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The rational exploration of microbial
diversity
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The exploration of the microbial world has been an exciting series of unanticipated discoveries
despite being largely uninformed by rational estimates of the magnitude of task confronting us.
However, in the long term, more structured surveys can be achieved by estimating the diversity of
microbial communities and the effort required to describe them. The rates of recovery of new
microbial taxa in very large samples suggest that many more taxa remain to be discovered in soils
and the oceans. We apply a robust statistical method to large gene sequence libraries from these
environments to estimate both diversity and the sequencing effort required to obtain a given fraction
of that diversity. In the upper ocean, we predict some 1400 phylotypes, and a mere fivefold increase
in shotgun reads could yield 90% of the metagenome, that is, all genes from all taxa. However, at
deep ocean, hydrothermal vents and diversities in soils can be up to two orders of magnitude larger,
and hundreds of times the current number of samples will be required just to obtain 90% of the
taxonomic diversity based on 3% difference in 16S rDNA. Obtaining 90% of the metagenome will
require tens of thousands of times the current sequencing effort. Although the definitive sequencing
of hyperdiverse environments is not yet possible, we can, using taxa-abundance distributions, begin
to plan and develop the required methods and strategies. This would initiate a new phase in the
exploration of the microbial world.
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Introduction

The microbial world is vast, with 1030 organisms
present on the Earth (Whitman et al., 1998), diverse
(Curtis et al., 2002) and can only be observed
through relatively tiny samples at discrete points
in space and time (Sloan et al., 2007). Thus, it
remains largely unexplored and is likely to remain
so without quantitative statistical tools to estimate
the magnitude of the task. Although very exciting
and impressively large surveys are now being
undertaken in marine (Huber et al., 2007; Rusch
et al., 2007) and terrestrial environments (Roesch
et al., 2007), none of these studies provides an
exhaustive census of the microbial taxa in the
samples. Sampling is still dictated by budgets and
technologies and not an assessment of what is
required to gain an authoritative picture of the

diversity or to detect an organism of a known
abundance. Without such an assessment, it is
impossible to devise a rational strategy for the
exploration of the microbial world, and until such
a strategy is evinced, the systematic documentation
of the microbial world will be impossible to plan
and metagenomics studies will be conducted ‘blind’
(Curtis and Sloan, 2005). Taxa-abundance distribu-
tions (TADs) are central to this task (Curtis et al.,
2002; Curtis and Sloan, 2005; Sloan et al., 2007), as
estimates of richness alone do not give a realistic
impression of the sequencing effort required to
reveal the ‘unseen’ taxa (Curtis et al., 2006).
However, lack of data has confounded the best
efforts to home in on plausible distributions. The
advent of high throughput sequencing technologies
is changing this and it has now become possible to
apply rigorous statistical methods to fit TADs to the
data. This in turn permits us to determine the
sequencing effort required to document a gene or all
genes in a given environment.

Here, we apply a Bayesian approach, central to
which is the definition of the likelihood, the
probability of observing the data given the model
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parameters, in this case, the diversity and TAD
(Chao and Bunge, 2002; Bunge et al., 2006; Hong
et al., 2006). We looked at three data sets obtained
through shotgun sequencing and 454 pyrosequen-
cing that comprise an enormous number of sequence
reads: the Global Ocean Survey (GOS) data from the
upper oceans given by Rusch et al. (2007), the deep-
sea vent data of Huber et al. (2007) and the soil data
of Roesch et al. (2007). Our operational taxonomic
units (OTUs) are based on differences in 16S rDNA
sequences read either from a short variable region
(Huber et al., 2007) or from longer shotgun
sequences (Rusch et al., 2007). Taxa are defined as
clusters of sequences that differ by at most 3% of
sites, this approximates species (Konstantinidis and
Tiedje, 2005; Hanage et al., 2006), and facilitates
comparisons with other studies (Schloss and Han-
delsman, 2005; Huber et al., 2007). Our method
yields the most informed estimates yet of diversity
in these environments and applying the same
method to the data sets facilitates comparison
between them. In addition, we employ a novel
technique to estimate not just the diversity in these
systems but the degree of sampling required to
catalogue that diversity.

Materials and methods

Data sets
Three data sets were used in this study, two sets of
16S rDNA tag sequences from pyrosequencing and a
data set consisting of 16S cluster abundances from
the GOS obtained through personal communication
with Aaron Halpern (Rusch et al., 2007). The
sequence data sets consisted of the deep-sea vent
data of Huber et al. (2007), downloaded from the
supplementary material, and the soil data of Roesch
et al. (2007). See both papers for details of sample
preparation, DNA amplification and pyrosequen-
cing. The deep-sea vent data consist of tag se-
quences from two locations denoted by FS312 and
FS396 separated into bacteria (FS312b and FS396b)
and archaea (FS312a and FS396a). Because TADs
can differ between communities and between
bacteria and archaea, we treated each of these four
samples separately.

The soil sequence data of Roesch et al. (2007)
were obtained through personal communication
with Eric W Triplett. These data derived from four
different locations (Brazil, Florida, Illinois and
Canada), and we treated each location as a separate
sample. We only used bacterial sequences and did
not consider the archaeal sequences separately
because their sample sizes were relatively small
(Illinois had the largest number of archaea samples,
at 4530). To aid comparison with the deep-sea vent
data and to reduce noise, we trimmed these
sequences as described by Huber et al. (2007).
Therefore, in total we analysed nine samples,
four from each of the sequence data sets and the
GOS data.

Generation of sample-abundance distributions
To reduce the size of the pyrosequencing samples,
the unique tag sequences were identified and their
frequencies were determined. The reduced samples
were then aligned (Edgar, 2004), a distance matrix
was calculated and the program dotur was used to
cluster sequences (Sogin et al., 2006). OTUs were
defined as the clusters at 97% sequence identity.
This level of identity in 16S rRNA genes has been
shown to be approximately equivalent to a 70%
DNA–DNA reassociation value and produces OTUs
that are reasonable proxies to species (Stackebrandt
and Goebel, 1994; Konstantinidis and Tiedje,
2005; Hanage et al., 2006). This definition also
allows comparison with other studies (Huber et al.,
2007). The abundance of each taxa was then
calculated as the sum of the constituent tag
frequencies.

The GOS shotgun sequence data was already
clustered when it was provided to us (Rusch
et al., 2007). Assemblies were searched for con-
served regions associated with 16S rDNA genes.
These gene fragments were then aligned, distances
generated in a similar fashion to above and then
were clustered at 97% sequence identity. The
contribution of each assembly to the cluster abun-
dance was weighted by the proportion of the 16S
gene present, and the average copy number of
the assembly. This gave continuous weights for
each cluster. To approximate number of 16S reads
per cluster and thereby generate discrete taxa
abundances, we divided these weights by half
and rounded up to the nearest integer, a half
being approximately the length of a typical read,
900 base pairs, divided by the length of the
16S gene, 1600 base pairs. For all nine samples,
the taxa abundances were converted into sample-
abundance distributions, that is, the number of
taxa observed with a given abundance. Table 1
contains summary information on the nine
microbial samples.

Definition of the likelihood
The first step in deriving the likelihood is to convert
the continuous distribution of taxa abundances in
the community into a discrete distribution of
probabilities for the number of times an arbitrary
taxon appears in the sample. We begin by denoting
the normalized TAD by T(l|h), where h is a vector of
parameters. We assume that each time an individual
is sampled (with replacement), the probability
that it is from a given taxon is equal to that
taxon abundance, l, divided by the total
population number N. The number of times a taxon
appears in the sample will then be approximately
Poisson-distributed with mean lL/N, where L is
the sample size. The unknown taxa abundances
in the community will comprise a realization
of independent samples from the TAD. We can
integrate over these realizations to give a probability
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Pn that we will observe a taxon n times in the
sample:

Pnðm; hÞ ¼
Z1

0

e�ml

n!
ðmlÞnTðljyÞdl ð1Þ

where m¼ L/N is the sampling frequency (Pielou,
1969; Chao and Bunge, 2002; Etienne and Olff, 2005;
Hong et al., 2006; Green and Plotkin, 2007). In
general, m will be hard to specify because of the
difficulty in defining the number of individuals,
N, that constitute a community. Fortunately, most
abundance distributions are invariant under rescaling
from community abundance l to sample abundance
l-x¼ lm (Pielou, 1969). Therefore, we can write

Pnðh0Þ ¼
Z1

0

e�x

n!
xnTðxjh0Þdx ð2Þ

where h0 are rescaled parameters that will be a
function of m, hence we can fit for the parameters
h0 without knowing the value of m. The discrete
distribution Pn(h0) is a continuous mixture of
Poisson distributions (Johnson et al., 2005).

If we let the richness, the total number of taxa in
the community, be S, then each of these taxa has a
probability Pn of appearing n times in the sample,
including not appearing at all with probability P0.
These probabilities are the same for all taxa, but this
does not imply that each taxon has the same
abundance in the community, rather that a priori
all taxa are equivalent in the sense that their
abundances are drawn from the same distribution.
Therefore, the likelihood of observing the sample
abundances has a multinomial distribution (Chao
and Bunge, 2002; Hong et al., 2006). Let fi be the
number of taxa observed with a given abundance i,
and denote all these frequencies by the vector
f¼ (f1,f2,yfL). The largest possible observed abun-
dance is equal to the number of individuals in the
sample L. The number of observed taxa D will be

equal to
P

i¼ 1
L fi so that there are f0¼S�D unobserved

taxa, then,

Pðf jh0;SÞ ¼ PS�D
0

YL

i¼1

P
fi

i

fi!

S!

ðS � DÞ!

is the likelihood.

Calculating the discrete probability distribution in the
sample
The expression for the probability that an arbitrary
taxon will be represented by n individuals in the
sample (Equation (2)) will depend on the TAD fitted,
and consequently so will the diversity estimates
and sampling efforts. To explore this, we used four
different distributions: two two-parameter distribu-
tions, the log-normal and inverse Gaussian, and two
three-parameter distributions, the log-Student’s t
and Sichel distributions. The log-normal has been
frequently used to fit both microbial and macrobial
abundance distributions (Pielou, 1969; Curtis et al.,
2002). The log-Student’s t distribution (or log-t
distribution) is a generalization of this that has
heavier tails but approaches log-normality as the
‘degrees of freedom’ parameter becomes infinite
(Lange et al., 1989). The inverse Gaussian is a
highly skewed distribution that has been applied
previously to microbial abundances (Hong et al.,
2006). The Sichel distribution is its three-parameter
generalization (Sichel, 1974). Other distributions,
for example, the exponential, gamma and a mixture
of exponentials, were also tried, but they were a
poor fit to the TADs. In the case of the inverse
Gaussian and the Sichel distributions, the integral in
Equation (2) can be performed analytically giving
the probabilities Pn in terms of modified Bessel
functions (Johnson et al., 2005). For the log-normal
and log-Student’s t distributions, no such closed
expression is possible and instead numerical inte-
gration was used to calculate the Pn values.

Table 1 Summary of the nine microbial samples

Sample Size OTUs Chao Bayesian parametric
estimate

Sampling effort to
get 90% of OTUs

GOS 7068 811 1038.0 1420 5
Brazil 26 079 2880 4604.4 8934 124
Florida 28 150 3440 5642.9 15 440 399
Illinois 31 621 3357 5745.0 9770 27
Canada 52 773 5515 10 394.0 54 240 551
FS312b 442 062 12 183 19 567.7 50 675 282
FS312a 200 199 1594 2175.3 3367 70
FS396b 247 826 5853 10 569.7 335 816 1.5� 107

FS396a 16 428 418 629.6 2920 1.1� 104

These comprise the Global Ocean Survey (GOS) data from the upper oceans given by Rusch et al. (2007), soil bacterial samples (separated by
location: Brazil, Florida, Illinois and Canada) (Roesch et al., 2007) and samples from deep-sea vents separated by location (FS312, FS396) and into
bacteria (FS312b, FS396b) or archaea (FS312a, FS396a) (Huber et al., 2007). Rows are the sample size in reads (size), the number of operational
taxonomic units (OTUs) observed—defined as clusters with at least 97% sequence similarity, Chao non-parametric estimate of total diversity
Chao (1987), the median of the posterior distribution of richness from our best-fitting TAD (Table 2) and the corresponding sampling effort, in
multiples of the current sample size, to observe 90% of that richness (Table 3). The observed species numbers and Chao estimates differ from
those given by Roesch et al. (2007) because we filtered for noisy sequences (Huse et al., 2007).
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Bayesian fitting to the sample-abundance distributions
To fit the sample abundances, we used a simple
Bayesian approach. In Bayesian statistics, the
‘posterior distribution’ is the probability of
the parameters given the data; it is proportional to
the likelihood of the data multiplied by the prior
probabilities of the parameters (Gelman et al., 2004).
The likelihood of the sample abundances given the
parameters of the underlying TAD is derived above.
We used non-informative improper prior distribu-
tions. To sample from the posterior distribution, a
Metropolis algorithm was used to perform Markov
chain Monte-Carlo (Gilks et al., 1996). For each
fit, three Markov chain Monte-Carlo runs from
overdispersed starting parameters were performed
and checked for convergence (Gelman, 1996). We
found that a run length of 250 000 steps and a
burn-in period of 100 000 was sufficient to ensure
convergence. All results quoted in the paper are
collated over the last 150 000 steps of all three runs.
Table 2 gives the diversity estimates obtained from
fitting the four TADs to the nine samples. These are
calculated as the medians of the sampled S values
together with 95% confidence intervals. This meth-
od of diversity estimation, which can be viewed as
parametric, as it assumes a form for the TAD (Hong
et al., 2006), infers the true diversity in the
community together with confidence intervals, in
contrast to non-parametric estimators such as those
of Chao, which generate a lower bound (Chao, 1987;
Hong et al., 2006; Sloan et al., 2008).

Model comparison
We used the deviance information criterion (DIC) to
compare fits between models (Spiegelhalter et al.,
2002). The DIC is defined as the sum of the deviance
(�2 times the negative log-likelihood) averaged
over the posterior distribution, d̄, and the effective
number of parameters, pD. The deviance is related to
the more familiar Chi-squared statistic of non-linear
regression; a smaller deviance indicates a better fit.
The pD term penalizes more complex models. For
our non-hierarchical models, the DIC is simply d̄þ 3

for the two parameter abundance distributions, and
d̄þ 4 for their three-parameter generalizations (the
extra parameter is the diversity S). Models with
smaller DIC values are preferred. When quoting
fitted diversities in Table 2, we give the model
ranking in terms of DIC, and we also highlight the
best-fitting model and all those models that had DIC
values within six of the best fit, except that we did
not highlight any three parameter model that failed
to decrease the DIC value by at least one over its
nested two-parameter model. All highlighted mod-
els should be considered plausible candidates for
fitting the data.

Calculating the 90% sampling effort
At a new sampling frequency, m0 ¼ L0/N, the observed
number of taxa will be drawn from a binomial
distribution with mean (Chao and Bunge, 2002):

hDi ¼ S½1 � P0ðm0; hÞ ð3Þ
As stated above, we can use the transformation
l-x¼ lm0 and express P0 as a function of the rescaled
parameters, h00. Remarkably, we can calculate these
as a function of our original fitted parameters
without knowledge of the community size. The
exact procedure depends on the abundance distri-
bution used. We will illustrate it for the log-normal
distribution, which has two parameters M and V
corresponding to the mean and variance of the log-
transformed abundance, respectively. The variable V
is unchanged under the transformation l-x, only
the mean changes M 0 ¼ log(m)þM, similarly at the
new sampling frequency M 00 ¼ log(m0)þM. Therefore,
simply combining and rearranging gives M 00 as a
function of the sample sizes and the fitted para-
meter, M 00 ¼ log(L0/L)þM 0. We applied similar pro-
cedures to all the fitted abundance distributions to
determine the 90% sampling effort: the sample size
with a mean observed diversity of 90% of the taxa
present in the community. This method is concep-
tually similar to that of Schloss and Handelsman
(2006), who generated artificial communities
with abundance distributions similar to observed

Table 2 Diversity estimates from fits of abundance distributions to the GOS data (Rusch et al., 2007), soil data: Brazil, Florida, Illinois,
Canada (Roesch et al., 2007), and the deep-sea vent data: FS312b, FS312a, FS396b, FS396a (Huber et al., 2007)

Sample Log-normal Inverse Gaussian Log-t Sichel

GOS (2046, 2667, 3985)3 (1705, 2072, 2659)4 (1584, 2252, 3528)2 (1279, 1420, 1616)1

Brazil (7596, 8934, 10 795)1 (6024, 6697, 7583)2 — (5715, 6606, 8306)3

Florida (12 695, 15 440, 19 673)1 (9970, 11 579, 14 044)3 — (7258, 8129, 9442)2

Illinois (12 056, 14 799, 19 027)2 (8599, 9770, 11 531)1 — (8686, 10 967, 17 299)3

Canada (37 841, 50 985, 72 351)3 (22 733, 27 640, 36 357)2 — (31 093, 54 240, 143 717)1

FS312b (84 066, 99 836, 121 784)3 (47 072, 52 580, 59 652)4 (42 865, 50 675, 61 784)1 (25 792, 27 076, 28 557)2

FS312a (2937, 3367, 4055)1 (2183, 2311, 2476)3 (2936, 3354, 4037)2 (2124, 2261, 2453)4

FS396b (154 811, 306 589, 795 635)2 (44 076, 66 857, 119 206)4 (172 471, 335 816, 560 208)1 (17 586, 20 428, 24 125)3

FS396a (1413, 2920, 13 066)1 (775, 971, 1396)4 (1280, 2641, 9539)2 (643, 765, 1005)3

Results are given as (lower limit, median, upper limit) of the marginal posterior distribution of S, with the limits defining the 95% confidence
interval. Subscripts give the rank of the fit in terms of DIC; the best fit and those judged not to be significantly worse than the best fit are
highlighted in bold. Results are not given for fits of the log-Student’s t distribution to the soil data, as in these cases the fits were effectively the
same as for the log-normal.
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communities, and sampled from them. However, by
avoiding the labour of generating and resampling
large populations, we can generate sampling efforts
from across the entire posterior distribution of fitted
parameter values. In addition, we avoid the difficult
problem of specifying the community size, N. For
each microbial sample, and for each distribution, we
calculated the sampling level expected to obtain
90% of the diversity (90% sampling effort) for 4500
sets of parameter values taken from the posterior
distribution of fitted values. In Table 3, we list the
medians of these sampling efforts together with 90%
confidence intervals.

The proportion of the metagenome sequenced
In metagenomics, the aim is not to characterize the
species present, but to obtain the aggregate genome
or metagenome of the community through random
reads distributed throughout the microbial genomes.
Given a fitted abundance distribution, we can
calculate the expected proportion of the meta-
genome obtained for a given number of randomly
distributed reads. If there were only a single taxon
present, then the expected proportion of the genome
not sequenced (assuming reads of fixed length R
base pairs randomly distributed throughout the
genome) is an exponentially decreasing function of
the coverage c¼RL/G, where L is the read number
and G is the genome size. In a community, assuming
all taxa have the same genome length, then the
number of reads from any given taxon will be
weighted by its relative abundance, therefore the
coverage becomes RLl/GN�Rml/G. Averaging over
all taxa, this gives

M ¼ 1 �
Z1

0

exp � lm
g

� �
TðljhÞdl

for the expected fraction of the metagenome
sequenced, with g¼G/R being the number of reads
required to span the genome. Comparing this with
Equation (1), we see that M¼ 1�P0(m/g,h). Thus,
having calculated the expected sample size to

capture 90% of the species diversity, we can multi-
ply this by g to give the expected sample size to
accrue 90% of the genetic diversity.

Results and discussion

Table 1 contains the sample size in number of reads,
the number of taxa observed, an estimate of the
lower bound on richness obtained using Chao’s
estimator and estimates of diversity and 90%
sampling effort using the best-fitting TAD for the
GOS data (Rusch et al., 2007), for the four different
soils samples (Roesch et al., 2007), and for the two
deep-sea vent sites separated into bacteria and
archaea (Huber et al., 2007). Figure 1a gives our
estimates of the diversity of OTUs at these sites from
the four different TADs, and Figure 1b gives our
estimates of the sampling in reads required to
observe 90% of the OTU diversity. The numerical
values for these diversities and sampling efforts
(in multiples of the current sample size) are given
in Tables 2 and 3 together with 95% confidence
intervals. Reassuringly, the lower bounds on our
estimates for richness are higher than those given by
Chao’s estimator at all the sites and the median
values of richness are significantly higher, irrespec-
tive of the distribution used. On the basis of the DIC
values, it was easy to distinguish the best-fitting
TADs for all data sets including the GOS where data
were collated from multiple samples at different
locations. Significantly, these distributions are a
very good fit to the whole range of abundances
(Figure 2); we did not need to right-truncate the
sample to rare species as Hong et al. (2006) did
when fitting to much smaller samples.

Marine surface plankton
The planktonic bacterial communities in the upper
ocean sampled in the GOS appear to be the
least diverse. The best-fitting, Sichel distribution,
estimates 1420 OTUs in the marine plankton
biota, which is approximately 400 more taxa than

Table 3 Estimates of the sample size necessary to obtain 90% of the taxa diversity determined from fits of abundance distributions to the
GOS data (Rusch et al., 2007), soil samples (Roesch et al., 2007) and the deep-sea vent samples (Huber et al., 2007)

Sample Log-normal Inverse Gaussian Log-t Sichel

GOS (37.7, 106.6, 506.4) (11.5, 19.0, 35.0) (11.5, 50.4, 317.7) (3.8, 5.0, 7.0)
Brazil (62.0, 124.1, 280.2) (11.2, 14.9, 20.4) — (8.9, 14.2, 28.9)
Florida (180.6, 399.3, 1069.0) (26.0, 37.4, 58.1) — (9.1, 12.5, 18.9)
Illinois (223.4, 531.3, 1557.3) (19.3, 26.6, 39.6) — (19.1, 38.3, 145.6)
Canada (2804.0, 9747.8, 40 248.7) (61.7, 95.7, 174.4) — (138.6, 551.3, 5956.6)
FS312b (3547.4, 7254.9, 16 588.9) (57.4, 74.2, 98.6) (140.4, 282.3, 681.5) (9.3, 10.6, 12.1)
FS312a (32.3, 69.6, 197.9) (3.2, 3.8, 4.8) (31.4, 66.9, 191.7) (2.7, 3.5, 4.8)
FS396b (9.0E5, 1.6E7, 8.2E8) (254.2, 619.8, 2025.4) (1.0E6, 1.5E7, 1.1E8) (22.5, 32.5, 47.8)
FS396a (351.2, 11 268.1, 1.1E7) (8.9, 16.3, 39.7) (197.4, 6081.4, 2.3E6) (4.2, 7.1, 15.3)

Results are in multiples of the original sample number and given as medians with 95% confidence intervals. The best-fitting distributions are
highlighted in bold.
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estimated previously (Table 1). Thus, with 811 taxa
defined so far, they are a little over half way through
a complete census. However, doubling the sample
size will be insufficient to identify the remaining
taxa because they are rare and harder to find than
the first 811. Again on the basis of the Sichel
distribution, we estimate that to obtain 90% of the
diversity in the 16S rRNA gene, approximately
20 000 partial or full genes would be required,
which one might expect from 35 000 reads of that
gene. Given that untargeted shotgun sequencing is
being applied to the entire metagenome in the GOS,
approximately 30 000 000 reads would be required
to achieve this and simultaneously reveal 90% of
the total genetic diversity. This corresponds to
approximately 5 times the current sequencing effort
(Table 1), which is eminently achievable. However,
if the aim is to assemble complete genomes, which
requires larger levels of coverage to obtain over-
lapping sequences, then many more reads than this
will be necessary.

Soil
Until recently, soil environments were regarded as
being the most diverse (Torsvik et al., 2002). Some

controversial (Bunge et al., 2006) estimates of
diversity exceeded 106 different prokaryotes per
gram of soil (Gans et al., 2005). Soils are a prime
example of an environment where estimates of
diversity have been compromised by undersam-
pling. Therefore, very large samples of Roesch et al.
(2007) are particularly welcome. They estimated
total diversity using a portion of the 16S rRNA gene
and the sampling effort required to recover 90% of
that diversity. They asserted that soil samples can
be easily characterized using pyrosequencing;
for a soil sample from Brazil, they estimate that the
maximum diversity is 5021 OTUs and that to
capture 90% of that diversity it would require a
modest 226 388 reads. However, their non-para-
metric estimates of diversity are known to be
conservative and their alternative method of
extrapolating a Michaelis-Menten (M-M) curve,
fitted by non-linear regression to the mean diversity
estimates obtained from sub-sampling is even
more conservative (Gotelli and Colwell, 2001). In
Figure 3, we plot the observed rarefaction curve
for the Brazilian soil data along with that of the
best-fitting M-M curve and those for our fitted TADs.
The M-M fit is clearly unsatisfactory; it does not
fit the expected sub-sampled diversities as well as
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Figure 1 (a) Bayesian parametric diversity estimates from fits of abundance distributions to the samples summarized in Table 1.
Estimates are given as medians with a 95% confidence interval (log-normal, red; inverse Gaussian, green; log-Student’s t, blue; Sichel,
yellow). These figures are given in Table 2. For each sample, the estimates are ordered according to the Bayesian DIC measure of fit
(Spiegelhalter et al., 2002). The distributions that were significantly better than all others are highlighted in black, where two
distributions fitted equally well both are highlighted. The Chao estimates (solid lines) and number of observed taxa (filled circles) are
also shown. (b) The sampling effort (as 16S reads) necessary to sample 90% of taxa present (see main text). This is also given as medians
and confidence intervals over the posterior distribution of fitted parameters. These figures are given in Table 3. Distributions are colour-
coded as in panel (a), actual sample size (number of reads) is shown as a solid line.
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the abundance distributions, and it extrapolates to
an asymptotic level of diversity (3375), which is
smaller than the lower bound given by the
Chao estimator. Given the statistically robust
nature of the Chao estimator’s lower bounds, this
strongly suggests that even the more sophisticated
two-part M-M curves used by Roesch et al.
(2007) are inferior to the non-parametric estimators.
In contrast, our parametric estimates of soil
diversity are significantly higher (Table 1). It is clear
from Figure 1b and Table 3 that substantial
extra sampling will be necessary to characterize
these communities. In particular, the diversity in the
Canadian soil sample is large; our predictions
range from 20 000 to 140 000 taxa (Table 2). The
best-fitting Sichel distribution predicts that a med-
ian of 551 sample sizes or just over 29 million
reads will be required to obtain 90% of these taxa,
which contrasts with the equivalent figure of
713 000 reads obtained by Roesch et al. (2007) from
extrapolation of the rarefaction curve. Our figure
would require at least 70 runs of a Roche
FLX genome sequencer, a considerable effort in
terms of time and money. In addition, the
upper limit of our prediction is ten times this
value. It is unlikely that all soil communities
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can be easily characterized by current pyrosequen-
cing technologies (Roesch et al., 2007). However,
we know now the performance that would be
required to attain this goal. We anticipate that
the systematic and authoritative sequencing of
the soil will enable us to see patterns obscured
previously by inadequate sampling. It has, for
example, not escaped our attention that the diversity
in this soil data set apparently increases from south
to north.

Deep-sea vents
In 2006, Sogin et al. showed that in samples from
deep-sea diffuse hydrothermal vents, there was a
surprisingly large phylogenetic diversity in the rare
bacterial taxa. Huber et al. (2007) returned to the
same vents in an attempt to further define the extent
of microbial diversity and to fully resolve the
archaeal and bacterial communities. The number
of 16S RNA tag sequences that they obtained is an
order of magnitude higher than for any other
environment. However, on the basis of their non-
parametric diversity estimates and rarefaction
curves, they conclude that yet further sampling is
required. It can be seen from Figure 1 and Tables 2
and 3 that our estimates of diversity and the
sampling effort to accrue 90% of the taxa in these
deep-sea vents depends strongly on the TAD
assumed, especially at the FS396 site where the
sample size is lower than the FS312 site. This
reinforces the conclusion of Huber et al. that the
environments are still undersampled and that to be
absolutely certain of the underlying TAD will
require an increase in sampling frequency. However,
our best-fitting distributions, the log-normal and its
generalization, the log-t distribution, are signifi-
cantly better models of the data than the inverse-
Gaussian or Sichel distributions, which gives us
more confidence in predictions made on their basis.
Thus, our best estimates are that there are approxi-
mately 50 000 bacterial taxa at FS312 and 300 000
bacterial taxa at FS396. This would mean that even
at the better-sampled FS312 site sample sizes would
need to increase 280 times, requiring 120 million
reads, just to obtain 90% of the diversity in the 16S
rRNA tag sequences. Even for the relatively taxa-
poor archaea, sampling levels at this site would
need to increase 70-fold to obtain 90% of the tag
sequence diversity. Suppose that a metagenomics
data set was to be compiled from 1000 base pair
random insert clone libraries for bacteria at the
FS312 deep-sea vent. To obtain 90% of the bacterial
genetic diversity, 1011 reads would be required,
assuming a conservative marine bacterial genome
length of just 1 000 000 base pairs (Giovannoni et al.,
2005). For assembly, this figure is a lower limit that
assumes that assembly is possible with infinitesimal
overlap, but even for this to be practical, new, even
more powerful, sequencing technologies would be
required.

Further applications
In this study, we have focused on bacteria and
archaea; however, our approach has wider applic-
ability. High-throughput sequencing technologies
could, and no doubt soon will, be used to investigate
the diversity of eukaryotic microbes such as fungi,
protists and microalgae in environmental samples
through amplification and sequencing of hypervari-
able regions of ribosomal genes (Montero et al., 2008).
Virus genomes lack conserved regions; consequently,
metagenomics is necessary to identify the types
present (Angly et al., 2006; Fierer et al., 2007). In
either case, the potential exists for large data sets to be
collected, and our method for predicting true diversity
and sampling efforts could be used to inform that
collection. Indeed, our statistical methods can be
applied to any community for which a sample-
abundance distribution is available, regardless of the
origin of that data, for instance, clone libraries could
be used, although their typically small sizes will result
in uncertain estimates. In fact, we used the Barro
Colorado Island tropical tree data set to validate our
methods (Hubbell et al., 1999). This provided a
completely characterized community of over 200 000
individuals, from which we randomly sub-sampled
much smaller numbers (1000) to mimic low sampling
frequencies. From these sub-samples, we estimated
the total community diversity and 90% sampling
effort, and the true values of both were within the 95%
confidence intervals of our predictions. This illus-
trates the robustness and generality of our method.

Concluding remarks
Access to the results of high-throughput sequencing
data has allowed us to make the best informed
estimates of diversity to date for very diverse
environments such as soils and deep-sea vents and
the sequencing efforts required to uncover them.
These results are striking but ultimately less sig-
nificant than the methods, mathematical and
molecular from which they were derived. For the
methods evinced in this article, transform the
intriguing observations made using high-throughput
sequencing into testable hypotheses about the
distribution and extent of the microbial diversity
in these environments.

It is imperative that we now determine whether
we can or cannot predict the diversity and TAD of an
environment using a conjunction of mathematics
and the new generation of sequencing technology. If
we can, then studies of microbial diversity can move
into a new phase in which the estimation and
description of microbial diversity becomes a rational
and planned activity. The systematic mapping of the
extent of the diversity of the microbial world can
become a reality and its systematic exploration can
become plausible. The clearer picture this new
approach will offer us will be a foundation for a
more sophisticated and predictive understanding of
real microbial communities.
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We have called previously for a microbial survey
analogous to a geological survey (Curtis, 2006),
reasoning that microbes will have at least as much,
if not more, impact on our environment and society
in the next century as geology has had in the past
200 years. The advent of novel sequencing techno-
logies and adequate mathematical tools make this
proposal a tangible and fundable reality.
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