rRNA) genes for soybean stem-associated bacteria. The dendrogram (left) indicates the phylogenetic relationships among the representative sequences of OTUs (defined by 97% identity). The table indicates the relative abundance of clones belonging to each OTU in each library and the results of a BLAST search using the representative sequences. The soybean genotypes are as follows: E: Enrei; 12: En 1282; 13: En 1314; 65: En 6500; and S4: Sakukei 4. Nod stands for the nodulation phenotype: wild-type (+), non-nodulated (-) and hypernodulated (+ +).

of Gammaproteobacteria were obtained when culturing endophytic bacteria in soybean stems. In contrast, based on the culture-independent method used in this study, Alphaproteobacteria were the most dominant group in soybean shoots under SN fertilization. These differences may simply reflect experimental biases between the culture-dependent and culture-independent methods used for analyzing bacterial communities. By considering the known diversity of plant-associated bacteria, however, the phylogenetic compositions strongly and unusually biased toward to the Gammaproteobacteria are not likely to simply reflect the nature of soybean-associated bacterial communities. As the relative abundance of Alphaproteobacteria was increased in nodulation mutants under the SN fertilization condition in the present study, a plant signaling pathway such as autoregulation systems in the legume-rhizobia symbiosis may be responsible for the dominance of Gammaproteobacteria in the culture of soybean-associated bacteria.

Exogenous nitrate suppresses the infection of rhizobia and inhibits nodule formation (Carroll *et al.*, 1985; Barbulova *et al.*, 2007; Okamoto *et al.*, 2009). Recently, Okamoto *et al.* (2009) suggested that a nitrate-induced *CLE* gene in *Lotus japonica* is involved in autoregulation systems through the *HAR1* gene, which is a homolog of *GmNARK* in soybeans.

In this study, the HN treatment was initially performed to eliminate the effects of nitrogen deficiency in Nod⁻ soybeans on the microbial community and to inhibit nodulation in wild-type soybeans (Nod⁺). The HN fertilization increased nitrate contents in the soil (7–10 mmol NO₃⁻ per kg dry soil), which were four- to sixfold higher than those in the SN field soil (1.2–2.6 mmol NO₃⁻ per kg dry soil) throughout the soybean cultivation period

S	Ikeda	et

Libraries E 12 13 65 54 E 12 13 65 54 GP1 1.2 0.6 0.3 0.5 0.6 1.4 0.7 2.3 Stenotrophomonas matophila EU482189 99.0 GP2 0.3 0.3 0.3 0.3 Stenotrophomonas matophila Al131906 99.6 GP4 0.3 0.3 0.3 0.3 Stenotrophomonas matophila FM21331 99.0 GP4 0.3 0.3 8.12 4.9 2.6 9 Pandoas formersis AL131906 99.6 GP4 0.3 0.3 12.4 9.0 Ontosa formersis AL13657 90.0 GP10 0.3 0.3 Librancias astuari EF660758 90.0 GP11 0.3 C 0.3 Legionella dradatsoni Z49724 91.0 GP11 0.3 Legionella dradatsoni Z49724 91.0 Legionella dradsoni Z49739 95.1 GP14					Sta	ndar	d N			He	eavy	N				
Nod + - - + + Closest relatives in known species Acc. No. Identity (%) GP1 1.2 0.6 0.5 0.6 1.6 1.4 0.2 3. Stenatrophomonas mallophila EU982854 97.0 GP3 0.3 0.6 0.3 4.6 Stenatrophomonas mallophila FU982854 97.0 GP5 0.3 0.6 0.3 4.8 0.6 Stenatrophomonas mallophila FU982876 99.0 GP6 0.3 1.6 0.9 3.8 12.4 2.6 9 Usobacior koreensis A Bife877 99.0 GP6 0.3 1.4 2.4 2.6 9 Usobacior koreensis A Bife878 99.0 GP10 0.3 1.4 2.4 2.6 9 Usobacior koreensis A Bife878 99.0 GP11 0.3 0.3 1.4 2.4 2.4 2.4 2.4 2.4 2.8 1.0 GP11 0.3			Libraries	E	12	13	65	S4	E	12	13	65	<u>S4</u>			
GP1 1.2 0.6 0.3 0.5 0.6 1.4 0.7 2.3 Stenotrophomonas maltophila EU48284 97.0 GP3 0.3 0.3 0.3 0.3 Stenotrophomonas maltophila Al131906 99.6 GP4 0.3 0.6 0.4 0.6 Stenotrophomonas maltophila Al131906 99.6 GP5 0.3 10.6 0.3 Stenotrophomonas maltophila Al13131 99.0 GP6 0.3 Stenotrophomonas maltophila Al13181 69.0 GP6 0.3 Stenotrophomonas maltophila EU573216 95.0 GP7 2.9 2.6 1<0.6 9.0 Parloca aggiomeras EU596536 91.0 GP1 0.3 Cagionella donatisconii Erostophag marina X95459 91.0 GP1 0.3 Luteimonas aestuarii Erostophila Cagionella donatisconii X937320 88.0 GP1 0.3 Legionella apoticia Froatsdeniensis Al1473333 89.0 S9.0 </td <td></td> <td>1</td> <td>Nod</td> <td>+</td> <td>-</td> <td>-</td> <td>++</td> <td>++</td> <td>+</td> <td>-</td> <td>-</td> <td>++</td> <td>++</td> <td>Closest relatives in known species</td> <td>Acc. No.</td> <td>Identity (%)</td>		1	Nod	+	-	-	++	++	+	-	-	++	++	Closest relatives in known species	Acc. No.	Identity (%)
GP2 0.3 1.6 Stenotrophomonas maltophilia EUB22854 97.0 GP3 0.3 0.4 0.3 0.5 Stenotrophomonas maltophilia FJ811851 100.0 GP4 0.3 0.6 0.3 Stenotrophomonas maltophilia FJ811851 100.0 GP5 0.3 Stenotrophomonas maltophilia FJ8173216 95.0 GP6 0.3 12 49 2.6 9 H2133816 95.0 GP6 0.3 12 49 2.6 9 H2133816 95.0 GP6 0.3 Ligkobacter koreensis AB166878 98.0 98.0 GP10 0.3 Ligkobacter koreensis AB166878 98.0 98.0 GP11 0.3 0.3 Ligkobacter koreensis AB233202 88.0 GP14 0.3 0.3 Legionella insisia AB233202 88.0 GP14 0.4 0.3 Legionella antiana AB233212 88.0 GP14 0.4 0.3			GP1			1.2	0.6	0.3	0.5	0.6	1.4	0.7	2.3	Stenotrophomonas maltophilia	EU442189	99.0
GP3 0.3 0.3 Stenotrophomonas maltophila (SP5 A) 131906 99.6 GP5 0.3 0.6 0.4 0.5 Stenotrophomonas maltophila (SP5 FJ811851 100.0 GP5 0.3 0.6 0.4 0.6 Stenotrophomonas maltophila (SP5 FJ811851 90.0 GP5 0.3 Stenotrophomonas celetalityhaps (GP5 D Stenotrophomonas celetalityhaps (SP5 Stenotrophomonas celetalityhaps (SP5 <td></td> <td></td> <td>GP2</td> <td></td> <td></td> <td></td> <td>0.3</td> <td></td> <td>1.6</td> <td></td> <td></td> <td></td> <td></td> <td>Stenotrophomonas maltophilia</td> <td>EU982854</td> <td>97.0</td>			GP2				0.3		1.6					Stenotrophomonas maltophilia	EU982854	97.0
GP4 0.3 0.6 0.4 3.4 0.6 Stenotrophomonas mexicani FM21331 190.0 GP5 0.3 Pseudoxanthomonas mexicani FM21331 99.0 50.0 50.0 Stenotrophomonas mexicani FM26878 96.0 GP6 0.3 Pantoce aggiomerans EU596536 91.0 CB26 60.0 AB166678 96.0 GP1 0.3 Dyela japonica FJ386567 98.4 91.0 CB27 2.9 2.6 10.0 0.3 Dyela japonica FJ386567 98.4 91.0 GP11 0.3 Carlo Legionella dinaldsonii Z49724 91.0 CB2323209 88.0 GP14 0.3 Legionella aponica FJ386567 99.0 CB252323212 88.0 GP14 0.3 Legionella aponica FJ386567 98.4 90.0 CB772292.0 A Aggionella discloredia d			GP3							0.3	0.3			Stenotrophomonas maltophilia	AJ131906	99.6
GP5 0.3 Pseudoxanthomonas mexicana FM213381 99.0 GP6 0.3 Pseudoxanthomonas chelatiphag EU573216 95.0 GP7 2.9 2.6 4.1 0.6 0.9 3.8 12 4.9 2.6 9 Lystocker koreensis AB166878 96.0 GP8 0.3 Lationas aestuari EF586536 91.0 GP10 0.3 Lationas aestuari EF38667 98.4 GP11 0.3 Legionella inplationi Z43724 91.0 GP12 0.4 Legionella inplationi Z47724 91.0 GP14 0.3 Legionella inplationi AP233209 88.0 GP14 0.3 Legionella inplationi AP233209 88.0 GP14 0.3 Legionella indicationi AP233209 88.0 GP14 0.6 Auciella inplationi AP359283 90.0 GP14 0.6 0.3 Legionella indicationi AP359283 90.0 GP14 0.6 0.3 Legionella indicationi AP359283 90.0		1 1 1	GP4					0.3		0.6	0.3	4.3	0.6	Stenotrophomonas maltophilia	FJ811851	100.0
GF6 0.3 Stenotrophomonas chelaliphaga EU573216 95.0 GF7 2.9 2.6 41 0.6 9 Lysobactr Koreensis AB166878 96.0 GF9 0.3 0.3 Pantoea agglomerans EU596536 91.0 GF11 0.3 0.3 Luteimonas aestuari EF660758 99.0 GF12 0.4 Legionella donaldsoni Z49724 91.0 GF12 0.4 Legionella donaldsoni Z49724 91.0 GF14 0.3 0.3 Legionella inpletisol AB233212 88.0 GF15 0.3 Legionella inpletisol AB233212 88.0 0.0 249739 89.0 GF15 0.6 C4717 0.6 Legionella infonanis AY359283 90.0 GF22 0.3 Legionella insia AJ960924 96.0 1.2 1.4 249739 96.1 GF22 0.3 Legionella insia AJ960924 96.0 1.2 1.4 249739 96.1 GF26 2.4 1.5.2 0.6 0.7.1 Acinetobact			GP5							0.3				Pseudoxanthomonas mexicana	FM213381	99.0
GP7 2.9 2.6 4.1 0.6 0.9 3.8 12 4.9 2.6 9 Pantoes aggemenas Labeles 60 GP8 0.3 Durelia aggemenas EUS6636 91.0 GP10 0.3 Dyelia japonica FJ386567 98.4 GP11 0.3 0.3 Dyelia japonica FJ386567 98.4 GP11 0.3 0.3 Legionella donaldsonii Z49724 91.0 GP13 0.4 0.3 Legionella donaldsonii Z49724 91.0 GP13 0.4 0.3 Legionella drasteninsis AM747393 89.0 GP14 0.4 0.3 Legionella dracourti Z97366 95.5 GP20 0.4 0.6 0.3 Legionella dracourti Z97366 95.5 GP22 0.3 1.2 2.0 1.4 Actinetobacter alcoaceticus AJ609024 80.0 GP24 0.3 0.3 1.2 1.4 Actinetobacter alcoaceticus AJ600024 <td></td> <td>1 1 1</td> <td>- GP6</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.3</td> <td>Stenotrophomonas chelatiphaga</td> <td>EU573216</td> <td>95.0</td>		1 1 1	- GP6										0.3	Stenotrophomonas chelatiphaga	EU573216	95.0
GPB 0.3 Panteea agglomerans EUS96536 91.0 GP0 0.3 Luteimonas aestuari EF660758 99.0 GP1 0.3 Data Methylophag marina X986567 98.4 GP11 0.3 Legionella iponcia X1386567 98.4 GP13 0.3 Legionella iponcia X438724 91.0 GP14 0.3 Legionella iponcia X43724 91.0 GP14 0.3 Legionella iponcia X43724 91.0 GP15 0.3 Legionella inpletisoli AB233212 88.0 GP14 0.4 Legionella iresteniensis AM747393 89.0 GP14 0.4 Legionella iresteniensis X47739 96.1 GP22 0.3 Legionella iresteniensis X47393 90.6 GP21 0.3 Legionella iresteniensis X49717 94.5 GP22 0.3 Legionella iresteniensis X49717 94.5 GP22 0.3 Legionella iresteniensis <th< td=""><td></td><td></td><td>GP7</td><td>2.9</td><td>2.6</td><td>4.1</td><td>0.6</td><td>0.9</td><td>3.8</td><td>12</td><td>4.9</td><td>2.6</td><td>9</td><td>Lysobacter koreensis</td><td>AB166878</td><td>96.0</td></th<>			GP7	2.9	2.6	4.1	0.6	0.9	3.8	12	4.9	2.6	9	Lysobacter koreensis	AB166878	96.0
GP9 0.3 Utelimonas astuarii EF660758 99.0 GP10 0.3 Dyela japonica FL386567 98.4 GP12 0.4 Legionella dimpictisoli AB233209 98.0 GP13 0.3 Legionella dimpictisoli AB233212 88.0 GP14 0.3 Legionella dimpictisoli AB233212 89.0 GP15 0.3 Legionella dimpictisoli AB233212 89.0 GP14 0.3 Legionella dimpictisoli AB233212 89.0 GP14 0.3 Legionella diractoriti X77366 95.5 GP16 0.3 Legionella drancourti X77369 96.1 GP22 0.3 Legionella anis AJ96024 96.0 GP23 0.3 Legionella anis AJ96024 98.0 GP24 0.3 0.6 0.7 1.7 Acinetobacter soli FJ079370 96.1 GP24 0.3 0.8 2.1 2.2 0.3 Nicrobubifer hydrolyticus AJ608704 88.0 GP24 0.3 0.8 2.1 2.2			GP8							0.3				Pantoea agglomerans	EU596536	91.0
GP10 0.3 Depla japonica F.J386567 98.4 GP11 0.3 Depla japonica F.J386567 98.4 GP12 0.4 Legionella donaldsoni Z49724 91.0 GP13 0.3 Legionella impletisoli AB233209 88.0 GP14 0.3 Legionella impletisoli AB233209 88.0 GP15 0.3 Legionella impletisoli AB233209 89.0 GP14 0.3 Legionella ordanis EF036512 89.0 GP17 0.6 Aquicella siphonis AY355283 90.0 GP18 0.4 Legionella drancoutti X97366 95.5 GP21 0.3 Legionella morsimis Z49739 96.1 GP22 0.3 Legionella neumophila AF129524 93.9 GP23 0.3 Legionella promica FJ030370 99.0 GP24 0.3 0.8 2.1 2.0 1.8 Acinetobacter soli FJ87521 99.0 GP25 2.4 1.5 0.6 0.7 1.7 Acinetobacter soli FJ87521			GP9										0.3	Luteimonas aestuarii	EF660758	99.0
GP11 0.3 0.3 0.3 0.3 0.3 249724 91.0 GP12 0.4 0.3 Legionella dinaldsonii 249724 91.0 GP15 0.3 Legionella impletisoli AB233209 88.0 GP15 0.3 Legionella impletisoli AB233212 88.0 GP16 0.3 Legionella impletisoli AB233212 88.0 GP16 0.3 Legionella impletisoli AB233212 88.0 GP16 0.3 Legionella priconella priconuti X97366 95.5 GP17 0.6 Legionella sinkonis X97366 95.5 GP20 0.4 0.6 0.3 Legionella drincoutii X97366 95.5 GP21 0.3 Legionella sinkonis Z49739 96.1 15.0 16.0			- GP10						0.3					Dvella iaponica	FJ386567	98.4
GP12 0.4 Legionella donaldsonii Z49724 910 GP13 0.3 Legionella donaldsonii Z49724 910 GP14 0.3 Legionella dimpletisoli AB233209 88.0 GP15 0.3 Legionella punchiae AB233212 88.0 GP16 0.3 Legionella predeniensis AM747393 89.0 GP17 0.6 Aquicella siphonis AY359283 90.0 GP18 0.4 Legionella dreadeniensis AM747393 89.0 GP20 0.4 0.6 0.3 Legionella puncophila CP000675 95.0 GP21 0.3 Legionella puncophila AP19924 93.9 GP23 0.3 Legionella puncumophila AF192524 93.9 GP24 0.3 Legionella birminghamiensis Z49739 96.1 GP25 2.4 1.5 2.9 4.5 1.5 0.6 0.7 1.7 Acinetobacter soli FJ372521 99.0 GP24 0.3 0.8 0.3 0.3 0.6 2.7 1.2 2.0 3.18 0.7 Acinetobacter soli FJ30370 99.0 GP28 0.4 0.3 0.8 0.3 0.3 0.6 2.7 9			GP11	0.3										Methylophaga marina	X95459	91.0
GP13 0.3 Legionella impletisoli AB233209 88.0 GP14 0.3 Legionella impletisoli AB233212 88.0 GP15 0.3 Legionella pirdanis EF036512 89.0 GP16 0.3 Legionella pirdanis AM747393 89.0 GP17 0.6 Legionella resdeniensis AM747393 89.0 GP18 0.4 Legionella siphonis XY359283 90.0 GP20 0.4 0.6 Legionella versionis X97366 95.5 GP21 0.3 Legionella versionis Z49739 96.1 GP22 0.3 Legionella versionis Z49739 96.1 GP24 0.3 Legionella reumophila CP000675 95.0 GP24 0.3 Legionella versionis Z49739 96.1 GP24 0.3 0.6 C7.1.7 Acinetobacter versi FJ872521 99.0 GP25 2.4 1.5 0.6 C7.1.7 Acinetobacter versi FJ972521 99.0 GP26 0.4 0.3 0.26 C7.0 Acinetob			GP12		0.4									Legionella donaldsonii	749724	91.0
GP14 0.3 Legionella yabuuchiae AB233212 88.0 GP15 0.3 Legionella jordanis EF036512 88.0 GP14 0.6		1 I	GP13		0.1	03								Legionella impletisoli	AB233209	88.0
Image: construction of the second		-	GP14			0.0			03					Legionella vabuuchiae	AB233212	88.0
Image: Construction of the construc		п п	CP15	03					0.0					Legionella jordanis	FE036512	89.0
GP17 0.6 0.3 Legionella siphonis AY359283 90.0 GP18 0.4 Legionella pneumophila CP000675 95.0 GP21 0.3 Legionella drancourti X97366 95.5 GP22 0.3 Legionella anisa AJ969024 96.0 GP23 0.3 Legionella anisa AJ969024 96.0 GP24 0.3 Legionella anisa AJ969024 96.0 GP25 2.4 1.5 0.6 0.7 1.7 Acinetobacter woffii AY135083 98.8 GP24 0.3 1.0 3 1.2 2.0 1.8 0.7 Acinetobacter woffii AY135083 98.8 GP25 2.4 1.5 0.6 0.7 1.7 Acinetobacter woffii AY136083 98.8 GP26 2.1 2.2 0.3 1.8 0.7 Acinetobacter woffii FJ872521 99.0 GP27 0.3 1.0 0.8 3.0.6 Acinetobacter calcoaceticus FJ009371 99.0 GP30 0.6 1.8 0.8 0.3 <td></td> <td>1 11</td> <td>GP16</td> <td>0.0</td> <td></td> <td></td> <td></td> <td></td> <td>03</td> <td></td> <td></td> <td></td> <td></td> <td>Legionella dresdeniensis</td> <td>AM747393</td> <td>89.0</td>		1 11	GP16	0.0					03					Legionella dresdeniensis	AM747393	89.0
GP11 0.4 0.5 Aquiver signality A133205 30.0 GP13 0.4 0.5 Legionella pneumophila CP000675 95.0 GP20 0.4 0.6 0.3 Legionella drancourti X97366 95.5 GP21 0.3 Legionella morsliensis Z49739 96.1 GP23 0.3 Legionella anisa AJ969024 96.0 GP23 0.3 Legionella anisa AJ969024 99.0 GP24 0.3 Legionella anisa AJ969024 99.0 GP25 2.4 1.5 0.6 0.7 1.7 Acinetobacter wolfi FJ872521 99.0 GP26 2.4 0.3 0.8 0.3 0.6 Acinetobacter soli FJ872521 99.0 GP28 0.4 0.3 0.8 0.3 0.6 Acinetobacter soli FJ009370 99.0 GP31 0.3 0.3 0.8 0.3 2.5 Pseudomonas argentinensis AY691188 98.0 GP33 0.6 1.8 0.8 0.3 Pseudomonas grutida A		1 1	CP17					0.6	0.0					Aquicella sinhonis	AV350283	00.0
GP18 0.4 0.4 0.2 Legionella drancouttii X9736 95.5 GP20 0.4 0.6 0.3 Legionella drancouttii X9736 95.5 GP21 0.3 Legionella drancouttii X9736 95.5 GP22 0.3 Legionella drancouttii X9736 95.5 GP22 0.3 Legionella pneumophila AF129524 93.9 GP23 0.3 0.6 0.7 1.7 Acinetobacter lwoffi AY136083 98.8 GP25 2.4 1.5 0.6 0.7 1.7 Acinetobacter lwoffi AY136083 98.8 GP26 0.3 0.8 0.3 0.7 Acinetobacter calcoaceticus FJ009370 99.0 GP28 0.4 0.3 0.8 0.3 0.6 Acinetobacter calcoaceticus Z93434 98.0 GP30 0.6 1.8 0.8 0.3 3.1 Pseudomonas argentinensis AY691188 98.0 GP31 0.3 0.3 0.3 0.3 2.2 2.4 10 2.5 Enterobacter rabunas Ay691188 </td <td></td> <td></td> <td>CP19</td> <td></td> <td>0.4</td> <td></td> <td></td> <td>0.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Aquicella siprionis</td> <td>CP000675</td> <td>95.0</td>			CP19		0.4			0.0						Aquicella siprionis	CP000675	95.0
GP19 0.4 0.6 0.3 Legionella dirakcului X37360 95.3 GP20 0.4 0.6 0.3 Legionella worsilensis X497360 95.3 GP21 0.3 Legionella worsilensis X497360 95.3 GP22 0.3 Legionella worsilensis X497379 96.1 GP23 0.3 Legionella pneumophila AF129524 93.9 GP24 0.3 1.2 0.6 0.7 1.7 Acinetobacter lwolfii Ay13603 98.8 GP25 2.4 1.5 0.6 0.7 1.7 Acinetobacter soli FJ372521 99.0 GP26 0.3 1 0.3 1.2 1.4 Acinetobacter soli FJ372521 99.0 GP27 0.3 1 0.3 0.8 0.3 0.6 Acinetobacter johnsonii FJ009371 99.0 GP30 0.3 0.3 0.6 Acinetobacter johnsonii FJ009371 99.0 GP33 0.3 0.3 0.6 2.9 Cellviorio ostraviensis AY650176 99.8 <t< td=""><td></td><td></td><td>CP10</td><td></td><td>0.4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.2</td><td>Legionella dranaourtii</td><td>CF000075</td><td>95.0</td></t<>			CP10		0.4								0.2	Legionella dranaourtii	CF000075	95.0
GP20 0.4 0.8 0.3 Legionella anisa AJ969024 96.0 GP21 0.3 Legionella neumophila AF129524 93.9 96.1 GP22 0.3 Legionella neumophila AF129524 93.9 96.1 GP24 0.3 Microbulbiler hydrolyticus AJ608704 88.0 GP26 2.1 2.2 0.3 18 0.7 Acinetobacter soli FJ57521 99.0 GP26 2.1 2.2 0.3 1.8 0.7 Acinetobacter calcoaceticus FJ009371 99.0 GP29 0.3 0.8 0.3 0.6 Acinetobacter johnsonii FJ009371 99.0 GP31 0.3 0.3 0.6 2.7 0.9 9.0 Acinetobacter johnsonii FJ009371 99.0 GP32 0.6 1.8 0.8 0.3 0.3 2.5 Pseudomonas gregentinensis AY850170 99.0 GP34 0.3 0.4 2.2 2.9 Cellvibrio ostraviensis AJ493583 93.2 GP36 0.3 0.4 2.2 2.			GP19		0.4	0.6	0.2						0.5		740720	95.5
GP21 0.3 Legionella anisa AJ963024 96.0 GP23 0.3 Legionella pneumophila AF129524 93.9 GP24 0.3 Legionella birminghamiensis Z49717 94.5 GP25 2.4 1.5 0.6 0.7 1.7 Acinetobacter wolfii AY136083 98.8 GP26 2.1 2.2 0.3 1.2 1.4 Acinetobacter soli FJ872521 99.0 GP28 0.4 0.3 0.8 2.3 0.7 Acinetobacter junii FJ364340 100.0 GP29 0.3 0.8 0.3 0.6 Acinetobacter junii FJ009371 99.0 GP30 0.6 .8 0.3 0.6 Acinetobacter junii FJ009371 99.0 GP31 0.3 0.3 0.6 2.7 0.9 0.3 3.1 Pseudomonas argentinensis AY691188 98.0 GP34 0.3 0.3 0.3 2.9 Cellvibrio ostraviensis AJ493583 93.2 GP35 0.3 2.6 0.9 4.3 2.8 E			GP20		0.4	0.0	0.5								249739	96.1
GP22 0.3 Legionela bimimphila AF129524 93.9 GP23 0.3 Legionela bimimphila AF129524 93.9 GP24 0.3 Microbulbifer hydrolyticus AJ608704 88.0 GP25 2.4 1.5 0.6 0.7 1.7 Acinetobacter wolfii AY136083 98.8 GP26 2.1 2.2 0.3 18 0.7 Acinetobacter soli FJ872521 99.0 GP28 0.4 0.3 0.8 2.3 0.7 Acinetobacter calcoaceticus FJ009370 99.0 GP29 0.3 0.8 0.3 0.6 Acinetobacter johnsonii FJ039371 99.0 GP30 0.3 0.3 0.6 2.7 0.9 0.3 1.1 Pseudomonas fulva AB04697 99.6 GP31 0.3 0.3 0.6 2.7 0.9 0.3 Pseudomonas fulva AF094745 99.8 GP34 0.3 0.3 2.5 Pseudomonas oryzihabitans AY691188 93.2 GP35 0.3 2.6 0.9 4.3			GP21			0.3								Legionella anisa	AJ969024	96.0
Legionera birmingnamenisis 249/17 94.5 GP24 0.3 Microbulbifer hydrolyticus AJ608704 88.0 GP25 2.4 1.5 2.9 4.5 1.5 0.6 0.7 1.7 Acinetobacter lwoffii AJ608704 88.0 GP26 2.1 2.2 0.3 18 0.7 Acinetobacter calcoaceticus FJ309370 99.0 GP27 0.3 1 0.3 1.2 1.4 Acinetobacter calcoaceticus FJ309370 99.0 GP28 0.4 0.3 0.8 2.3 0.7 Acinetobacter johnsonii FJ309371 99.0 GP30 0.6 Acinetobacter johnsonii FJ009371 99.0 GP31 0.3 0.3 0.6 Acinetobacter alcoaceticus S29343 98.0 GP32 0.6 1.8 0.8 0.3 2.5 Pseudomonas argentinensis AY691188 98.0 GP33 0.3 0.4 2.2 2.4 10 2.5 Pseudomonas tremae AJ492826 100.0 GP36 0.3 0.4 2.2		-	GP22	0.0		0.3								Legionella pneumophila	AF129524	93.9
GP24 0.3 Microbulbiler nydrolyticus AJ608704 88.0 GP25 2.4 1.5 2.9 4.5 1.5 0.6 0.7 1.7 Acinetobacter wolfni AJ608704 88.0 GP26 0.3 1 0.3 1.2 1.4 Acinetobacter soli FJ872521 99.0 GP27 0.3 1 0.3 1.2 1.4 Acinetobacter calcoaceticus FJ009370 99.0 GP28 0.4 0.3 0.8 2.3 0.7 Acinetobacter johnsonii FJ009371 99.0 GP30 0.6 Acinetobacter johnsonii FJ009371 99.0 GP31 0.3 0.3 0.6 Acinetobacter alcoaceticus Z93434 98.0 GP32 0.6 1.8 0.3 0.3 2.5 Pseudomonas fulva AB046997 99.6 GP33 0.3 0.3 2.5 Pseudomonas fulva AF094745 99.8 GP34 0.3 0.3 2.2 2.9 Cellvibrio ostraviensis AJ492826 100.0 GP35 0.3 2.6		1 I L'	- GP23	0.3		0.0								Legionela birminghamiensis	249/1/	94.5
GP25 2.4 1.5 2.9 4.5 1.5 0.6 0.7 1.7 Acinetobacter limit AY136083 98.8 GP26 2.1 2.2 0.3 1 0.3 1.2 1.4 Acinetobacter soli FJ372521 99.0 GP27 0.3 1 0.3 1.2 1.4 Acinetobacter calcoaceticus FJ009370 99.0 GP28 0.4 0.3 0.8 2.3 0.7 Acinetobacter calcoaceticus Z93434 100.0 GP30 0.6 Acinetobacter calcoaceticus Z93434 98.0 GP31 0.3 0.3 0.6 2.7 0.9 0.3 3.1 Pseudomonas argentinensis AY691188 98.0 GP32 0.6 1.8 0.8 0.3 0.3 Pseudomonas truva AB046997 99.6 GP33 0.3 0.4 2.2 2.2 4 0.3 Pseudomonas cryzinabitans AY850170 99.0 GP34 0.3 2.2 2.2 4 10 2.5 Enterobacter suburiae AJ493583 93.2		1 1 -	- GP24			0.3								Microbulbiter hydrolyticus	AJ608704	88.0
GP26 2.1 2.2 0.3 18 0.7 Acinetobacter soli FJ372521 99.0 GP27 0.3 1 0.3 1.2 1.4 Acinetobacter calcoaceticus FJ009370 99.0 GP28 0.4 0.3 0.8 2.3 0.7 Acinetobacter junii FJ009371 99.0 GP30 0.6 0.8 0.3 0.6 Acinetobacter calcoaceticus Z94344 98.0 GP31 0.3 0.3 0.6 2.7 0.9 0.3 3.1 Pseudomonas argentinensis AY691188 98.0 GP32 0.6 1.8 0.8 0.3 0.3 Pseudomonas tulva AB046997 99.6 GP33 0.3 0.4 2.2 2.2 10 2.5 Enterobacter asburiae AJ492626 100.0 GP34 0.3 2.6 0.9 4.3 2.8 4 0.7 4.8 Citrobacter asburiae AJ508359 100.0 GP37 0.3 0.4 2.2 2.2 4 10 2.5 Enterobacter asburiae AJ508359			GP25	2.4	1.5	2.9	4.5	1.5	0.0	0.6	10	0.7	1.7	Acinetobacter Iwoffii	AY136083	98.8
GP27 0.3 1 0.3 1.2 1.4 Acinetobacter calcoaceticus FJ544340 100.0 GP28 0.4 0.3 0.8 2.3 0.7 Acinetobacter junii FJ544340 100.0 GP30 0.8 0.3 0.6 Acinetobacter calcoaceticus Z93434 98.0 GP31 0.3 0.3 0.6 2.7 0.9 0.3 3.1 Pseudomonas argentinensis AY691188 99.0 GP32 0.6 1.8 0.8 0.3 2.5 Pseudomonas fulva AB046997 99.6 GP33 0.6 1.8 0.8 0.3 2.5 Pseudomonas putida AF094745 99.8 GP34 0.3 0.3 2.9 Cellvibrio ostraviensis AY850170 99.0 GP36 0.3 2.6 0.9 4.3 2.8 4 0.7 4.8 Citrobacter resuriae AJ493583 93.2 GP37 0.3 0.4 2.2 2.2 4 10 2.5 Enterobacter resuriae AJ508359 100.0 GP38 0			GP26			~ ~		2.1	2.2	0.3	18	0.7		Acinetobacter soli	FJ872521	99.0
GP28 0.4 0.3 0.8 2.3 0.7 Acinetobacter junit FJ544340 100.0 GP29 0.3 0.8 0.3 0.6 Acinetobacter johnsonii FJ009371 99.0 GP30 0.6 Acinetobacter calcoaceticus Z93434 98.0 GP31 0.3 0.3 0.6 2.7 0.9 0.3 3.1 Pseudomonas argentinensis AY691188 98.0 GP32 0.6 1.8 0.8 0.3 0.3 2.5 Pseudomonas fulva AB046997 99.6 GP33 0.3 0.6 2.7 0.9 0.3 2.5 Pseudomonas putida AF094745 99.8 GP34 0.3 0.3 0.3 Pseudomonas oryzihabitans AY850170 99.0 GP36 0.3 0.4 2.2 2.2 4 102.5 Enterobacter asburiae AJ50859 100.0 GP38 0.3 2.6 0.9 4.3 2.8 4 0.7 4.8 Citrobacter freundii FJ789742 100.0 GP39 6.4 0.7 <td< td=""><td></td><td></td><td>- GP27</td><td></td><td></td><td>0.3</td><td>1</td><td></td><td>0.3</td><td></td><td>1.2</td><td></td><td>1.4</td><td>Acinetobacter calcoaceticus</td><td>FJ009370</td><td>99.0</td></td<>			- GP27			0.3	1		0.3		1.2		1.4	Acinetobacter calcoaceticus	FJ009370	99.0
Image: Construct of Constr		1 1	GP28		0.4		0.3			0.8	2.3	0.7		Acinetobacter junii	FJ544340	100.0
0.6 Acinetobacter calcoaceticus Z93434 98.0 GP31 0.3 0.3 0.6 2.7 0.9 0.3 1 Pseudomonas argentinensis AY691188 98.0 GP32 0.6 1.8 0.8 0.3 2.5 Pseudomonas fulva AB046997 99.6 GP33 0.3 0.3 0.3 2.5 Pseudomonas fulva AB046997 99.6 GP34 0.3 0.3 Pseudomonas putida AF094745 99.8 GP35 0.3 Pseudomonas oryzihabitans AJ4928261 100.0 GP36 2.9 Cellvibrio ostraviensis AJ493583 93.2 GP37 0.3 0.4 2.2 2.2 4 10 2.5 Enterobacter asburiae AJ508359 100.0 GP38 0.3 2.6 0.9 4.3 2.8 4 0.7 4.8 Citrobacter freundii FJ789742 100.0 GP39 6.4 0.7 0.3 1.3 1.5 17 1.9 3.0 Averyella dalhousiensis DQ158204 99.0 <td< td=""><td></td><td></td><td>GP29</td><td>0.3</td><td></td><td></td><td></td><td></td><td></td><td>0.8</td><td></td><td>0.3</td><td>0.6</td><td>Acinetobacter johnsonii</td><td>FJ009371</td><td>99.0</td></td<>			GP29	0.3						0.8		0.3	0.6	Acinetobacter johnsonii	FJ009371	99.0
GP31 0.3 0.3 0.3 0.4 0.5 0.6 1.8 0.8 0.3 2.5 Pseudomonas argentinensis AP691188 98.0 GP32 0.6 1.8 0.8 0.3 0.3 2.5 Pseudomonas fulva AB046997 99.6 GP33 0.3 0.3 0.3 2.5 Pseudomonas putida AF094745 99.8 GP34 0.3 0.3 0.3 Pseudomonas tremae AJ492826 100.0 GP35 0.3 0.3 Pseudomonas tremae AJ492826 100.0 GP37 0.3 0.4 2.2 2.2 4 10 2.5 Enterobacter asburiae AJ493583 93.2 GP37 0.3 0.4 2.2 2.2 4 10 2.5 Enterobacter asburiae AJ508359 100.0 GP38 0.3 2.6 0.9 4.3 2.8 4 0.7 4.8 Citrobacter freundlii FJ789742 100.0 GP39 6.4 0.7 0.3 0.6 Averyella dalhousiensis DQ158204 99.0 <td></td> <td></td> <td>GP30</td> <td></td> <td></td> <td></td> <td></td> <td>12010</td> <td></td> <td>0.6</td> <td></td> <td></td> <td></td> <td>Acinetobacter calcoaceticus</td> <td>Z93434</td> <td>98.0</td>			GP30					12010		0.6				Acinetobacter calcoaceticus	Z93434	98.0
GP32 0.6 1.8 0.8 0.3 2.5 Pseudomonas fulva AB046997 99.6 GP33 0.3 Pseudomonas putida AF094745 99.8 GP34 0.3 0.3 Pseudomonas putida AF094745 99.6 GP35 0.3 0.3 Pseudomonas putida AF094745 99.0 GP35 0.3 0.3 Pseudomonas oryzihabitans AY850170 99.0 GP36 2.9 Cellvibrio ostraviensis AJ493583 93.2 GP38 0.3 2.6 0.9 4.3 2.8 Enterobacter asburiae AJ508359 100.0 GP38 0.3 2.6 0.9 4.3 2.8 4.0.7 4.8 Citrobacter freundii FJ789742 100.0 GP39 6.4 0.7 0.3 0.6 Averyella dalhousiensis DQ158204 99.0 GP40 0.8 0.3 0.6 Averyella dalhousiensis DQ158204 99.0 GP41 5.7 0.3 Petobacterium carotovorum DQ33384 99.6 GP43 8.3 0.3 <td></td> <td><u>ц</u></td> <td>GP31</td> <td>0.3</td> <td></td> <td>0.3</td> <td>0.3</td> <td>0.6</td> <td>2.7</td> <td></td> <td>0.9</td> <td>0.3</td> <td>3.1</td> <td>Pseudomonas argentinensis</td> <td>AY691188</td> <td>98.0</td>		<u>ц</u>	GP31	0.3		0.3	0.3	0.6	2.7		0.9	0.3	3.1	Pseudomonas argentinensis	AY691188	98.0
GP33 0.3 Pseudomonas putida AF094745 99.8 GP34 0.3 Pseudomonas tremae AJ492826 100.0 GP35 0.3 0.3 Pseudomonas tremae AJ492826 100.0 GP36 2.9 Cellvibrio ostraviensis AJ492826 100.0 GP36 2.9 Cellvibrio ostraviensis AJ492826 100.0 GP37 0.3 0.4 2.2 2.2 4 10 2.5 Enterobacter asburiae AJ508359 100.0 GP38 0.3 2.6 0.9 4.3 9.2 12 Klebsiella oxytoca EU982878 99.0 GP40 0.8 0.3 0.6 Averyella dalhousiensis DQ158204 99.0 GP41 5.7 0.3 Pectobacterium carotovorum DQ33384 99.6 GP43 8.3 0.3 4.5 1.5 0.8 1.1 0.3 Pectobacterium carotovorum DQ33384 99.6 GP44 0.3 0.6 0.7 Erwinia persicina EU982878 90.0 GP44 0.3 0.6			- GP32			0.6		1.8	0.8	0.3	0.3		2.5	Pseudomonas fulva	AB046997	99.6
GP34 0.3 Pseudomonas tremae AJ492826 100.0 GP35 0.3 Pseudomonas oryzihabitans AJ492826 100.0 GP35 0.3 Pseudomonas oryzihabitans AJ492826 100.0 GP36 2.9 Cellvibrio ostraviensis AJ493583 93.2 GP37 0.3 0.4 2.2 2.2 4 10 2.5 Enterobacter asburiae AJ508359 100.0 GP38 0.3 2.6 0.9 4.3 2.8 4 0.7 4.8 Citrobacter freundli FJ789742 100.0 GP39 6.4 0.7 0.3 1.5 17 1.9 4.3 9.2 12 Klebsiella oxytoca EU982878 99.0 GP40 0.8 0.3 0.6 Averyella dalhousiensis DQ158204 99.0 GP41 5.7 0.3 Pectobacterium carotovorum DQ333384 99.6 GP43 8.3 0.3 4.5 1.5 0.8 1.1 0.6 Pantoea agglomerans AM148097 100.0 GP44 0.3 0.6		11	- GP33										0.3	Pseudomonas putida	AF094745	99.8
GP35 0.3 0.3 Pseudomonas oryzihabitans AY850170 99.0 GP36 2.9 Cellvibrio ostraviensis AJ493583 93.2 GP37 0.3 0.4 2.2 2.9 Cellvibrio ostraviensis AJ493583 93.2 GP37 0.3 0.4 2.2 2.2 4 10 2.5 Enterobacter asburiae AJ493583 93.2 GP38 0.3 2.6 0.9 4.3 2.8 4 0.7 4.8 Citrobacter freundli FJ789742 100.0 GP39 6.4 0.7 0.3 1.5 17 1.9 4.3 9.2 12 Klebsiella oxytoca EU982878 99.0 GP40 0.8 0.3 0.6 Averyella dalhousiensis DQ158204 99.0 GP41 5.7 0.3 Klebsiella oxytoca EU982878 99.0 GP43 8.3 0.3 4.5 1.5 0.8 1.1 0.3 0.6 Partoea agglomerans AM184097 100.0 GP44 0.3 0.6 0.7 Erwinia persicina			- GP34			0.3								Pseudomonas tremae	AJ492826	100.0
GP36 2.9 Cellvibrio ostraviensis AJ493583 93.2 GP37 0.3 0.4 2.2 2.2 4 10 2.5 Enterobacter asburiae AJ508359 100.0 GP38 0.3 2.6 0.9 4.3 2.8 4 0.7 4.8 Citrobacter resundii FJ789742 100.0 GP39 6.4 0.7 0.3 1.3 1.5 17 1.9 4.3 9.2 12 Klebsiella oxytoca EU982878 99.0 GP40 0.8 0.3 0.6 Averyella dalhousiensis DQ158204 99.0 GP41 5.7 0.3 Pectobacterium carotovorum DQ33384 99.6 GP42 0.3 1 0.6 0.7 Erwinia persicina EU982878 99.0 GP43 8.3 0.3 4.5 1.5 0.8 1.1 0.3 1 6 Pantoea agglomerans AM184097 100.0 GP44 0.3 0.6 0.7 Erwinia persicina EU681952 98.0 GP45 0.4 0.3		- 4	GP35				0.3					0.3		Pseudomonas oryzihabitans	AY850170	99.0
GP37 0.3 0.4 2.2 2.2 4 10 2.5 Enterobacter asburiae AJ508359 100.0 GP38 0.3 2.6 0.9 4.3 2.8 4 0.7 4.8 Citrobacter resuburiae AJ508359 100.0 GP38 0.3 2.6 0.9 4.3 2.8 4 0.7 4.8 Citrobacter freundii FJ789742 100.0 GP39 6.4 0.7 0.3 1.5 17 1.9 4.3 9.2 12 Klebsiella oxytoca EU982878 99.0 GP40 0.8 0.3 0.6 Averyella dalhousiensis DQ158204 99.0 GP41 5.7 0.3 Pectobacterium carotovorum DQ333384 99.6 GP42 0.3 0.6 0.7 Envinia persicina EU982878 99.0 GP43 8.3 0.3 4.5 1.5 0.8 1.1 0.6 Pantoea agglomerans AM14097 100.0 GP44 0.3 0.6 0.7 Erwinia persicina EU681952 98.0 <			- GP36								2.9			Cellvibrio ostraviensis	AJ493583	93.2
GP38 0.3 2.6 0.9 4.3 2.8 4 0.7 4.8 Citrobacter freundii FJ789742 100.0 GP39 6.4 0.7 0.3 1.5 17 1.9 4.3 9.2 12 Klebsiella oxytoca EU982878 99.0 GP40 0.8 0.3 0.6 Averyella dalhousiensis DQ158204 99.0 GP41 5.7 0.3 Pectobacterium carotovorum DQ333384 99.6 GP42 0.3 Klebsiella oxytoca EU982878 99.0 GP43 8.3 0.3 4.5 1.5 0.8 1.1 0.3 1 0.6 Pantoea agglomerans AM184097 100.0 GP44 0.3 0.6 0.7 Erwinia persicina EU681952 98.0 GP45 0.4 0.3 0.6 0.7 Erwinia persicina EU681952 98.0 GP46 7.8 7.8 7.8 7.8 7.0 7.0 7.0 7.0			GP37	0.3	0.4				2.2	2.2	4	10	2.5	Enterobacter asburiae	AJ508359	100.0
GP39 6.4 0.7 0.3 1.5 17 1.9 4.3 9.2 12 Klebsiella oxytoca EU982878 99.0 GP40 0.8 0.3 0.6 Averyella dalhousiensis DQ158204 99.0 GP41 5.7 0.3 0.6 Averyella dalhousiensis DQ33384 99.0 GP42 0.3 Klebsiella oxytoca EU982878 99.0 GP43 8.3 0.3 4.5 1.5 0.8 1.1 0.3 1 0.6 Pantoea agglomerans AM184097 100.0 GP44 0.3 0.6 0.7 Erwinia persicina EU681952 98.0 GP45 0.4 0.3 0.6 0.7 Erwinia persicina EU681952 98.0 GP46 7.8 Rahnella aquatilis Y14142 99.0 GP47 0.3 Klebsiella oxytoca EU982878 97.0			GP38	0.3		2.6		0.9	4.3	2.8	4	0.7	4.8	Citrobacter freundii	FJ789742	100.0
GP40 0.8 0.3 0.6 Averyella dalhousiensis DQ158204 99.0 GP41 5.7 0.3 Pectobacterium carotovorum DQ33384 99.6 GP42 0.3 Klebsiella oxytoca EU982878 99.0 GP43 8.3 0.3 4.5 1.5 0.8 1.1 0.3 1 0.6 Pantoea agglomerans AM184097 100.0 GP44 0.3 0.6 0.7 Erwinia persicina EU681952 98.0 GP45 0.4 0.3 0.6 0.7 Erwinia persicina EU681952 98.0 GP46 7.8 Rahnella aquatilis Y14142 99.0 GP47 0.3 Klebsiella oxytoca EU982878 97.0			GP39	6.4	0.7	0.3	1.3	1.5	17	1.9	4.3	9.2	12	Klebsiella oxytoca	EU982878	99.0
GP41 5.7 0.3 Pectobacterium carotovorum DQ333384 99.6 GP42 0.3 Klebsiella oxytoca EU982878 99.0 GP43 8.3 0.3 4.5 1.5 0.8 1.1 0.3 1 0.6 Pantoea agglomerans AM184097 100.0 GP44 0.3 0.6 0.7 Erwinia persicina EU681952 98.0 GP45 0.4 0.3 Rahnella aquatilis Y14142 99.0 GP46 7.8 Rahnella oxytoca EU882878 97.0			GP40	0.8						0.3			0.6	Averyella dalhousiensis	DQ158204	99.0
GP42 0.3 Klebsiella oxytoca EU982878 99.0 GP43 8.3 0.3 4.5 1.5 0.8 1.1 0.3 Pantoea agglomerans AM184097 100.0 GP44 0.3 0.6 0.7 Erwinia persicina EU681952 98.0 GP45 0.4 0.3 0.6 0.7 Erwinia persicina EU681952 98.0 GP46 7.8 Rahnella aquatilis Y14142 99.0 GP47 0.3 Klebsiela oxytoca EU982878 97.0		1	GP41						5.7			0.3		Pectobacterium carotovorum	DQ333384	99.6
GP43 8.3 0.3 4.5 1.5 0.8 1.1 0.3 1 0.6 Pantoea agglomerans AM184097 100.0 GP44 0.3 0.6 0.7 Erwinia persicina EU681952 98.0 GP45 0.4 0.3 0.6 0.7 Pseudomonas flectens AB021400 96.3 GP46 7.8 Rahnella aquatilis Y14142 99.0 GP47 0.3 Klebsiella oxytoca EU882878 97.0		JI.	- GP42						0.3					Klebsiella oxytoca	EU982878	99.0
GP44 0.3 0.6 0.7 Erwinia persicina EU681952 98.0 GP45 0.4 0.3 Pseudomonas flectens AB021400 96.3 GP46 7.8 Rahnella aquatilis Y14142 99.0 GP47 0.3 Klebsiella oxytoca EU882878 97.0			• GP43	8.3		0.3	4.5	1.5	0.8	1.1	0.3	1	0.6	Pantoea agglomerans	AM184097	100.0
GP45 0.4 0.3 Pseudomonas flectens AB021400 96.3 GP46 7.8 Rahnella aquatilis Y14142 99.0 GP47 0.3 Klebsiella oxytoca EU982878 97.0		t t	GP44			0.3					0.6	0.7		Erwinia persicina	EU681952	98.0
GP46 7.8 Rahnella aquatilis Y14142 99.0 GP47 0.3 Klebsiella oxytoca EU982878 97.0	I	L	- GP45		0.4			0.3						Pseudomonas flectens	AB021400	96.3
GP47 0.3 Klebsiella oxytoca EU982878 97.0			- GP46		7.8			0.0						Rahnella aquatilis	Y14142	99.0
	I	jL	- GP47						0.3					Klebsiella oxytoca	EU982878	97.0
GP48 O.3 Kluvvera intermedia FLI082880 96.0			GP48						0.3					Kluvvera intermedia	EU982880	96.0
C (2000) 010 C (2000) 010 C (2000) 010 C (2000) 010			GP49						0.0		03			Enterobacter asburiae	E.1823004	97.0
GP50 0.3 Klabsiella ovidora DO163038 96.1			- GP50								0.0		03	Klebsiella oxytoca	DO163938	96.1
GP51 19 0.3 Aeromonas hydrophila E1202054 90.0			- GP51				1 9				0.3		0.0	Aeromonas hydronhila	E 1202054	99.0

Figure 6 Phylogenetic distribution of operational taxonomic units (OTUs) for Gammaproteobacteria of the clone libraries of 16S ribosomal RNA (rRNA) genes for soybean stem-associated bacteria. The dendrogram (left) indicates the phylogenetic relationships among the representative sequences of OTUs (defined by 97% identity). The table indicates the relative abundance of clones belonging to each OTU in each library and the results of a BLAST search using the representative sequences. The soybean genotypes are as follows: E: Enrei; 12: En 1282; 13: En 1314; 65: En 6500; and S4: Sakukei 4. Nod stands for the nodulation phenotype: wild-type (+), non-nodulated (-) and hypernodulated (++).

(Supplementary Table 1). Plant dry weights and nitrogen contents showed no significant difference between nodulated Enrei and the Nod⁻ mutant under the HN field conditions (Supplementary Figures 2a–d, Figure 2i). Under the HN fertilization conditions, nodule dry weight and nodule number of wild-type soybean Enrei were also markedly inhibited.

These results suggest that HN fertilization gave rise to nitrate-induced nodulation inhibition through the soybean autoregulation system. Thus, a GmNARK-mediated signaling pathway may regulate a subpopulation of Alphaproteobacteria, which may be closely related to rhizobia, beyond the regulation of nodule formation by *Bradyrhizobium japonicum* in soybeans. As a consequence, this may have resulted in the low ratio of Alpha/ Gammaproteobacteria in wild-type soybeans.

It is also interesting that population shifts were observed for Nod⁺⁺ soybeans under both SN and the HN fertilization conditions (Figures 2 and 4). As Nod⁺⁺ soybeans do not harbor the functional GmNARK gene (Nishimura *et al.*, 2002), the GmNARK-mediated nitrate sensing systems could not regulate nodule formation (Okamoto *et al.*, 2009). Nevertheless, the effects of HN fertilization on Nod⁺⁺ soybeans occurred systemically, and the mode of the community shifts was very similar to those for other nodulation phenotypes (Nod⁺ and Nod⁻ soybeans). Therefore, the GmNARKgene is not essential for the population shifts of Alpha- and Gammaproteobacteria responding to

HN fertilization. These results also may imply that presence of *GmNARK*-independent nitrogen-sensing system(s) affects the shoot-associated bacterial community in soybeans. However, there is a possibility that the Gammaproteobacteria population may be more adaptive than Alphaproteobacteria in soybeans under the influence of autoregulation and the effects of HN fertilization.

In conclusion, this study showed that the community structure of stem-associated bacteria was affected by nodulation phenotype and nitrogen fertilization level. Both nodulation phenotypes and nitrogen levels caused a similar directional change in the stem-associated bacterial communities, with a population shift of Alpha- and Gammaproteobacteria. Further analyses identified several OTUs in Alpha- and Gammaproteobacteria responding to the population shifts. The relative abundances of Aurantimonas and Methylobacterium sp. were especially sensitive to the nodulation phenotype and nitrogen level, being decreased in the wild-type nodulation phenotype and under HN fertilization. These results imply that the nitrogen signaling pathway in plants may be related to the symbiotic regulation systems between legumes and rhizobia and could have a significant influence on the diversity of plant-associated microbes.

In this study, the clone library analyses were conducted on the whole community of stem-associated bacteria including both the epiphytic and endophytic bacteria rather than on the each of epiphytic and endophytic bacterial communities. Therefore, the important issues for the tissue localization of bacteria responding to nodulation phenotypes and soil N levels remain unanswered, and should be addressed in the following study. Quantitative analyses of the population shifts of Alpha- and Gammaproteobacteria and the isolation of bacteria responsible for this population shift should also be conducted, which would facilitate our understanding of how plants regulate and shape the structures of microbial communities.

Acknowledgements

We thank M. Kokubun (Tohoku University) for providing the soybean seeds. This work was supported in part by Special Coordination Funds for Promoting Science and Technology and in part by a Grant-in-Aid for Scientific Research on Priority Areas 'Comparative Genomics' from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and in part by a grant from the Ministry of Agriculture, Forestry and Fisheries of Japan (Genomics for Agricultural Innovation, PMI-0002).

References

Akao S, Kouchi H. (1989). A supernodulating mutant isolated from soybean cultivar Enrei. *Soil Sci Plant Nutr* **38**: 183–187.

- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. (1990). Basic local alignment search tool. *J Mol Biol* **215**: 403–410.
- Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ. (2006). New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. *Appl Environ Microbiol* **72**: 5734–5741.
- Barbulova A, Rogato A, D'Apuzzo E, Omrane S, Chiurazzi M. (2007). Differential effects of combined N sources on early steps of the Nod factor-dependent transduction pathway in *Lotus japonicus*. *Mol Plant Microbe Interact* 20: 994–1003.
- Caba JM, Centeno ML, Fernández B, Gresshoff PM, Ligero F. (2000). Inoculation and nitrate alter phytohormone levels in soybean roots: differences between a supernodulating mutant and the wild type. *Planta* **211**: 98–104.
- Carroll BJ, McNeil DL, Gresshoff PM. (1985). Isolation and properties of soybean [*Glycine max* (L.) Merr.] mutants that nodulate in the presence of high nitrate concentrations. *Proc Natl Acad Sci USA* **82**: 4162–4166.
- Corpe WA. (1985). A method for detecting methylotrophic bacteria on solid surfaces. J Microbiol Methods 3: 215–221.
- Corpe WA, Basil DV. (1982). Methanol-utilizing bacteria, associated wit green plants. *Dev Indust Microbiol* 23: 483–493.
- Denner EBM, Smith GW, Busse H-J, Schumann P, Narzt T, Polson SW *et al.* (2003). *Aurantimonas coralicida* gen, nov., sp. nov., the causative agent of white plague type II on Caribbean scleractinian corals. *Int J Syst Evol Microbiol* **53**: 1115–1122.
- Ewing B, Green P. (1998). Base-calling of automated sequencer traces using Phred. II. Error probabilities. *Genome Res* 8: 186–194.
- Ewing B, Hillier L, Wendl MC, Green P. (1998). Basecalling of automated sequencer traces using Phred. I. Accuracy assessment. *Genome Res* 8: 175–185.
- Fehr RW, Caviness CE, Burmood DT, Pennington JS. (1971). Stage of development descriptions for soybeans, *Glycine max* (L.) Merrill. Crop Sci 11: 929–931.
- Felsenstein J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. *Evolution* **39**: 783–791.
- Francisco PB, Akao S. (1993). Autoregulation and nitrate inhibition of nodule formation in soybean cv. Enrei and its nodulation mutants. *J Exp Bot* **44**: 547–553.
- Good IJ. (1953). The population frequencies of species and the estimation of population parameters. *Biometrika* **40**: 237–264.
- Gupta RS, Mok A. (2007). Phylogenomics and signature proteins for alpha proteobacteria and its main groups. *BMC Microbiol* **7**: 106.
- Hardoim PR, Van Overbeek LS, Van Elsas JD. (2008). Properties of bacterial endophytes and their proposed role in plant growth. *Trends Microbiol* **16**: 463–471.
- Harrison MJ. (2005). Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol **59**: 19–42.
- Ikeda S, Kaneko T, Okubo T, Rallos EEL, Eda S, Mitsui H et al. (2009). Development of a bacterial cell enrichment method and its application to the community analysis in soybean stems. *Microb Ecol* **58**: 703–714.
- Ikeda S, Rallos LÉE, Okubo T, Eda S, Inaba S, Mitsui H et al. (2008a). Microbial community analysis of field-grown soybeans with different nodulation phenotypes. *Appl Environ Microbiol* **74**: 5704–5709.

- Ikeda S, Tsurumaru H, Wakai S, Noritake C, Fujishiro K, Akasaka M *et al.* (2008b). Evaluation of the effects of different additives in improving the DNA extraction yield and quality from Andosol. *Microbes Environ* **23**: 159–166.
- Kato Y, Asahara M, Arai D, Goto K, Yokota A. (2005). Reclassification of *Methylobacterium chloromethanicum* and *Methylobacterium dichloromethanicum* as later subjective synonyms of *Methylobacterium extorquens* and of *Methylobacterium lusitanum* as a later subjective synonym of *Methylobacterium rhodesianum. J Gen Appl Microbiol* 51: 287–299.
- Kemp PF, Aller JY. (2004). Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us. *FEMS Microbiol Ecol* **47**: 161–177.
- Kinkema M, Gresshoff PM. (2008). Investigation of downstream signals of the soybean autoregulation of nodulation receptor kinase *GmNARK*. Mol Plant Microbe Interact 21: 1337–1348.
- Kuklinsky-Sobral J, Araujo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL. (2004). Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. *Environ Microbiol* **6**: 1244–1251.
- Lane DJ. (1991). 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds). Nucleic Acid Techniques in Bacterial Systematics. John Wiley & Sons Ltd. pp 115–175.
- Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ. (2007). Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. *Plant J* **50**: 529–544.
- Lozupone C, Knight R. (2005). UniFrac: a new phylogenetic method for comparing microbial communities. *Appl Environ Microbiol* **71**: 8228–8235.
- Mano H, Tanaka F, Nakamura C, Kaga H, Morisaki H. (2007). Culturable endophytic bacterial flora of the maturing leaves and roots of rice plants (*Oryza sativa*) cultivated in a paddy field. *Microbes Environ* **22**: 175–185.
- Matsunami T, Kaihatsu A, Maekawa T, Takahashi M, Kokubun M. (2004). Characterization of vegetative growth of a supernodulating soybean genotype, Sakukei 4. *Plant Prod Sci* **7**: 165–171.
- Meixner C, Vegvari G, Ludwig-Müller J, Gagnon H, Steinkellner S, Staehelin C *et al.* (2007). Two defined alleles of the LRR receptor kinase *GmNARK* in supernodulating soybean govern differing autoregulation of mycorrhization. *Physiologia Plantarum* **130**: 261–270.
- Nishimura R, Hayashi M, Wu G, Kouchi H, Imaizumi-Anraku H, Murakami Y *et al.* (2002). HAR1 mediates systemic regulation of symbiotic organ development. *Nature* **420**: 426–429.
- Offre P, Pivato B, Siblot S, Gamalero E, Corberand T, Lemanceau P *et al.* (2007). Identification of bacterial groups preferentially associated with mycorrhizal roots of *Medicago truncatula*. *Appl Environ Microbiol* **73**: 913–921.

- Oka-Kira E, Kawaguchi M. (2006). Long-distance signaling to control root nodule number. *Curr Opin Plant Biol* **9**: 496–502.
- Okamoto S, Ohnishi E, Sato S, Takahashi H, Nakazono M, Tabata S *et al.* (2009). Nod factor/nitrate-induced CLE genes that drive HAR1-mediated systemic regulation of nodulation. *Plant Cell Physiol* **50**: 67–77.
- Okubo T, Ikeda S, Kaneko T, Eda S, Mitsui H, Sato S *et al.* (2009). Nodulation-dependent communities of culturable bacterial endophytes from stems of field-grown soybeans. *Microbes Environ* **24**: 253–258.
- Page RDM. (1996). TreeView: an application to display phylogenetic trees on personal computers. *Bioinformatics* **12**: 357–358.
- Parniske M. (2000). Intracellular accommodation of microbes by plants: a common developmental program for symbiosis and disease? *Curr Opin Plant Biol* 3: 320–328.
- Radutoiu S, Madsen LH, Madsen EB, Felle HH, Umehara Y, Gronlund M *et al.* (2003). Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. *Nature* **425**: 585–592.
- Saito A, Ikeda S, Ezura H, Minamisawa K. (2007). Microbial community analysis of the phytosphere using culture-independent methodologies. *Microbes Environ.* **22**: 93–105.
- Saitou N, Nei M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Mol Biol Evol* **4**: 406–425.
- Schloss PD, Handelsman J. (2005). Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. *Appl Environ Microbiol* **71**: 1501–1506.
- Schloss PD, Handelsman J. (2006). Introducing SONS, a tool for operational taxonomic unit-based comparisons of microbial community memberships and structures. *Appl Environ Microbiol* **72**: 6773–6779.
- Searle IR, Men AE, Laniya TS, Buzas DM, Iturbe-Ormaetxe I, Carroll BJ *et al.* (2003). Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. *Science* **299**: 109–112.
- Stacey G, Libault M, Brechenmacher L, Wan J, May GD. (2006). Genetics and functional genomics of legume nodulation. Curr Opin Plant Biol 9: 110–121.
- Thompson JD, Higgins DG, Gibson TJ. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. *Nucleic Acids Res* **22**: 4673–4680.
- Wang Q, Garrity GM, Tiedje JM, Cole JR. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. *Appl Environ Microbiol* **73**: 5261–5267.
- Weon H-Y, Kim B-Y, Yoo S-H, Joa J-H, Lee KH, Zhang Y-S Z et al. (2007). Aurantimonas ureilytica sp. nov., isolated from an air sample. Int J Syst Evol Microbiol **57**: 1717–1720.
- Zhou J, Xia B, Treves DS, Wu LY, Marsh TL, O'Neill RV et al. (2002). Spatial and resource factors influencing high microbial diversity in soil. Appl Environ Microbiol **68**: 326–334.

Supplementary Information accompanies the paper on The ISME Journal website (http://www.nature.com/ismej)