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The tragedy of the uncommon:
understanding limitations in the analysis
of microbial diversity
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Molecular microbial community analysis methods have revolutionized our understanding of the
diversity and distribution of bacteria, archaea and microbial eukaryotes. The information obtained
has adequately demonstrated that the analysis of microbial model systems can provide important
insights into ecosystem function and stability. However, the terminology and metrics used in
macroecology must be applied cautiously because the methods available to characterize microbial
diversity are inherently limited in their ability to detect the many numerically minor constituents of
microbial communities. In this review, we focus on the use of indices to quantify the diversity found
in microbial communities, and on the methods used to generate the data from which those indices
are calculated. Useful conclusions regarding diversity can only be deduced if the properties of the
various methods used are well understood. The commonly used diversity metrics differ in the
weight they give to organisms that differ in abundance, so understanding the properties of these
metrics is essential. In this review, we illustrate important methodological and metric-dependent
differences using simulated communities. We conclude that the assessment of richness in
complex communities is futile without extensive sampling, and that some diversity indices can be
estimated with reasonable accuracy through the analysis of clone libraries, but not from community
fingerprint data.
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Background

The ability of researchers to quantify diversity and
test many important hypotheses regarding patterns
and processes in microbial communities hinges on
their ability to characterize the diversity and
distribution of microbes in a wide range of habitats.
An accurate assessment of the composition of these
communities permits us to characterize spatial and
temporal patterns of diversity, as well as responses
to changing environmental conditions, perturba-
tions and treatments. A necessary first step,
however, is to reach a consensus regarding what
inferences can and cannot be made regarding
microbial community structure given the inherent
limitations imposed by the methods now used in
studies of microbial community ecology and by the
extraordinary diversity found in most habitats
(Dahllof, 2002; Ward, 2002).

Contemporary studies on the diversity of prokar-
yotes often employ methods based on the analysis of
nucleic acid sequences, especially those of 16S
rRNA genes. These have gained favor because
they allow investigators to detect and quantify
phylotypes that are difficult to culture and thereby
obtain a more comprehensive assessment of
diversity than was previously possible. This has
led to an improved understanding of the extra-
ordinary richness of prokaryotic biodiversity
(Woese, 1987; DeLong and Pace, 2001; Wellington
et al., 2003; Oremland et al., 2005). Indeed, the extent
of prokaryotic diversity in most habitats is almost
incomprehensible, with complex habitats containing
an estimated 104–106 species in a single gram
(Dykhuizen, 1998; Torsvik et al., 1998; Ovreas et al.,
2003; Gans et al., 2005) and the Earth’s biosphere
containing more than 1030 individuals (Whitman
et al., 1998) and an untold number of species.

The challenges faced in efforts to characterize this
extraordinary diversity are compounded by the fact
that the observed and inferred rank-abundance
distributions for most communities show a long
tail of numerically minor species or phylotypes
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(Preston, 1948; MacArthur, 1960; May, 1975; Toke-
shi, 1993; Curtis and Sloan, 2004). In other words,
most communities are dominated by a small number
of species whereas the vast majority of populations
are quite uncommon. This characteristic of prokar-
yotic communities has sparked debate over the most
appropriate mathematical distribution for modeling
community composition (Hughes, 1986; Wilson,
1991; Tokeshi, 1993), and exposed the limitations
of current methods (Dunbar et al., 1999; Curtis et al.,
2002; Zhou, 2003; Hewson and Fuhrman, 2004;
Osborne et al., 2006), which are by and large unable
to detect the many uncommon members of these
communities. Perhaps most worrisome is the ten-
dency of many investigators to simply ignore the
uncommon, and draw conclusions regarding micro-
bial community diversity based solely on the
number and rank abundance of numerically com-
mon organisms. This approach, where investigators
tacitly acknowledge the existence of uncommon
organisms (but do not consider them further), at best
constitutes an innocent oversimplification that can
still allow valid inferences to be drawn, but at worst
it leads to the misinterpretation of data and faulty
conclusions.

The cultivation-independent molecular methods
now commonly used to characterize microbial
diversity can be grouped into two basic categories:
(a) methods based on the phylogenetic analysis of
cloned nucleic acid sequences, and (b) a family
of methods collectively, and colloquially, known as
‘community fingerprinting’. The data produced by
sequencing and fingerprinting methods differ due to
the reliance of the latter on proxy information (for
example, restriction sites or %GþC content) rather
than full sequence data (Abdo et al., 2006), and both
kinds of methods have problems and biases that
have been previously noted (Reysenbach et al.,
1992; Farrelly et al., 1995; Suzuki and Giovannoni,
1996; Hansen et al., 1998; Frostegard et al., 1999;
Maarit Niemi et al., 2001; Qiu et al., 2001; Baker
et al., 2003; Crosby and Criddle, 2003). As clone
library and fingerprinting methods can generally be
performed using the same DNA extraction proce-
dure and comparable primers, the two categories of
methods can effectively be used to analyze the same
pool of 16S rRNA amplicons. The effect of these
DNA extraction and PCR biases on different meth-
ods is therefore similar, and can be discounted to
some extent for purposes of assessing differences
between community analysis methods.

Here, we focus specifically on differences bet-
ween methods to assess the richness and rank-
abundance of phylotypes as measured by several
diversity indices and methods explicitly used to
calculate similarity measures are not discussed.
Although one could debate the merits of diversity
indices, the reality is that they are commonly used
summary statistics. As we continue to gain in
understanding of the extant microbial variety and
distribution, microbial ecologists will continue to

need to express the observed patterns using sum-
mary statistics. If diversity indices are to be used,
they should be used with a full understanding of
how the method used can affect the index value and
the subsequent interpretation of the data.

Quantifying diversity

Diversity is a general ecological concept that has
various shades of meaning and many metrics, both
of which are often used loosely. Calculation of a
diversity index involves distilling information con-
tained in community analysis data into a single
numerical value that reflects the number and
relative abundance of phylotypes in a single com-
munity. The utility of diversity metrics rests in the
fact that they capture information about biodiversity
by summarizing species richness and evenness into
a single real number. Researchers must, therefore,
classify the observed diversity into ‘kinds’ before
calculating many of the commonly used metrics of
diversity. This classification step is particularly
problematic in the microbial world, as asexual
reproduction and horizontal gene transfer across
species boundaries leads to ill-defined species
within which consistent and meaningful boundaries
are difficult to draw.

Most investigators nowadays rely on phylogenetic
approaches for the classification of microbial diver-
sity (Staley, 2006) as bacterial species are currently
defined on the basis of a rather odd phenetic-
genotypic species concept where multiple charac-
ters are used to group related organisms (Stack-
ebrandt et al., 2002), and the organisms must first be
cultured. In practice, DNA sequence polymorph-
isms, often in the small subunit rRNA gene, are used
to classify diversity in terms of phylotypes or
operational taxonomic units (OTUs) that are defined
in an ad hoc manner. By doing so, investigators can
classify organisms into discrete categories, which
enables them to quantify prokaryotic diversity using
conventional diversity or similarity indices. Because
most studies on microbial diversity do not measure
species diversity per se, we eschew the use of this
term, favoring phylotypes or OTUs instead.

The three most widely used diversity indices are
richness, the Simpson index (Simpson, 1949) and
the Shannon–Weaver index (Shannon and Weaver,
1949). Any of these three indices can be used to
compare multiple communities to each other, but
the values for different indices cannot be compared
to each other in a simple, intuitive way. The cause of
this incomparability is rooted in the intrinsically
different meanings of each index. Richness is simply
the number of phylotypes present, whereas the
Simpson index reflects the probability that any
two organisms sampled will be the same phylotype.
The Shannon–Weaver index is an information
theory measure of the entropy, or nonredundancy,
of a system such that a community in which every
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organism is different would have minimal redun-
dancy and therefore maximum entropy.

Measures of phylotype richness are independent
of whether phylotypes are rare or common in a
community. As none of the existing molecular
microbial ecology methods capture more than a
small proportion of the total richness in most
microbial communities, richness must be estimated.
The methods used to do this include nonparametric
estimators such as Chao1 and ACE (Hughes et al.,
2001), extrapolation of accumulation curves (Sober-
on and Llorente, 1993) and parametric estimation
based on model fitting (Curtis et al., 2006). Non-
parametric estimators and extrapolation of accumu-
lation curves rely on counting individuals sampled
from a community, and, therefore, their application
is largely limited to data from the analysis of clone
libraries. On the other hand, parametric methods of
data analysis that use observed relative abundance
data to choose a model distribution can also be used
with microbial community fingerprint data. The
choice of model distributions used to estimate the
underlying community structure can radically affect
the resulting richness estimate, but other informa-
tion can be used to inform this choice (Gans et al.,
2005). All of these methods suffer from uncertainty
that often ranges several orders of magnitude, thus,
greatly reducing the reliability of richness estimates
(Hong et al., 2006). Other diversity indices, such as
the Shannon and Simpson indices, can be estimated
more accurately because rare phylotypes generally
have a smaller relative numerical impact.

When two or more community fingerprints or
clone libraries are compared, it is tempting to
conclude that ones with more OTUs are more
diverse, but this is not necessarily true. Changes in
the rank-abundance can alter the number of detect-
able phylotypes without changing the actual phylo-
type richness in the underlying community.
Estimates based on postulated rank-abundance dis-
tributions can mitigate this problem (Dunbar et al.,
2002; Narang and Dunbar, 2004).

A conceptual framework

Hill (Hill, 1973) has proposed a conceptual frame-
work that provides a useful way to describe and
quantify biological diversity. He defines different
‘orders’ (q) of diversity (D) that summarize informa-
tion about the number and relative abundances of
species or phylotypes. Hill states that qD can be
regarded as the ‘effective number of species,’ or
phylotypes, present in a sample for a given order q,
and that diversity indices represented by different
values of q are distinguished by the weighting
applied to phylotypes that differ in abundance. This
family of diversity indices has the property that for
all values of q, they are equal to phylotype richness
when all phylotypes are equally abundant. The most
generally useful diversity indices are of orders q¼ 0,

1 and 2 (Jost, 2006). Richness, or number of species
or phylotypes, corresponds to a diversity index of
order q¼ 0. For calculation of richness, all phylo-
types are weighted evenly, as the relative abundance
is not considered, yielding 0D¼S, where S is the
number of phylotypes in the community. The
exponentially transformed Shannon–Weaver index
corresponds to q¼ 1, with phylotypes weighted
proportionally to their relative abundance. The
formula for this index is 1D ¼ expð�

P
ðpilnpiÞÞ;

where pi is the proportional abundance of the ith
phylotype. Finally, the reciprocal Simpson index
calculated with replacement (due to the large
population size) represents q¼ 2, with phylotypes
weighted by the square of their relative abundance,
yielding 2D ¼ 1=ð

P
p2
i Þ: Another index in this

family, ND¼ l/pi(max), expresses the reciprocal of the
proportional abundance of the most abundant
species (pi(max)), which is known as the Berger-
Parker index (Berger and Parker, 1970). This has
recently found use as a parameter in a richness
estimator based on a log-normal, model (Curtis et al.,
2002; Loisel et al., 2006). This set of diversity
indices provides a consistent theoretical framework
for assessing the behavior of the index values with
different data sets. Each of these indices reflects
different properties of the community and, hence,
the choice of index must be based on the questions
being asked in a particular study.

Sampling vs screening communities

The cultivation-independent methods commonly
used to quantify diversity or compare communities
differ from each other in a fundamentally important
way, as suggested in recent studies (Hartmann and
Widmer, 2006). When using methods based on the
phylogenetic analysis of cloned nucleic acid se-
quences, individual DNA molecules are sampled
from a PCR product pool, cloned and then se-
quenced. By sampling a community through analy-
sis of a clone library one can obtain information
about some of the organisms found in the tail of a
rank-abundance distribution. In contrast, commu-
nity fingerprinting methods determine the absolute
quantity of different amplicons using some analy-
tical method. In T-RFLP (terminal restriction frag-
ment length polymorphism analysis) of 16S rRNA
genes (Liu et al., 1997), which we will use as our
example, the sizes and the fluorescence intensities
of labeled DNA fragments are quantified by capillary
gel electrophoresis. If the quantity of a given DNA
fragment is below a chosen threshold value, it is
indistinguishable from noise and discarded (Abdo
et al., 2006). This amounts to screening samples to
determine the presence or absence of phylotypes.
Numerically rare phylotypes are generally not
detected by community fingerprinting methods.
The distinction between sampling and screening
communities becomes important whenever there are
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many organisms representing diverse phylotypes
that transpose individually below the detection
limit of an assay, but collectively above it.

To illustrate the implications of differences bet-
ween methods that sample the diversity in a
community and those that screen diversity, we
constructed two computer simulated log-normally
distributed communities. The phylotypes constitut-
ing these communities were simply ‘kinds’ of
organismal variety (or OTUs), defined in a way that
permits them to be distinguished equally well using
clone library and fingerprint methods. By doing so
we simulated a scenario in which community
structure was primarily driven by large genetic
differences rather than microheterogeneity. This
effectively constitutes a best-case scenario for
fingerprint analysis. The hypothetical communities
contained either 100 or 1000 log-normally distrib-
uted phylotypes that span 18 log2 octaves (NT¼ 108,
s¼ 15.95, S0¼ 10, N0¼ 62100) and 27 log2 octaves
(NT¼ 108, s¼ 15.95, S0¼ 100, N0¼ 2737), respec-
tively, with the phylotypes evenly spaced within
each octave. Analyses of clone libraries were
simulated by multiplying the relative proportion of
each species in a community by the number of
clones analyzed and rounding the result to the
nearest integer. The difference between the sum of
these integers and the size of the clone library was
made up by adding the required number of single
clones from among the species that were previously
not sampled. Microbial community fingerprints
were simulated by converting the relative propor-
tion of each species in the community into a T-RFLP
peak height value, with all peak heights below the
threshold discarded from the analysis.

We simulated the expected values for the 0D, 1D
and 2D diversity indices obtained from sampling
diversity through the analysis of clone libraries that
differ in size, and screening diversity using com-
munity fingerprints. In the latter we imposed
different detection thresholds. When a 1% detection
limit was used the community fingerprints revealed
15 and 16 phylotypes in the 100- and 1000-
phylotype communities, respectively. In contrast,
simulations of clone library analyses detected 27
and 50 phylotypes, respectively (Figure 1). Thus, for
both communities a greater number of phylotypes
were detected through the analysis of clone li-
braries, which reflects the power of sampling
communities as opposed to screening diversity on
the basis of community fingerprints. Likewise, the
simulated clone library analyses consistently
yielded more accurate values for 0D, 1D and 2D
diversity indices than did community fingerprints
(Figure 2). Of course as the detection limit of a
diversity screening assay is lowered, the ability to
detect minor phylotypes increases (Figure 2). As the
detection limit was lowered from 1 to 0.1%, the
accuracy of the inferred values of diversity indices
substantially increased. The inverse Simpson (2D)
index was found to be most robust and less affected

by assay sensitivity or the absolute level of diversity
in a community. However, accurate estimates of
richness (0D) in communities with high diversity
required greater sensitivity than current fingerprint
and clone library methods typically provide. The
use of nonparametric estimators of diversity, such as
Chao1, produced the most accurate estimate of 0D
from clone library data. This implies that estimates
of richness in microbial communities are unreliable
unless highly intensive sampling is employed.

As diversity indices are often used to compare
communities and assess relative diversity, we
calculated the true ratios of diversity indices and
compared them to those based on data from
simulated analyses of the communities described
above. The true ratio of the 0D value of the
community with 100 phylotypes was 0.10 times
that of the community with 1000 phylotypes (100/
1000¼ 0.1), whereas the ratio of the 1D indices was
0.30 (13.8/46.6¼ 0.30), and that of the 2D indices
was 0.51 (6.8/13.3¼ 0.51). Neither analytical meth-
od yielded accurate estimates of 0D or 1D ratios
(Table 1). Likewise, the ratio of 2D estimates based
on community fingerprint data was also far from the
true value. The only instance in which the ratio of
2D indices closely approximated the true value was
when data from the analysis of clone libraries were

Figure 1 Comparison of the actual (black lines) and observed
rank abundances of phylotypes detected by analysis of microbial
community fingerprints (blue lines) and clone libraries of 16S
rRNA genes (red lines). The numbers of phylotypes observed in
microbial community fingerprints (blue) and clone libraries (red)
are shown. The simulations assumed the detection threshold for
community fingerprint analysis was 1% of the total fluorescence,
and that 100 clones were sampled from each library. The
hypothetical communities contained either (a) 100 or (b) 1000
log-normally distributed phylotypes.
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used. This analysis suggests that efforts to compare
communities using diversity indices estimated from
community fingerprinting or the analysis of clone
libraries may lead to misleading conclusions, and
this is largely because the ratios calculated are
ultimately subject to the same limitations as esti-
mates of the indices themselves.

Summary

The tragedy of the uncommon is that they are often
ignored. Although numerically dominant organisms
are likely to be responsible for the majority of
metabolic activity and energy flux in a system
(Tilman, 1982), it is well known that uncommon
organisms serve as a reservoir of genetic and
functional diversity (Yachi and Loreau, 1999; Nandi
et al., 2004), often play key roles in ecosystems
(Phillips et al., 2000; Louda and Rand, 2002), and
can become numerically important if environmental
conditions change. Ideally, the presence and abun-
dance of the uncommon but important organisms
would be reflected in the values of diversity indices.
But due to the distorted lenses through which we
observe microbial communities they usually are not,
and so diversity indices need to be applied
judiciously in studies on microbial community
ecology and biodiversity.

The simulations of community analysis per-
formed here illustrate that different methods of
examining community structure can produce radi-
cally different metrics of diversity, even when many
of the well-documented biases of molecular meth-
ods are excluded from consideration. One way to
increase the accuracy of diversity metrics is to

Figure 2 The ratio of observed to actual values for the diversity indices 0D, 1D and 2D when the diversity is screened by community
fingerprints (blue) or sampled from a clone library of 16S rRNA genes (red). For the 0D index, we used the number of observed phylotypes
for the community fingerprint values and the Chao1 estimator for the clone library values. The data are from simulated communities with
100 (a and b), and 1000 (c and d) phylotypes. The upper graphs (a and c) are based on a 1% detection limit, corresponding to a library of
100 clones or a fingerprint detection threshold of 1% of the total fluorescence. The lower graphs (b and d) are based on a 0.1% detection
limit, corresponding to a library of 1000 clones or a fingerprint detection threshold of 0.1% of the total fluorescence.

Table 1 A comparison of analytical methods used to estimate the
true ratio of diversity indices based on the simulated analysis of
communities using clone libraries and community fingerprints

Diversity index True ratiob Ratio from simulationsa

Clone
library

Community
fingerprints

0D 0.10 0.52c 0.94
1D 0.30 0.43 0.87
2D 0.51 0.50 0.89

aEstimated ratio of diversity indices based on the simulated analysis
of diversity using clone libraries or community fingerprints with a
detection threshold of 1%.
bTrue ratio of diversity indices for a community with 100 phylotypes
divided by that for a community with 1000 phylotypes as described
elsewhere in the text.
cActual ratio of phylotypes detected. Using the Chao1 nonparametric
estimator for both clone libraries, this ratio is 0.19.
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choose metrics such as the 2D reciprocal Simpson’s
index, which is comparatively insensitive to nu-
merically minor constituents (Lande et al., 2000).
However, this insensitivity comes with a trade-off,
in that the calculated diversity measures are more
sensitive to errors and biases that affect the apparent
abundance of numerically dominant members of
communities. These problems can be ameliorated by
advances in sequencing technology, novel modeling
approaches and new diversity metrics. These
advances allow for more intensive sampling of
communities, new ways of assessing the composi-
tion of those communities, and better use of the data
(Curtis et al., 2002). For now, the use of multiple
methods in concert, such as fingerprinting of a large
set of samples followed by cluster analysis and then
clone library analysis of a subset (Zhou et al., 2007),
can provide an optimal balance between the
resources required and information gained.
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