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Chryseobacterium and from the family
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Microbial colonization of plant seeds and roots is a highly complex process in which soil and plant
type can influence the composition of the root-associated and rhizosphere microbial communities.
Amendment of compost, a common agricultural technique, introduces exogenous nutrients and
microorganisms to the soil–plant environment, and can further influence microbial community
composition in the plant environment. Although compost amendments can strongly influence soil
and rhizosphere microbial communities, there is evidence that with increasing proximity to the root,
plant influences predominate over soil effects. We hypothesized that the ‘rhizosphere effect’
observed with proximity to plant surfaces does not act equally on all microorganisms. To explore
this issue, we examined two bacterial taxa that reproducibly colonized seed and root surfaces in an
experiment examining the influence of compost amendment on plant-associated bacterial
communities. Population-specific analyses revealed striking differences in the ecology of bacteria
from the genus Chryseobacterium and the family Oxalobacteraceae in potting mix and plant-
associated environments. Seed- and root-colonizing Oxalobacteraceae populations were highly
sensitive to plant effects, and phylogenetic analyses of root-colonizing Oxalobacteraceae revealed
the presence of root-associated populations that were highly similar, regardless of treatment, and
differed from the potting mix populations detected at the same sampling points. Conversely,
Chryseobacterium community composition was found to be essentially invariant within treatments,
but was strongly influenced by compost amendment. This persistence and stable nature of the
Chryseobacterium community composition demonstrates that rhizosphere selection is not the
exclusive factor involved in determining the composition of the cucumber spermosphere and
rhizosphere communities.
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Introduction

Spermosphere and rhizosphere microbial populations
are influenced by the type and quantity of exudates
from plant seeds and roots, as well as plant develop-
ment status and sampling location (Campbell and
Greaves, 1990; Buyer et al., 1999; Lugtenberg et al.,
1999; Andrews and Harris, 2000; Duineveld et al.,

2001; Whipps, 2001; Baudoin et al., 2002; de Boer
et al., 2006). Although the plant can influence the
abundance, diversity and composition of rhizosphere
microbial communities, the role of soil microbial
community composition and the soil organic matter
cannot be neglected (Toal et al., 2000; Marschner
et al., 2001; De Ridder-Duine et al., 2005).

Compost amendment to soil is a common agricul-
tural technique and, by introducing large amounts of
organic matter as well as high numbers and a large
diversity of microorganisms, it can substantially
modify soil chemistry and structure and can signi-
ficantly influence the composition of plant-asso-
ciated microbial communities (Dick and McCoy,
1993; Beffa et al., 1996; Tiquia et al., 2002;
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Ryckeboer et al., 2003; Inbar et al., 2005; Green et al.,
2006). Soil organic matter can be a significant source
of carbon for some rhizosphere organisms (Toal
et al., 2000), and Boehm et al. (1997) have suggested
that the addition of compost to soil can support
microorganisms that are not sustained by root
exudates. This capacity for compost-derived organic
matter to sustain some microorganisms suggests
that the ‘rhizosphere effect’ does not act equally on
all microbial populations.

To explore this issue, we examined bacterial
communities associated with seeds and roots during
the early development of cucumber in soils and
potting mixes amended with cow manure composts.
Previously, using domain- (Bacteria), phylum-
(Bacteroidetes) and family- (Streptomycetes) level
molecular analyses, we demonstrated shifts in com-
munity composition as a function of compost amend-
ment and as a function of plant development and
competing influences of root and compost on micro-
bial communities associated with plants. With increa-
sing proximity to the root, we observed a strong
rhizosphere effect, and that the plant influence on
bacteria from the genus Streptomyces predominated
over soil and compost effects (Inbar et al., 2005). In a
more general analysis of bacterial communities
associated with plant seeds and roots, we observed
that while seed surfaces were largely colonized by
dominant potting mix populations, root microbial
communities differed significantly from the source
potting mix communities (Green et al., 2006). How-
ever, despite a general divergence between the
community composition of seed and root bacteria,
two distinct taxonomic groups were consistently
detected in seed and root communities. These taxa
included a clade of organisms closely related to the
genus Telluria, within the family Oxalobacteraceae
(Betaproteobacteria) and bacteria from the genus
Chryseobacterium (Bacteroidetes) (Green et al.,
2006). Both are common to soil environments, and
are aerobic, heterotrophic organisms (Kwok et al.,
1987; Spiegel et al., 1991; Bowman et al., 1993;
Bernardet et al., 2005). However, isolated members of
the genus Telluria are flagellated and have chitinoly-
tic, proteolytic and collagenolytic activity (Spiegel
et al., 1991; Bowman et al., 1993), while Chryseobac-
terium are non-motile, heterotrophic organisms, fre-
quently found in composted materials and other
organic-rich environments (Kwok et al., 1987; Bernar-
det et al., 2005; Green et al., 2004, 2006). In this study,
we investigated these taxa more closely to character-
ize the interaction of the rhizosphere effect and the
influence of compost amendment as it varied between
these seed- and root-colonizing microorganisms.

Materials and methods

Plant growth sampling and DNA extraction
Cucumber seeds (Cucumis sativus L. ‘straight eight’)
were sown in three peat-based potting mixes

amended with composts, as previously described
(Green et al., 2006). The two composts employed
were sawdust-amended (‘sawdust compost’) and
straw-amended (‘straw compost’) cow manure com-
posts, as previously described (Changa et al., 2003;
Green et al., 2004). Genomic DNA was extracted
from potting mix and plant material from three
separate pots at each of the three stages of plant
development: seed germination (1 day post sowing),
seedlings with fully extended cotyledons (7 days
post sowing) and seedlings with four true leaves (21
days post sowing), using the UltraClean soil DNA
isolation kit (MoBio Laboratories Inc., Carlsbad, CA,
USA). Before DNA extraction, seeds and roots were
removed from each pot, shaken to remove loosely
adhering potting mix and washed twice with
distilled water. Roots were homogenized using
sterile razors and comprised rhizoplane, endosphere
and any tightly adhering rhizospheric potting mix.
Full experimental design details have been pub-
lished previously (Green et al., 2004, 2006).

Primer design and PCR amplification
Portions of bacterial 16S ribosomal RNA (rRNA)
genes were amplified from extracted genomic DNA
samples using a nested PCR methodology (Green
et al., 2006). Initially, DNA samples were separately
amplified with two primer sets: CH45F (50-GGCCTA
ACACATGCAAGC-30)/CH1112R (50-GCAACTAGTG
ACAGGGG-30) (‘Chryseobacterium’) and OX225F
(50-TGGAGCGGCCGATATCTG-30)/OX1249R (50-GGG
TTGGCGGCCCTCTG-30) (‘Oxalobacteraceae’). Primers
were designed using the ‘probe design’ feature of the
phylogenetic analysis program package ARB (Lud-
wig et al., 2004), and checked for specificity by basic
local alignment search tool (BLAST) analyses,
sequence analyses of recovered PCR products and
comparison to short sequences previously recovered
(Altschul et al., 1997; Green et al., 2006). The
Chryseobacterium primers target 16S rRNA genes
from bacteria of the genera Chryseobacterium and
some closely related organisms from the order
Flavobacteriales. The Oxalobacteraceae primers tar-
get 16S rRNA genes from bacteria of the genera
Telluria, Massilia, Duganella, Janthinobacterium, as
well as others from the b-proteobacterial family
Oxalobacteraceae.

DNA samples were amplified with Chryseobacter-
ium and Oxalobacteraceae primer sets in PCR mixes
containing 1.5U (per 50ml) of Taq polymerase (Red
Taq, Sigma Chemical Co., St Louis, MO, USA), and
the following reagents: 1� Sigma PCR buffer,
0.2mM PCR nucleotide mix (Promega, Madison,
WI, USA), 6.25 mg (per 50 ml) bovine serum albumin
(BSA; Roche Diagnostics, Mannheim, Germany) and
25pmol of each primer. Final PCR mix magnesium
concentrations were adjusted to 2mM (Oxalobacter-
aceae) or 4mM (Chryseobacterium) with a 25mM

solution of MgCl2. These samples were initially
denatured for 3min at 951C, and then cycled 35
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times through three steps: denaturation (941C; 30 s),
annealing (641C and 651C for Chryseobacterium
and Oxalobacteraceae respectively; 30 s) and elon-
gation (721C; 60 s). These PCR products were then
PCR amplified with a general bacterial primer set
suitable for denaturing gradient gel electrophoresis
(DGGE) analysis (nested PCR), using the primers
341F and 907R, as described previously (Muyzer
et al., 1993, 1998; Green et al., 2006).

Community composition analysis
DGGE analyses were performed on the nested PCR
products with a D-Gene system (Bio-Rad, Hercules,
CA, USA), as previously described (Green et al.,
2004). Cloning reactions were performed on the
population-specific PCR products (that is those
generated with Oxalobacteraceae or Chryseobacter-
ium primer sets). The resulting clones were indivi-
dually screened by PCR amplification with the
general bacterial DGGE primer set and DGGE analy-
sis. The PCR products amplified from selected clones
were compared, via DGGE analysis, to nested PCR
products generated from environmental samples. For
several bands that could not be recovered via screen-
ing of clones, bands were individually excised from
DGGE gels and sequenced as described previously
(Green et al., 2004). These sequence data have been
submitted to the GenBank database under accession
numbers AY621813-AY621834 (Chryseobacterium)
and AY624608-AY624650 (Oxalobacteraceae).

Phylogenetic analyses
Recovered sequences were aligned to known bacter-
ial sequences using the ‘greengenes’ 16S rRNA gene
database and alignment tool (DeSantis et al., 2006).
Aligned sequences were submitted to the Bellero-
phon chimera checking tool, via the greengenes
website (Huber et al., 2004). Aligned sequences and
close relatives were imported and alignments were
manually refined by visual inspection in the Mega
software package version 3.1 (Kumar et al., 2004).
Neighbor-joining phylogenetic trees were con-
structed on aligned 16S rRNA gene sequences using
the Kimura 2-parameter substitution model with
pairwise deletion of gapped positions. The robust-
ness of inferred tree topologies was evaluated by
1000 bootstrap resamplings of the data. Addition-
ally, Bayesian analyses were performed on the
aligned sequence data (MrBayes version 3.1; Ron-
quist and Huelsenbeck, 2003) by running five
simultaneous chains (four heated, one cold) for ten
million generations, sampling every 1000 genera-
tions. The selected model was the general time
reversible (GTR) using empirical base frequencies
and estimating the shape of the gamma distribution
and proportion of invariant sites from the data. A
resulting 50% majority-rule consensus tree (after
discarding the burn-in of 25% of the generations)
was determined to calculate the posterior probabil-
ities for each node.

Results

The community composition of bacteria from the
family Oxalobacteraceae and the genus Chryseobac-
terium in peat and compost samples, as well as in
potting mix, seed and root samples from cucumber
plants grown in three different potting mix treat-
ments (‘peat-only’, ‘sawdust compostþpeat’ and
‘straw compostþpeat’), was analyzed. At each time
point (start of experiment, 24 h, 7 days and 21 days
post sowing), three pots from each treatment were
destructively sampled. Genomic DNAwas extracted
from each of the triplicate samples for each treat-
ment and time point and subjected to PCR, DGGE
and sequence analyses. Replicate samples were
examined via Oxalobacteraceae- and Chryseobacter-
ium-specific PCR-denaturing gradient gel electro-
phoresis (PCR-DGGE) analyses, and for each primer
set, community composition profiles were found to
be highly reproducible. As a result, single represen-
tative samples from each treatment and time point
were taken for more extensive analysis.

Oxalobacteraceae community composition
PCR-DGGE analysis of the Oxalobacteraceae ampli-
cons revealed that seed and potting mix community
profiles at 1 day were highly similar in all treat-
ments (Figure 1). However, profiles of potting mix
and root samples at 1 and 3 weeks differed substan-
tially. In all treatments, including the peat-only and
two different compost-amended treatments, three
main band positions were detected. These included
an upper position (‘A’), detected in nearly all
samples with the exception of 3 weeks root samples,
represented in the peat-only treatment by bands P4,
P7, P12 and P18, in the sawdust compostþpeat
treatment by bands S3, S6, S8, S11, S14 and S20 and
in the straw compostþpeat treatment by bands T2,
T7, T14 and T20. Bands migrating to position ‘B’
were detected only in root samples, and included
bands P11, P16, S12, S17, T13 and T18. Bands
migrating to position ‘C’ were detected in potting
mixes, and included bands P1, P8, P13, P20, S9,
S16, S22, T15 and T21. In addition to the dominant
band positions above, several less dominant bands
were detected and sequenced (bands P2, P10, P19,
S2, S5, S15 and T1). Sequence analyses were
conducted on these bands, and in total, 43 clones
representing 36 bands were sequenced and sub-
mitted to the GenBank database.

The most striking feature of the sequence analyses
was the clustering of Oxalobacteraceae clones
recovered from root samples regardless of treatment
and sampling time (Figure 2). The root clones
clustered with Telluria mixta, T chitinolytica, an
environmental clone from a tree root (AJ863419),
and several potting mix organisms. The grouping
of root Oxalobacteraceae together, and with the
genus Telluria, was indicated by neighbor-joining
and Bayesian analyses. While high (that is 470%)
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bootstrap values were not observed, this node was
strongly supported by a Bayesian posterior prob-
ability of greater than 70% (Figure 2).

Chryseobacterium community composition
Genomic DNA was PCR amplified with the Chry-
seobacterium primer set, nested with the general
bacterial DGGE primer set and the resultant PCR
products were analyzed by DGGE (Figure 3). These
analyses revealed the presence of three bands
within each treatment (Figure 3; bands D–F for peat
treatment; bands G–I for the two compost treat-
ments). Within each treatment, regardless of sam-
pling time or location, DGGE profiles were nearly
identical. DGGE profiles of samples from the two
compost-amended treatments were identical to each
other, but shared no bands in common with samples
from the peat-only treatment. Multiple sequences
from the dominant bands (D–I) were recovered from
different samples within each treatment (Figure 3).
In total, 22 clones were sequenced, and 20 of these
sequences belonged to six clusters (highlighted in

gray; Figure 4). These clusters, supported by high
bootstrap values and Bayesian posterior probabil-
ities, consist of sequences recovered from different
samples but identical band positions (Figure 4). Two
of the recovered sequences did not group with the
six defined clusters. These sequences included
the sequences ChsSC and ChsP1, recovered from
the sawdust compost before incorporation into the
potting mix and from the seed surface of the peat
treatment, respectively. Sequence ChsSC formed a
clade with sequences recovered from band ‘I’, but
was more divergent than the other recovered
sequences, and was most closely related to a bacte-
rial isolate from an industrial wastewater treatment
system. Sequence ChsP1, closely related to Chryseo-
bacterium scophthalmum (AJ271009), did not
cluster with the other sequences recovered from
band ‘D’.

Discussion

Studies of the interaction between soil amendments,
such as compost, and plant effects have shown that
while such amendments can have a dramatic
influence on soil and rhizosphere bacterial commu-
nities, this influence is mitigated with increasing
proximity to the plant surface (Inbar et al., 2005).
Nonetheless, the influence of compost amendments
at seed and root surfaces is not negligible, particu-
larly at elevated compost levels. Since composts
may serve as a food source for microorganisms that
are not sustained by root exudates (Boehm et al.,
1997), we hypothesized that the interaction between
exogenous soil amendments and the influence of the
plant or rhizosphere effect does not impact all
microorganisms equally.

To explore this issue, the community composition
of two distinct taxa, one closely related to the genus
Telluria and the second from the genus Chryseo-
bacterium, both consistently detected in seed and
root communities, was characterized by the applica-
tion of population-specific analyses. These analyses
revealed that the two groups of seed- and root-
colonizing taxa responded to compost and root
effects in dramatically different manners.

Spermosphere and rhizosphere communities tend
to be dominated by fast-growing, motile, versatile,
Gram-negative bacteria, such as Pseudomonas spp,
competing for root exudates (Weller et al., 2002).
The response of Oxalobacteraceae populations to
plant growth stage and proximity to roots was
consistent with the response of saprophytic bacteria
largely influenced by plant exudates, resulting in a
strong rhizosphere effect. The Oxalobacteraceae
community composition changed dramatically
during plant development, as seed communities
resembled the initial potting mix while the 21-day
root communities were comprised of a single
dominant population, which differed from those
detected on the seeds.
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Furthermore, all root Oxalobacteraceae sequences
were at least 98.3% similar to each other, and
clustered together with a poplar tree root bacterium
(Graff and Conrad, 2005). The shift in Oxalobacter-
aceae population composition from seed to root
was consistent with our prior observation that the
seed-colonizing bacterial communities differed sub-
stantially from the root microbial communities
(Green et al., 2006). However, the observed commu-

nity shift occurred within the narrow phylogenetic
context of Oxalobacteraceae closely related to the
genus Telluria.

The close phylogenetic relationship of the root-
associated Oxalobacteraceae with the genus Telluria
is intriguing. At least one study has noted the
strong rhizosphere capabilities of Telluria species;
T chitinolytica was found to colonize tomato
roots, particularly elongation zones and roots tips
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(Spiegel et al., 1991). Physiological analyses of
Telluria reveal many features that are consistent
with traditional copiotrophic rhizosphere bacteria
(Spiegel et al., 1991; Bowman et al., 1993; Anzai
et al., 2000). Bacteria from the family Oxalobacter-
aceae, previously detected in root environments
(Hallmann et al., 1997; Mahaffee and Kloepper,
1997a, b; Olsson et al., 1999; McSpadden-Gardner
and Weller, 2001; Johansen and Binnerup, 2002;
Schmalenberger and Tebbe, 2002; Graff and Conrad,
2005), have increasingly been seen as important
components of rhizosphere communities and have
been specifically targeted in rhizosphere studies
(Dohrmann and Tebbe, 2005).

Unlike the Oxalobacteraceae, the community
composition of compost-derived Chryseobacterium
was not sensitive to the seed or root environment.
This ecological behavior is more consistent with
organisms that are influenced by bulk soil (for
example soil organic matter). Soil organic matter
can be a significant source of carbon for rhizosphere
organisms (Toal et al., 2000), and high levels of
organic matter and nutrients, such as those that are
supplied via compost amendment, can influence the
strength of the observed rhizosphere effect (Seme-
nov et al., 1999). Although Chryseobacterium spp
are found frequently in organic-rich environments
such as composted materials (Ryckeboer et al.,
2003), these organisms are not particularly well
known as rhizosphere organisms, even though they
have been previously detected in or isolated from
rhizosphere environments (McSpadden Gardener

and Weller, 2001; Young et al., 2005; Park et al.,
2006).

The consistent presence of Chryseobacterium spp
on seed and root surfaces may be a result of their
persistence in the compost-amended potting mixes.
The ability of bacteria to survive in large numbers in
soil can be a major determinant of their ability to
subsequently colonize rhizosphere environments
(Jjemba and Alexander, 1999; De Ridder-Duine
et al., 2005), and compost amendments have been
previously shown to sustain Chryseobacterium in
peat-based potting mixes for longer than in un-
amended potting mixes (Krause et al., 2001). This is
consistent with our prior observation that in the
peat-only treatment, Chryseobacterium spp were not
detectable members of the total bacterial community
on the roots at 21 days, while in both compost-
amended treatments they were detectable (Green
et al., 2006).

Furthermore, the Chryseobacterium detected in
the compost-amended treatments were derived from
the composts (as opposed to having been enriched
from the peat). This was demonstrated by PCR-
DGGE analyses with general bacterial-, Bacteroidetes-
specific and Chryseobacterium-specific primer sets
(data not shown), and by sequence analysis of
Chryseobacterium from compost materials, from
potting mix and plant samples from treatments with
and without compost. There was no overlap between
the Chryseobacterium community composition in the
peat-only treatment and either of the compost-
amended mixes, and the Chryseobacterium sp pre-
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(compost treatments), are discussed in the text. Sequenced bands are marked. Bands migrating to position E were only faintly detected in
samples from 7 and 21 days post sowing, and are marked by a rectangle. DGGE, denaturing gradient gel electrophoresis; PCR-DGGE, PCR-
denaturing gradient gel electrophoresis; rRNA, ribosomal RNA.
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viously detected in the peat-only treatment was not
detected in root samples (Green et al., 2006). The
essentially invariant community composition of the
Chryseobacterium in all sampling points and loca-
tions, combined with the persistence of Chryseobac-
terium in seed and root as significant components of
the entire bacterial community (Green et al., 2006),
suggests that Chryseobacterium populations in the
compost treatments are primarily sustained by the
compost itself.

Thus, although root-associated bacterial commu-
nities can be heavily influenced by the plant, our
work has shown that some microorganisms can be
sustained in root environments with relative insen-
sitivity to the rhizosphere effect. The persistence of
the same Chryseobacterium populations in potting
mixes and on seed and root surfaces demonstrates
that the cucumber rhizosphere selection is not the

exclusive factor involved in determining the com-
position of the spermosphere and rhizosphere
communities. Although it seems unlikely that this
is a plant-specific phenomenon, further research is
required to characterize the multiple factors that can
mitigate the rhizosphere effect, and allow the
persistence of ‘non-traditional’ rhizosphere micro-
organisms in close proximity to plant seed and root
surfaces.
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