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The opportunistic coral pathogen
Aspergillus sydowii contains dddP
and makes dimethyl sulfide from
dimethylsulfoniopropionate
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The ascomycete Aspergillus sydowii is associated with a serious epizootic of sea fan corals in
the Caribbean. Corals are rich in the compatible solute, dimethylsulfoniopropionate (DMSP),
produced by their symbionts, the dinoflagellate Symbiodinium. As other Aspergillus species can
catabolize DMSP, liberating dimethyl sulfide (DMS) in the process, we tested A. sydowii strains,
obtained from diseased corals and other environments, for this Dddþ phenotype. All the strains,
irrespective of their geographical or environmental origins, made DMS from DMSP, and all of them
contained homologs (487% identical) of the dddP gene, which encodes an enzyme that releases
DMS from DMSP and which occurs in other Dddþ fungi and in some marine bacteria. The dddP gene
was likely acquired by the Aspergillus fungi by inter-domain horizontal gene transfer from
a-proteobacteria.
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Corals are sensitive to pollution and thermal stress
(Harvell et al., 2007), making them susceptible to
infection, exemplified by a severe epizootic of sea
fan corals (Gorgonia ventalina) in the Caribbean,
caused by the opportunistic fungus Aspergillus
sydowii (Smith et al., 1996; Geiser et al., 1998;
Hernández et al., 2008). This pathogen can infect at
least eight different species of octocorals (Smith and
Weil, 2004), the dominant coral group on many
Caribbean reefs, and has caused high rates of
mortality throughout the region (Nagelkerken
et al., 1997, Kim and Harvell, 2004).

Corals contain photosynthetic dinoflagellates in
the genus Symbiodinium, which have high intracel-
lular concentrations of dimethylsulfoniopropionate
(DMSP), an antistress molecule made by many
marine phytoplankton (Hill et al., 1995; Broadbent
et al., 2002; Sunda et al., 2002; Jones et al., 2007).
When released from such organisms, other marine
microbes can use several wholly different ways to

catabolize DMSP (Yoch, 2002; Johnston et al., 2007;
Howard et al., 2008). Worldwide, these biotransfor-
mations annually turn over B109 tons of DMSP.
Some of these pathways liberate dimethyl sulfide
(DMS), an environmentally influential gas in its own
right, as DMS oxidation products are cloud con-
densation nuclei, causing cloud cover over the
oceans (Sievert et al., 2007). As corals are hot spots
for DMSP production, the levels of DMS downwind
of the Great Barrier Reef are enhanced (Jones and
Trevena, 2005) with possible effects on the abun-
dance of nucleation particles (Modini et al., 2009).

Some ascomycete fungi that occur in the rhizo-
spheres of the salt marsh grass Spartina, which is
one of the very few angiosperms that make DMSP
(Otte et al., 2004), can catabolize this molecule,
liberating DMS in the process (Bacic and Yoch,
1998), a phenotype termed Dddþ . This ability was
also found in Aspergillus oryzae, the fermentative
agent for soy sauce, in Aspergillus flavus and in the
crop pathogens, Fusarium graminearum and
F. oxysporum (Todd et al., 2009). These Dddþ

Aspergillus and Fusarium strains all contained a
gene, termed dddP, whose product cleaves DMSP,
with the release of DMS. The dddP gene likely
originated in marine a-proteobacteria such as
Roseovarius, in which it is important for DMSP
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catabolism and DMS emission (Todd et al., 2009),
and was then transferred to fungi by inter-domain
horizontal gene transfer (HGT). Other Aspergillus
species, such as Aspergillus niger, do not have a
Dddþ phenotype and these lacked dddP (Todd
et al., 2009). As A. sydowii associates with DMSP-
rich corals, we examined A. sydowii isolates,
obtained from corals and from other environments
for their Ddd phenotypes and for the presence of
dddP.

All the A. sydowii strains examined made DMS
from DMSP, with varying levels in different isolates
(Table 1). There was no apparent link between DMS
production and environmental source or mycelial
morphology. Thus, strains from corals had low
(strain SOMB) or high (SABA) activities, and
‘terrestrial’ strains, such as NRRL 242 from Austria,
had above-average levels of production, as did
297072, from a human patient.

To test whether these strains, like other Dddþ

ascomycete fungi, contained dddP, their genomic
DNAs were used as PCR templates, with primers
corresponding to conserved regions near the 50 and
30 termini of fungal dddPs (Figure 1). In all cases, a
single PCR product of the expected size (1.2 kb),
corresponding to B88% of the total dddP gene was
obtained. These PCR products were sequenced.
They all contained a dddP homolog, whose DNA
and polypeptide products were respectively B85
and 91% identical to those of A. oryzae.

The dddP sequences in A. sydowii strains more
closely resembled each other than dddP of A. oryzae
and some were identical in different strains

(Figure 1), so dddP was likely present in the last
common ancestor of A. sydowii. There was no
association between the dddP sequence and the
origin of the A. sydowii isolates, consistent with the
molecular evidence for a single global population in
this species (Rypien et al., 2008).

Aspergillus sydowii (and other fungi) probably
acquired dddP by inter-domain HGT, either from a
bacterium or indirectly from another fungal species
(Todd et al., 2009). The bacterial homologs that most
closely resemble those in fungi are in a subclass of
the DddP sequences in the Global Ocean Sampling
metagenomic database of marine bacteria (Rusch
et al., 2007), so these are the likeliest sources of the
dddP gene that was transferred to fungi by inter-
domain HGT. Another very different gene, dddD,
which encodes a class III Coenzyme A transferase
that liberates DMS from DMSP, is also subject
to HGT among distantly related proteobacteria.
DddD homologs occur not only in marine a- and g-
proteobacteria that were already known to have
Dddþ phenotypes, but also in the terrestrial bacter-
ia, Burkholderia ambifaria and Rhizobium NGR234,
both of which, perhaps significantly, interact with
higher plants (Todd et al., 2007).

Raina et al. (2009) recently isolated g- and
a-proteobacteria that grew on DMSP as sole carbon
source from the mucus or skeletons of the coral
Montipora, which interacts with DMSP-containing
zooxanthellae (Hill et al., 1995). Having shown here
that at least some fungi that associate with corals
have a Dddþ phenotype, it will be of interest to
know the relative contributions of bacteria and

Table 1 Dimethylsulfoniopropionate (DMSP)-dependent dimethyl sulfide (DMS) production in strains of Aspergillus sydowii

Strain (1) Morphology (2) Source (3) Location (4) DMS (5)

SOMB G Infected Gorgonia ventalina Sombrero Reef, Florida 0.83±0.09
SABA W/P Infected G. ventalina Saba, Netherland Antilles 2.01±0.48
DumpD G Infected G. ventalina San Salvador, Bahamas 0.41±0.03
FK11 G Infected G. ventalina Key West, Florida 0.5±0.02
15B1 G Infected G. ventalina Tennessee Reef, Florida 2.89±0.31
NRRL 242 G Environmental Austria 2.17±0.16
NRRL 663 G Environmental Unknown 4.59±0.20
NRRL 251 G Environmental Sri Lanka 0.54±0.06
NRRL 247 W Environmental Florida 1.67±0.03
KIR 382A G Environmental Orinoco river sediment 2.31±0.28
SRRC 2540 G Environmental Durban, South Africa 2.78±0.44
NRRL 4790 G Environmental Japan 0.65±0.28
NRRL 245 W/P Environmental Jamaica 0.31±0.02
NRRL 249 W Environmental Philadelphia 0.26±0.11
NRRL 1732 G Environmental Washington, DC 4.31±0.04
NRRL 5913 G Environmental Unknown 3.22±0.53
NRRL 244 G Environmental Japan 0.70±0.02
NRRL 253 W/P Infectious—human Unknown 0.11± 0.02
297072 G Infectious—human St Paul, Minnesota 1.20±0.04
SRRC 1112 G Unknown Australia 1.10±0.03

Column (1) shows A. sydowii strains as in Rypien et al. (2008). Column (2) shows mycelial appearance on Potato Dextrose Agar (PDA): G¼ green,
powdery sporulating; W¼white, no sporulation; W/P¼white, sporulating. Columns (3) and (4) show the source and location of the isolate,
respectively. Column (5) shows levels of DMSP-dependent DMS production, in nmol DMS h�1 mg�1 A. sydowii mycelial dry weight, with
standard errors from two samples. Fungi were grown on solid PDA (Nicholson et al., 1998) at 28 1C for 48 h. A plug of B25 mm2 from the growing
edge of each mycelium was removed and placed in a sealed vial containing 5 mM DMSP in Vogel’s minimal media. Levels of DMS were assayed
after 6 h by gas chromatography in a flame photometric detector as in Todd et al. (2009).
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eukaryotic microbes in this important process in
these critical ecosystems.

The ability to catabolize DMSP may confer selec-
tive advantage to those microbes, bacterial and fun-
gal, which live in sites of high DMSP productivity,
including corals, as it may give them access to an
abundant substrate. Future study, involving the
characterization of A. sydowii mutants that are
defective in their Dddþ phenotype, may reveal
whether this ability affects pathogenicity and/or
colonization of corals or other traits, such as DMSP
detoxification, nutrition or chemical signaling.
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