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High aromatic ring-cleavage diversity in
birch rhizosphere: PAH treatment-specific
changes of I.E.3 group extradiol
dioxygenases and 16S rRNA bacterial
communities in soil
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Genes encoding key enzymes of catabolic pathways can be targeted by DNA fingerprinting to
explore genetic degradation potential in pristine and polluted soils. We performed a greenhouse
microcosm experiment to elucidate structural and functional bacterial diversity in polyaromatic
hydrocarbon (PAH)-polluted soil and to test the suitability of birch (Betula pendula) for remediation.
Degradation of PAHs was analysed by high-performance liquid chromatography, DNA isolated from
soil amplified and fingerprinted by restriction fragment length polymorphism (RFLP) and terminal
restriction fragment length polymorphism (T-RFLP). Bacterial 16S rRNA T-RFLP fingerprinting
revealed a high structural bacterial diversity in soil where PAH amendment altered the general
community structure as well as the rhizosphere community. Birch augmented extradiol dioxygenase
diversity in rhizosphere showing a rhizosphere effect, and further pyrene was more efficiently
degraded in planted pots. Degraders of aromatic compounds upon PAH amendment were shown by
the changed extradiol ring-cleavage community structure in soil. The RFLP analysis grouped
extradiol dioxygenase marker genes into 17 distinct operational taxonomic units displaying novel
phylogenetic clusters of ring-cleavage dioxygenases representing putative catabolic pathways, and
the peptide sequences contained conserved amino-acid signatures of extradiol dioxygenases.
A branch of major environmental TS cluster was identified as being related to Parvibaculum
lavantivorans ring-cleavage dioxygenase. The described structural and functional diversity
demonstrated a complex interplay of bacteria in PAH pollution. The findings improve our
understanding of rhizoremediation and unveil the extent of uncharacterized enzymes and may
benefit bioremediation research by facilitating the development of molecular tools to detect and
monitor populations involved in degradative processes.
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Introduction

The relatively recent introduction of toxic chemicals
to soils, sediments and aquifers has disturbed
natural catabolic processes, and the spread of
pollutants constitutes a threat to ecosystem func-
tioning and human health (Susarla et al., 2002).

Polyaromatic hydrocarbons (PAHs), constituents of
petroleum hydrocarbons and wood preservatives
like creosote, are toxic to organisms in the ecosys-
tems because of their lipophilic character and
harmful due to their acute toxicity, mutagenicity or
carcinogenicity (Fewson, 1988; Collins et al., 1998).
Organic pollutants are subjected to microbial biode-
gradation exemplified by monitored natural attenua-
tion (Dojka et al., 1998; Stapleton et al., 1998; Gieg
et al., 1999), and corresponding pathways have
been depicted from bacterial strains (Cerniglia,
1992; Habe and Omori, 2003). Present knowledge
about catabolic pathways is restricted to culturable
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strains constituting a great minority of the bacteria
inhabiting soils and sediments. Uncharacterized
degradation pathways most likely exist and in the
study of little explored pathways in nature, incisive
experimental strategies are required for finding
novel reactions (Galvao et al., 2005; Suenaga et al.,
2007).

The structural diversity of bacteria in soil (Torsvik
and Oevreas, 2002) has been assessed by 16S rRNA
marker gene analysis, most often not connected to a
specific function in the ecosystem. Within func-
tional marker gene studies, an activity like aromatic
ring hydroxylation or ring cleavage in biodegrada-
tion is, however, connected to the retrieved com-
munity. Knowledge of this catabolic potential for
example, biodegradation genes in soils, is valuable
in the development of efficient bioremediation
strategies (Whyte et al., 1999; Baldwin et al., 2003;
Dionisi et al., 2004). Degradation genes are potential
biomarkers for the detection of toxic hydrocarbons
and for the evaluation of toxicological risks
intrinsic to the presence of these pollutants
(Power et al., 1998).

Extradiol dioxygenase genes encoding aromatic
ring-cleaving dioxygenases have been used as func-
tional markers for catabolic bacterial communities
(Erb and Wagner-Doebler, 1993; Daly et al., 1997; Sei
et al., 1999; Mesarch et al., 2000; Junca and Pieper,
2004). Functional primers used in these studies
suffer, however, from relatively narrow specificity.
Upper and lower extradiol dioxygenases group into
separate phylogenetic clusters (Eltis and Bolin,
1996). The lower-pathway catechol dioxygenases
form subfamilies I.2.A, I.2.B, I.2.C, I.2.D and I.2.E.
The upper-pathway families I.1 and I.3–I.5 are not
closely related to the lower-pathway enzymes.
Subfamilies I.3.A, I.3.B, I.3.C, I.3.D and I.3.E are
diverse displaying little similarity. We developed an
extradiol dioxygenase marker gene assay (group
I.3.E) to target bacteria with capacity to cleave the
persistent aromatic ring that frequently is part of
environmental pollutants like PAHs and petroleum
hydrocarbons (Sipilä et al., 2006). The target sub-
family I.3.E encloses enzymes for ring cleavage of
biphenyl, naphthalene and evidently also for poly-
aromatic compounds such as dibenzothiophene and
phenanthrene, containing three aromatic rings
(Denome et al., 1993; Pinyakong et al., 2003).
These enzymes have been isolated and described
from the proteobacterial genera of Sphingomonas,
Pseudomonas, Ralstonia and Burkholderia, and
from high GC genus of Rhodococcus.

In bioremediation of soil, biodegradation can be
enhanced by making conditions favourable for the
catabolic process. Plants in phytoremediation of
hydrocarbon contaminants have been proposed
to improve degradation conditions in soil (Kuiper
et al., 2004), and some improvement in biodegradation
has been observed in plant microcosms/microeco-
systems (Miya and Firestone, 2000). Plant-associated
microbes, especially in the root zone, potentially

play a central role in rhizoremediation (Parrish
et al., 2004; White et al., 2006) because plants
mediate a rhizosphere effect illustrated by
plant-specific microbial communities (Smalla
et al., 2001; Costa et al., 2006). Generally, the
rhizosphere of plants harbours a higher diversity of
bacteria than the surrounding bulk soil due to root
exudates and oxygen that stimulate bacteria
(Briones et al., 2003). Most interest in phytoreme-
diation with woody plants has been devoted to
Populus (Spriggs et al., 2005; Widdowson et al.,
2005; Zalesny et al., 2005) and Salix (Vervaeke et al.,
2003) with the aim to combat heavy metal pollution.
Not much attention has been devoted to elucidate
applicability of woody plants for remediation of
organic pollution (Tesar et al., 2002; Mueller and
Shann, 2006; Palmroth et al., 2006). One requisite
for successful rhizoremediation of PAH is the
presence and diversity of PAH biodegradation genes
in the rhizosphere, which has not previously been
assessed using cultivation-independent methods.

We hypothesized that birch amendment will
diversify aerobic aromatic ring-cleavage bacterial
populations in rhizosphere-associated soil. Newly
designed broad-specificity primers targeting I.3.E
group extradiol dioxygenases and the 16S rRNA
marker gene were, in our study, used to elucidate
functional and structural diversity, respectively, in
rhizoremediation of PAHs to demonstrate how genes
encoding biodegradation enzymes can be used as
marker genes in soil with high bacterial diversity to
show pertinent communities in the biodegradation
process.

Materials and methods

Greenhouse experiment and sampling
A pot microcosm experiment was set up to study
biodegradation of PAHs in soil where heavy metal-
tolerant birch (Betula pendula) clone, Wales W008,
was tested for suitability in rhizoremediation. Birch
seedlings (4–6 cm) were planted into individual pots
containing 500 g of soil after manually removing
nursery soil from the plant roots. Microcosms
without plants, both PAH-polluted and -unpolluted,
were included. All treatments were done in
triplicate.

The soil was a mixture of 50% sand (Optiroc,
granulometric distribution 0.5–1.2 mm) and 50% of
untreated peat (Kekkilä Oyj, Tuusula, Finland). Soil
was contaminated with a PAH mixture of anthra-
cene, phenanthrene, fluoranthene and pyrene in
acetone. Microcosms were treated with two con-
centrations, 50 or 300 mg kg�1, of each polyaromatic
compound making a final concentration of 200 and
1200 mg kg�1, respectively, of PAHs. The acetone
was evaporated from the soil in a fume chamber for
72 h. Microcosms were illuminated 16 h per day
imitating Nordic summer day light with light of
colour 77 and 965 (Osram Fluora and Biolux), and
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the incubation temperature in greenhouse was
kept at 18 1C.

Two replicate microcosm from treatments pristine
nursery soil (Bulk-0), PAH-polluted soil 1200mgkg�1

(Bulk-1200), pristine rhizosphere (Rhiz-0) and
polluted rhizosphere 1200 mg kg�1 (Rhiz-1200)
were subjected to bacterial community analysis.
Composite soil samples (six subsamples), 20 g,
were taken from bulk soil microcosms at the end
of the 3-month incubation. From rhizosphere-
associated soil, composite soil samples were
taken as follows: birch seedlings were lifted up
from the pot leaving soil stuck on the roots;
subsequently, they were physically shaken by
hand, and soil falling off from the roots was
sampled; six subsamples were taken and pooled
together to a composite Rhiz sample for community
DNA analysis.

For chemical analysis, the whole batch of extant
soil (480 g) from the pots, after removal of plant, was
analysed for PAH compounds by HPLC (high-
performance liquid chromatography) (planted-soil
sample). The ‘bulk soil’ sample was all the soil from
a pot without a plant. The soil was extracted with
1500 ml of 50% acetonitrile–50% water solution in a
shaker for 120 min, and 10 ml of the upper phase
was filtrated with Whatman PVDF micro filter
(0.45 mm) for HPLC analysis.

DNA isolation and PCR amplification
Total DNA for analysis of extradiol dioxygenase
gene was extracted from 0.25 g soil from greenhouse
microcosm experiment with the PowerSoil DNA
Isolation Kit (Mo Bio laboratories Inc., Carlsbad, CA,
USA). The bead-beating step was performed using
Cell Homogenizer MSK (B Braun Biotech Interna-
tional GmbH, Melsungen, Germany), by 3� 40 s
beating and 20 s pause on ice between the bead
beatings. No further purification of the DNA was
needed. The quality of the total community DNA
was assessed using agarose gel electrophoresis.

Recently published primers targeted to the I.3.E
subfamily of extradiol ring-cleavage dioxygenases
were selected for analysis of aromatic ring-cleavage
diversity in microcosms (Sipilä et al., 2006). The
deduced amino-acid fragment peptide (154 amino
acids) corresponds to the almost complete N-
terminal part of the intact enzyme, and included
the His145, crucial for iron binding in the catalytic
centre (Sato et al., 2002). The BP-F sequence is
50-TCTAYCTVCGNATGGAYHDBTGGCA-30 and BP-R
50-TGVTSNCGNBCRTTGCARTGCATGAA-30.

Extradiol dioxygenase genes were amplified from
two replicate microcosm experiments using PCR
protocol as described (Sipilä et al., 2006). The
general 16S rRNA bacterial marker gene was
amplified from two replicate microcosms using the
primer pair 27F (AGAGTTTGATCCTGGCTCAG) and
1492R (ACGGCTACCTTGTTACGACTT) (Weisburg
et al., 1991). The 27F primer was labelled with

5́-carboxyfluorescein. The PCRs contained 40 pmol
of primers, 200 mM dNTP, 2 U of DNA polymerase
(Biotools; B&M Labs, Madrid, Spain), 1� reaction
buffer containing 200 mM MgCl2 and 0.03 mg bovine
serum albumin. The PCR protocol was 60 1C 5 min
followed by 30 cycles of denaturation at 96 1C for
30 s, annealing at 50 1C for 30 s and elongation
at 72 1C for 90 s, followed by final elongation at
72 1C for 5 min.

T-RFLP analysis of bacterial communities
Amplified 16S rRNA genes were fingerprinted by
terminal restriction fragment length polymorphism
(T-RFLP). T-RFLP analysis is a highly reproducible
and robust technique that yields high-quality
fingerprints consisting fragments of precise sizes
(Osborn et al., 2000). Several four-cutter restriction
enzymes were tested and HaeIII was selected giving
best size distribution of terminal restriction frag-
ments (T-RFs). PCR products were diluted 1/50, and
2ml of diluted PCR product was digested using 3 U
of HaeIII restriction enzyme (Promega Corporation,
Madison, WI, USA) using restriction buffer C as
recommended by the manufacturer. Digestion was
performed overnight at 37 1C to ensure complete
restriction in 20 ml volume. The HaeIII restriction
enzyme produces blunt restriction sites minimizing
the potential effect of polymerase-end filling on the
terminal fragment diversity (Hartmann et al., 2007).
Digested fragments were ethanol-precipitated and
solubilized in formamide (15 ml). Gene Scan 500
standard (Applied Biosystem, Foster City, CA, USA)
was used in capillary electrophoresis (ABI 310 DNA
sequencer; Applied Biosystem).

The fragment size, peak area and height were
measured in fluorescence units (Gene Scan soft-
ware; Applied Biosystem). Fragments 50–500 bp
were analysed. Three T-RFLP electropherograms
from same community DNA were compared to
identify true peaks from artefacts. The proportional
percentage of each peak area was calculated from
the total amount of fluorescence. Peak shoulders
were manually checked and the intensities were
summed up when appropriate. Peaks with intensity
higher than 1% of total fluorescence were accepted
for analysis. Accepted peaks of samples were
aligned allowing ±1 bp difference in size. 16S rRNA
genes from PAH-polluted and pristine bulk soil were
cloned to produce environmental libraries for
identification of T-RFLP peaks. The 16S rRNA of
clones was subjected to T-RFLP analysis along with
community PCR products. After identification of
T-RF sizes, selected clones were submitted to se-
quence analysis. The selected clones were amplified
with PCR using vector-specific RP (50-TTTCA
CACAGGAAACAGCTATGAC-30) and UP (50-CGA
CGTTGTAAAACGACGGCCAGT-30) primers. PCR
products were sequenced using 27F primer with
an ABI 3130 genetic analyser with Big Dye v.3.1
chemistry (Applied Biosystem). The 16S rRNA gene
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sequences were submitted to GeneBank with
accession numbers AM981263–AM981270.

Cloning and RFLP
PCR-amplified aromatic ring-cleavage gene frag-
ments from four different treatments from two
replicate microcosms were cloned to produce eight
environmental DNA libraries. Cloning and subse-
quent restriction fragment length polymorphism
(RFLP) analysis were performed according to Sipilä
et al. (2006). Gel-purified PCR products (Wizard SV
gel and PCR Clean-Up System; Promega) were
ligated to pGEMT vector (pGEMT vector system;
Promega) and transformed to competent DH5a cells
prepared by the rubidium chloride method (Hana-
han, 1983). On average, 51 clones were picked for
RFLP analysis from each library. Clones were
divided into operational taxonomic units (OTUs)
on the basis of DNA-banding pattern of individual
clones. Each banding pattern found on agarose gel
constitutes one distinct OTU according to how the
restriction enzyme cuts the PCR product. The OTUs
were later confirmed by sequence analysis.

Statistical analysis
Statistical analysis was done using the Past v. 1.73c
program (Hammer et al., 2001). Shannon diversity
indices H

0 ¼ �
PS

i¼1 ðni=NÞlnðni=NÞ (Shannon and
Weaver, 1963) and Simpson diversity indices
ð1 � DÞ ¼ �

PS
i¼1 ðni=NÞ2 (Simpson, 1949) take into

consideration both species richness and species
dominance. In both equations, ni is the number of
clones assigned to OTU i in a library, N is the total
number of clones analysed from the library and S is
the total number of OTUs. Shannon (H0) and
Simpson (1–D) diversity indices increase with
OTU richness and evenness but the highest possible
value for Simpson diversity index is 1.

Nonparametric analysis of similarity (ANOSIM)
(Clarke and Warwick, 1994) was used to test the
significance of the differences between communities
as suggested (Rees et al., 2005). The ANOSIM tests
the hypothesis that the average rank similarity
between the objects within a group is the same as
the rank similarity between objects between groups.
ANOSIM produces R statistics that can range from
�1 to 1. Objects that are more dissimilar between
groups than within groups will be indicated by R
statistic greater than 0. An R-value 0 indicates that
the null hypothesis is true. Exploratory tool simi-
larity percentage analysis (SIMPER) was used to
study the similarity between complex T-RFLP
profiles.

The 16S rRNA T-RFLP profiles and RFLP extradiol
dioxygenase libraries from different treatments
were analysed by principal component analysis
(PCA) to find important components correlated
with the treatments. The variance–covariance
matrix was used to find the eigen values and

eigen vectors. Shapiro–Wilk test of normality was
used to assess the normal distribution in PAH
degradation data. Student’s test (t-test) was used to
compare degradation of PAHs in planted and bulk
soil pots.

Phylogenetic analysis of extradiol dioxygenase
peptides
Clones representing each OTU were chosen for
sequence analysis. Several clones were amplified
from dominant OTUs to assess the sequence
similarity within the OTU. The selected clones were
amplified with routine PCR using vector-specific RP
(50-TTTCACACAGGAAACAGCTATGAC-30) and UP
(50-CGACGTTGTAAAACGACGGCCAGT-30) primers.
PCR products were sequenced using T7 primer with
an ABI 3130 genetic analyser with Big Dye v.3.1
chemistry (Applied Biosystem). Sequences were
compared with those in the databases using BLAST
(NBCI, URL http://www.ncbi.nlm.nih.gov/BLAST/).
The amino-acid sequences were aligned using
ClustalW (Li, 2003) and inspected manually with
the Genedoc program v. 2.6 (Nicholas et al., 1997).
The phylogenetic tree was constructed with the
Treecon program package (Van de Peer and De
Wachter, 1994) using evolutionary distances (Tajima
and Nei, 1984) and the neighbour-joining method
(Saitou and Nei, 1987).

To identify and compare signature amino-acid
sequences of amplified extradiol dioxygenases, a
peptide sequence alignment was compared to the
three-dimensional structure of BphC enzyme from
Pseudomonas KKS102 (Sato et al., 2002) belonging
to the group I.3.A (Eltis and Bolin, 1996). A
simultaneous comparison of the alignment with
the three-dimensional structure was made using
the Cn3D v. 4.1 program (http://130.14.29.110/
Structure/CN3D/cn3d.shtml). Extradiol dioxygenase
gene sequences were deposited in the EMBL
database with the accession numbers AM418471–
AM418514.

HPLC apparatus and chromatographic conditions
Samples were analysed according to the modified
EPA 500/500.1 method, using Hewlett-Packard
HPLC (Waldbronn Analytical Division) with 1100
quaternary pumps, an auto sampler and a UV
detector, linked to HP ChemStation data-handling
system. The reversed-phase separation was per-
formed in a C18–RP column (Bondapack C18–RP,
250� 4.6 mm, 5mm particles). The PAH compounds
were separated with gradient elution using water (A)
and acetonitrile (B). The elution system was as
follows: 0–2.5 min, 40–60% of A in B; 2.5–12 min,
60–90% of A in B; and 12–20 min, 100% of B.
Injection volume was 10 ml and the flow rate
1.5 ml min�1. The PAH compounds were detected
at 270 nm and identified according to their retention
times and UV spectra.
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High-performance liquid chromatography analy-
sis of each sample was repeated four times with
same PAH extract, and the mean value constituted
the result from one separate pot. Recoveries for the
four studied PAH compounds were measured by
contaminating soil samples with pure standard
solutions. Standard concentration levels of 200,
800 and 1200 mg l�1 were spiked into the soil, mixed
for 30 min in a roller, and stored for 14 days before
extraction and HPLC analysis. Each concentration
level was studied in five parallel tests. The average
recovery percentages for anthracene, phenanthrene,
fluoranthene and pyrene from the soil matrix were
83.9%, 70.7%, 80.6% and 73.8% respectively (with
corresponding standard deviations of the recoveries
10.6%, 1.6%, 1.6% and 0.9% respectively). This
part of the PAHs is considered as the available
fraction used in calculations of biodegradation
percentage.

Results

Soil microcosms were designed to study the effect of
PAHs and birch (Betula pendula) on structural and
functional diversity in rhizoremediation. The micro-
cosm setup (see Materials and methods) entailed

treatments analysed by DNA fingerprinting, which
are as follows: pristine nursery soil (Bulk-0), PAH-
polluted soil 1200 mg kg�1 (Bulk-1200), pristine
rhizosphere (Rhiz-0) and polluted rhizosphere
1200 mg kg�1 (Rhiz-1200). The birch grew substan-
tially in height during the 3-month incubation. In
microcosms with high (1200 mg kg�1) PAH concen-
tration, phytotoxicity symptoms were shown using
Hsp70 immunoassay, proteomic profiling of birch
roots and growth measurements (data not shown).

T-RFLP analysis of 16S rRNA communities
The 16S rRNA marker gene was fingerprinted with
T-RFLP to analyse treatment-specific structural
changes in bacterial communities in soil. Totally,
49 individual T-RFs were accepted for analysis.
After the 3-month experiment, all microcosm treat-
ments showed different bacterial communities
(Figure 1), and the replicates were more similar to
each other than to those in any other treatments
(ANOSIM, R¼ 0.95). 16S rRNA communities in
Bulk-0 and Bulk-1200 soil were disparate (overall
dissimilarity, 57.4 SIMPER), and most contributing
T-RFs were 395, 258, 242, 390, 206 and 187 bp.
Pollution affected the rhizosphere-associated soils
as well (overall dissimilarity, 56.4), and the
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T-RFLP analysis of 16S rRNA community structures
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Terminal restriction fragments (bp)

Figure 1 Relative abundances of 16S rRNA T-RFs from microcosms by T-RFLP analysis after 3-month experiment. T-RF size is given in
base pairs, and the relative abundance of T-RFs is given as percentage of total peak area. The T-RFs contributing most to the treatment-
specific differences (SIMPER) are marked with colours. ‘Rhiz-0’ is rhizosphere-associated soil without PAH amendment. ‘Bulk-0’ is bulk
soil without PAH amendment. ‘1200’ denotes addition of 1200 mg kg�1 PAH. PAH, polyaromatic hydrocarbon; T-RF, terminal restriction
fragment.
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contributing T-RFs were 214, 258, 242, 192, 313 and
187. Interestingly, part of the contributing T-RFs
(214 and 313) were not the same as detected in Bulk-
0 and Bulk-1200 microcosm, suggesting incongruent
development of bacterial community in the rhizo-
sphere. Not surprisingly, bacterial communities of
Bulk-1200 and Rhiz-0 were highly contrasting (over-
all dissimilarity, 66.8) with contributing T-RFs, 395,
258, 214, 206, 187, 390 and 257 bp (Figure 1). Bulk-0
and Rhiz-0 soil showed lower, 36.2 dissimilarity,
and an emergent rhizosphere effect was detected in
a comparison of the polluted samples (Rhiz-1200
and Bulk-1200) (dissimilarity, 48.5).

The dominant T-RFs, 214 and 242, were identified
to contain 16S rRNA gene sequences similar to
Burkholderia genus and Gp1 (Acidobacteriaceae),
respectively (Table 1). The partial 16S rRNA
sequence (T-RFs, 214) was 99% similar to Burkhol-
deria glathei isolate Hg 11, known to degrade
naphthalene (Wilson et al., 2003). The relative peak
area of T-RF 214 increased upon PAH addition in
birch rhizosphere-associated soil. The relative abun-
dance of Acidobacteria (T-RFs, 242) seemed to be
lower in polluted soil.

Treatment-specific changes in community struc-
ture were revealed by PCA. Component 1 explains
the PAH-pollution effect (49.5% of the variance)
and component 2, evidently, the rhizosphere
effect (19.1% of the variance) best detected in
PAH-amended soils. The unpolluted rhizosphere
and bulk soil were quite much a like (Figure 2a).

Extradiol dioxygenase community structures
Restriction groups of functional genes estimated
by PCR-RFLP were explicitly defined as OTUs
(Figure 3). The fingerprints detected in agarose gel
were in good agreement with in silico digestion
although the resolution of agarose gel is low for
small fragments o50bp. In total, 407 clones from eight
environmental DNA libraries were fingerprinted, on

average 51 clones per library (Table 2). The ampli-
fied extradiol dioxygenase marker genes grouped in
17 OTUs (Figure 4) from two replicate microcosms
of four different treatments and richness curves
showed representative sampling of each clone
library (Figure 5). Marker gene community struc-
tures displayed in Figure 4 were subjected to PCA.
Replicate microcosms placed together indicating
good reliability of analysis. Treatment-specific dif-
ferences were demonstrated by PCA (Figure 2b) and
ANOSIM analysis (R¼ 0.91, Po0.05). Component 1
separated Bulk-1200 soil from all other treatments.
Component 2 separated the amended soils,
Bulk-1200, Rhiz-0 and Rhiz-1200 from Bulk-0.

Bulk-0 samples grouped together and PAH addi-
tion changed their ring-cleavage community struc-
ture. In Bulk-0 soil, eight OTUs were detected with
unique OTU 69 as the dominating one (Figure 4).
Addition of PAH, 1200 mg kg�1, resulted in a
population with seven OTUs, where OTU 72 was
clearly the most dominating one and seems to be
important in PAH degradation. The effect of PAH
was also reflected in Shannon diversity index (H0)
decreasing from 1.3 to 0.93 and Simpson index
(1�D) as well from 0.65 to 0.45 (Table 2). Rhiz-0 and
Rhiz-1200 soils displayed a more diverse ring-
cleavage community than in the bulk soil micro-
cosms (Table 2, Figure 4) with 13 OTUs, almost
twice as many found in bulk soil. OTU 48 was the
most characteristic one, and OTUs 40, 49, 52, 60 and
70 were specific for Rhiz soil. After 3-month
incubation, Rhiz-0 and Rhiz-1200 soils displayed
only minor differences in aromatic ring-cleavage
communities (Figure 4).

Phylogenetic analysis of dioxygenases
The extradiol dioxygenase peptide sequences re-
trieved from this study grouped into seven distinct
clusters (Figure 6). These clusters represent putative
independent genetic pathways describing catabolic

Table 1 Identification of terminal restriction fragments (T-RFs) of 16S rRNA community profiles. The occurrence of T-RFs in different
treatments (Bulk-0, Bulk-1200, Rhiz-0 and Rhiz-1200) is shown as the relative means of peak areas in T-RFLP profiles. Identification of
T-RFs was based on T-RFLP analysis of 16S rRNA gene from clones and subsequent sequencing of corresponding partial 16S rRNA gene

T-RF length
(bp)a

Clone id Relative mean of T-RF area in community samples Identification of
the sequence

Bulk-0 Bulk-1200 Rhiz-0 Rhiz-1200

165 09-654B03 0.8 3.0 0.0 0.0 Acetobacteraceae
189 39-654C11 1.0 0.0 3.6 0.0 Rhizobiales
195 26-654E08 1.6 2.3 2.3 5.2 Alphaproteobacteria
214 45-654A12 16.8 30.2 12.3 22.8 Burkholderia
226 01-654E01 0.0 2.2 0.0 0.0 Acetobacteraceae
233 31-654C09 0.0 0.0 1.7 0.0 Acetobacteraceae
242 73-656C05 19.2 10.5 10.7 6.7 Genus Gp1

(Acidobacteriaceae)
270 60-656A03 2.0 0.6 0.5 0.0 Genus Gp1

(Acidobacteriaceae)

Abbreviation: T-RFLP, terminal restriction fragment length polymorphism.
aSize estimation by Gene Scan software.
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Figure 2 (a) Principal component analysis of 16S rRNA gene communities derived from T-RFLP fingerprinting (selected T-RF are shown).
Component 1 represents 49.5% and component 2, 19.1% of the variance. (b) Biplot presentation of principal component analysis of extradiol
dioxygenase gene libraries (selected OTU are shown) from bulk soil, bulk soil amended with 1200mgkg�1 PAH (Bulk-1200), rhizosphere-
associated soil and rhizosphere-associated soil amended with 1200 mg kg�1 PAH (Rhiz-1200). Component 1 represents 58.1% and component
2, 29.0% of the variance. OTUs, operational taxonomic units; PAH, polyaromatic hydrocarbon; T-RF, terminal restriction fragment.
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Figure 3 HhaI RFLP fingerprints from microcosms representing OTUs (operational taxonomic units) and their phylogenetic affiliation.
The name of OTUs, the sizes of HhaI fragments and name of phylogenetic cluster are shown. Fingerprints from gel electrophoresis were
normalized using Gelcompar II version 4.6 (Applied Mach). OTUs, operational taxonomic units.

Treatment-specific changes in dioxygenases
TP Sipilä et al

974

The ISME Journal



diversity, pathways that may have similar biochem-
ical function, but different gene organization shaped
by evolution. Phylogenetic analysis of deduced
dioxygenase peptides of OTU sequences showed
that the great majority of them were of novel kind.
The most abundant TS cluster contained seven
OTUs counting for 34% of all clones analysed and
representing an ecologically important cluster of
extradiol dioxygenases. The large amount of differ-
ent peptide sequences within the TS cluster reflects
either functional redundancy or functional diversi-
fication of dioxygenases or both. TS cluster dioxy-
genases were dominant in polluted sites with long
history of petroleum hydrocarbon contamination

from southern Finland (Sipilä et al., 2006). A branch
of this cluster was closely related to extradiol
dioxygenase from recently sequenced genome of
Parvibaculum lavantivorans DS-1. The strain was
isolated from activated sludge as an alkylbenzensul-
phonate surfactant degrader (Schleheck et al., 2004),
but its ring-cleavage dioxygenase has not been
characterized. The TS cluster affiliated to a-proteo-
bacteria (Rhizobiales) is an example of an unchar-
acterized group of putative environmentally
important aromatic degraders.

The OTU 57 was closely related to the sequence
of Sphingomonas aromaticivorans BphC enzyme.
The bphC gene was found in pNL1 plasmid with

Table 2 Description of eight extradiol dioxygenase libraries from four treatments. ‘Bulk-0’ represents composite soil samples from
microcosms without birch and PAH amendment; ‘Rhiz-0’ represents rhizosphere-associated soil without PAH amendment; ‘1200’
denotes addition of 1200 mg kg�1 PAH

Sample Treatment Clones OTUs Shannon
index (H0)

Simpson
index (1�D)

Bulk-0 — 46 4 1.1 0.6
Bulk-0 — 42 7 1.5 0.7
Bulk-1200 1200 mg kg�1 PAH mixturea 57 6 1.2 0.6
Bulk-1200 1200 mg kg�1 PAH mixturea 43 4 0.6 0.3
Rhiz-0 W008 birch clone 54 12 2.3 0.9
Rhiz-0 W008 birch clone 53 9 1.7 0.8
Rhiz-1200 W008 birch clone and 1200 mg kg�1

PAH mixturea

59 10 1.9 0.8

Rhiz-1200 W008 birch clone and 1200 mg kg�1

PAH mixturea

53 10 1.6 0.7

Abbreviations: OTUs, operational taxonomic units; PAH, polyaromatic hydrocarbon.
aPAH mixture; anthracene, phenanthrene, fluoranthene and pyrene, 300 mg kg�1 of each.
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Figure 4 Relative abundance of operational taxonomic units (OTUs) of extradiol dioxygenase gene libraries deduced by RFLP analysis.
The HhaI RFLP patterns reflect changes in extradiol dioxygenase community structure in biodegradation. ‘Rhiz-0’ is rhizosphere-
associated soil without PAH amendment and ‘Bulk-0’ is soil without birch and PAH amendment. ‘1200’ denotes addition of 1200 mg kg�1

PAH. Two replicates from different pots were included in the analysis (for details, see Materials and methods). PAH, polyaromatic
hydrocarbon.
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complex aromatic degradation pathway for naphtha-
lene, phenanthrene, biphenyl, xylene derivates,
toluene and cresol (Romine et al., 1999). The
dominant OTU 72 in Bulk-1200 soil (69 clones in
both replicates) was placed in the ThnC cluster
named according to the thnC gene from Sphingo-
pyxis macrogoltabida TFA strain. The ThnC enzyme
catalyses the ring cleavage of tetralin, an aromatic
compound composed of one aromatic ring structure
fused to a six-carbon aliphatic ring structure
(Andujar et al., 2000).

Four clusters of extradiol dioxygenase peptides
(XY, KY, HR and CE) found in our study were only
distantly related to the extradiol dioxygenases from
known pathways (Figure 6), and bacterial hosts are
evidently not known.

The identity of novel ring-cleavage peptides was
confirmed by alignment construction with known
upper-pathway dioxygenases to detect conserved
regions and amino-acid signatures. The peptide
alignment (78 environmental sequences) was
mapped to the three-dimensional structure of the
BphC enzyme from Pseudomonas sp. KKS102 (Sato
et al., 2002) to detect where the conserved amino
acids are situated in the structure (data not shown).
In the alignment of peptides, we identified two
conserved regions, one b-sheet structure located
between two domains that can be structurally
important or involved in interactions between the
domains and another region that is a loop on the
surface of the enzyme connecting the N- and C-
terminal domain. Nineteen conserved amino-acid
residues were found in the alignment of deduced
amino-acid sequences of the novel environmental
peptides. They contained the His145 signature
amino acid that is crucial for the binding of iron in
the catalytic centre of the enzyme. The position 147
in the alignment, which is close to the oxygen-
binding cavity, contained hydrophobic amino acids
like Val, Ala, Met and Ile.

PAH degradation in soil microcosms
Overall biodegradation was measured from whole
batch of extant soil in microcosms. Almost all
extractable (estimated from average PAH recoveries
from soil matrix) anthracene and fluoranthene was
dissipated from microcosms, but residuals of these
PAHs were detected in microcosms amended with
1200 mg kg�1 PAH (90–98%) (Figure 7a). Anthracene
degradation was enhanced by the planting of birch,
but the fluoranthene degradation was more com-
plete in the bulk soil pots. Pyrene degradation was
greater in pots with plant (52%) than in bulk soil
pots (27%), revealing plant effect in the biodegrada-
tion of PAHs (Po0.01). The degradation of phenan-
threne in planted pots was 29% and in bulk soil
without birch, 34%. In pots with low, 200 mg kg�1

PAH concentration, only partial degradation of
phenanthrene and pyrene was detected. In the bulk
soil microcosms, both phenanthrene and pyrene
were 95% degraded but in the planted pots, lower
degradation rates were detected (58% and 61%
respectively) (Figure 7b).

Discussion

Treatment-specific changes of bacterial commu-
nities both at functional (extradiol dioxygenases)
and at structural (16S rRNA) level revealed the
complex interplay of bacteria in rhizoremediation,
which has not explicitly been shown before. Birch
amendment diversified aerobic aromatic ring-clea-
vage dioxygenases in rhizosphere-associated soil
according to our hypothesis. In rhizosphere, the
detected diversity of novel ring-cleavage dioxy-
genases highlighted a broad-spectrum degradation
capacity of environmental contaminants and natural
aromatics. Enhanced degradation of pyrene was
detected in planted microcosms, revealing a positive
rhizoremediation effect.

There is an increasing interest in how pollutants
affect the overall bacterial communities, both on
functional and on structural levels (Ni Chadhain
et al., 2006; Muckian et al., 2007). Fingerprinting of
functional genes for key enzymes in catabolic path-
ways offers a powerful tool for assessing biodegra-
dation potential in the environment. Previous
studies on assessing the genetic potential for PAH
degradation have been hampered by the relatively
narrow scope of the PCR primers that are mainly
targeted to the lower-pathway 1.2.A group extradiol
dioxygenases, which catalyses ring cleavage of the
catechols (Meyer et al., 1999; Widada et al., 2002;
Junca and Pieper, 2004), a common intermediate of
aromatic degradation. The targeted upper-pathway
I.E.3 dioxygenases in our study are functionally
different because the substrate is a double-hydro-
xylated aromatic compound including polyaro-
matic, substituted polyaromatic and biphenyl
structures, which demand different substrate speci-
ficities for assorted structures (Eltis and Bolin, 1996;
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Figure 5 OTU richness curves of extradiol dioxygenase gene
libraries. The curves were obtained by rarefaction calculations of
OTU abundance data and they represent libraries from the
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without PAH amendment. ‘Bulk-0’ is bulk soil without PAH
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Vaillancourt et al., 2006). This is, to the best of our
knowledge, the first study in which upper-pathway
dioxygenase gene has successfully been used to note
a rich functional gene diversity putatively residing
from a-, b- and g-proteobacteria and Gram positives

involved in biodegradation and rhizoremediation.
Recently, the influence of individual PAHs on ring-
hydroxylating dioxygenase gene communities in
soil enrichments and a soil sample was successfully
assessed (Ni Chadhain et al., 2006). The interesting
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study demonstrated changes in ring-hydroxylating
dioxygenase gene communities only in liquid
enrichments that could not be related to soil
treatments. The benefit of our microcosm experi-
ment is that we could relate both bacterial ring
cleavage and 16S rRNA gene communities directly
to different treatments in PAH bioremediation in
soil. The effect of PAH amendment was evident for
general bacterial and extradiol dioxygenase commu-
nities in bulk soil. The change in extradiol dioxy-
genase community in bulk soil demonstrated nicely
how the I.E.3 group dioxygenases responded to PAH
pollution. In the rhizosphere, pollution changed the
16S rRNA bacterial community structure but not the
targeted functional ring-cleavage community. The
targeted I.E.3 group extradiol dioxygenases could be
involved in the turn over of natural aromatic
compounds derived from decaying roots, root
exudates and even PAHs in peat (Dreyer et al.,
2005), and were therefore not largely affected by
PAH addition.

In the microcosms planted with birch, we ob-
served that the aromatic ring-cleavage populations
were more diverse and different from those in
bulk soil displaying a rhizosphere effect. The
birch trees are known to produce phenols as
secondary metabolites (Bradley and Fyles, 1995;
Priha et al., 1998/1999). The phenols might end up
in the rhizosphere from decaying roots or as
root exudates and sustain the detected diverse
ring-cleavage community including endophytic
bacteria in the root. Very recently, it has been
shown that Pseudomonas type aromatic degrading
genes are upregulated in corn rhizosphere indicat-
ing that corn root exudates contain aromatic com-
pounds (Matilla et al., 2007). Simultaneous assay of
16S rRNA and ring-cleavage marker genes illu-
strated contrasting rhizosphere effects at different
bacterial community levels. A rhizosphere effect in
birch root-associated soil was detected by changed
16S rRNA communities in PAH-amended micro-
cosms. This was in agreement with results of
Corgie et al. (2004), where the most evident rhizo-
sphere effect in phenanthrene-amended sandy soil
was detected closest to roots. In this study, the
bacterial diversity was, however, very low probably
due to sterile quartz sand and artificial bacterial
inoculum. Our microcosms were, in contrary, host-
ing a diverse bacterial community with complex
T-RFLP patterns. In high microbial diversity (Costa
et al., 2006) of pristine soil planted with strawberry
and oil seed rape, a structural rhizosphere effect
was shown.

Biodegradation of PAHs was evident in all micro-
cosms. The high bacterial diversity in bulk soil with
changing communities due to PAH amendment
explains the modest planting effect where the
nursery soil was already rich in microbes. A positive
planting effect in degradation of individual PAHs
could be detected at 300 mg kg�1 PAH amendment.
On the other hand, at the lower PAH-pollution
level 50 mg kg�1, the planting of birch did not
enhance PAH degradation. The planting effect
seems to be dependent on PAH concentration.
At the high PAH concentration, phytotoxicity
symptoms were observed. The pollution stress
might affect the root exudate composition or even
result in some form of plant–microbe interaction.
Stress has been shown to affect root exudates of
poplar (Populus tremula L) (Qin et al., 2007)
and wheatgrass (Agropyroncristatum) (Henry et al.,
2007). Bacterial products, such as lumichrome,
are known to stimulate root respiration and thereby
increase the availability of root exudates for
bacteria (Phillips et al., 1999). Poplar (Populus
trichocarpa) has been shown to sense Pseudomonas
aeruginosa PAO1, a pathogen in rhizosphere, and
changes were detected in the transcriptome of both
species (Attila et al., 2008). Different levels of root
exudates at high and low PAH levels could explain
the concentration dependence of birch-planting
effect.
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Figure 7 Extracted PAHs (mg kg�1) from microcosms after 3-
month incubation analysed by HPLC. (a) Microcosms amended
with 300 mg kg�1 of anthracene, phenanthrene, fluoranthene and
pyrene. Fluoranthene was successfully analysed only from one
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and bulk soil microcosm. HPLC, high-performance liquid chro-
matography; PAH, polyaromatic hydrocarbon.
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Several novel extradiol ring-cleavage dioxygenase
clusters were detected in the microcosms indicating
existence of putative novel pathways. Very recently,
two new putative upper-pathway extradiol dioxy-
genase groups were proposed I.3.M and I.3.N in a
metagenomic study of activated sludge in waste-
water treatment plant (Suenaga et al., 2007). Upper
ring-cleavage marker genes encode enzymes for
degradation of aromatic hydrocarbons with different
structures, and their different types reside from
putative degradation pathways. For example, detec-
tion of bphC Sphingobium gene is indication of a
Sphingomonas type of complex aromatic pathway
and that of nahC gene is indication of the well-
studied Pseudomonas type of aromatic pathway
(Yen and Serdar, 1988; Kim et al., 1996). In many
instances, the ring-cleavage dioxygenase is an
important determinant of the specificity of the
pathway (Vaillancourt et al., 2006). The relatively
broad-specificity BP primers (Sipilä et al., 2006)
were proven to be useful for evaluating catabolic
potential in soil microcosms. With these primers, it
was possible to assess not only gene diversity but
also putative pathway diversity. The identification
of one branch of the novel TS cluster, to be similar to
extradiol dioxygenase from P. lavantivorans DS-1
(Rhizobiales), illustrated the value of our approach
to detect a broad range of ring-cleavage genes in the
environment as a first step in identification of novel
pathways. Aromatic ring-cleavage properties of Rhi-
zobia are poorly known, and aromatic-degradation
capacities and specificity of the enzyme of the
DS-1 strain are not known. The abundance of the TS
cluster in several polluted sites (Sipilä et al., 2006) and
in the microcosms of this study suggests that TS
cluster-hosting bacteria are important degraders of
aromatics in nature. These results show that new
environmentally important pathways and bacteria
exist to be isolated and characterized. If these
pathways have escaped detection because of hosts
being difficult to culture, they could be detected
by metagenomic approaches (Handelsman, 2005;
Suenaga et al., 2007).

Connecting community structure with functions
is one ultimate goal in microbial ecology (Leigh
et al., 2007). Effects of pollution, or even more effect
of plants, on the often very complex microbial
communities in soil environments are challenging
to depict. In our study, we demonstrated
how treatments like PAH addition or planting of
birch caused different responses at specific bacterial
community levels. We showed that these
processes, fundamental in bioremediation, can be
monitored by combined analysis of marker genes
encoding catalytic enzymes, 16S rRNA genes and
biodegradation of pollutants. Novel aromatic
ring-cleavage dioxygenases in both polluted
and pristine soil underpin the fact that we are
unfortunately only in the beginning of grasping the
overwhelming diversity of bacteria involved in
biodegradation in soil.
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