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Enzyme improvement in the absence
of structural knowledge: a novel
statistical approach
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Most existing methods for improving protein activity are laborious and costly, as they either require
knowledge of protein structure or involve expression and screening of a vast number of protein
mutants. We describe here a successful first application of a novel approach, which requires no
structural knowledge and is shown to significantly reduce the number of mutants that need to be
screened. In the first phase of this study, around 7000 mutants were screened through standard
directed evolution, yielding a 230-fold improvement in activity relative to the wild type. Using
sequence analysis and site-directed mutagenesis, an additional single mutant was then produced,
with 500-fold improved activity. In the second phase, a novel statistical method for protein
improvement was used; building on data from the first phase, only 11 targeted additional mutants
were produced through site-directed mutagenesis, and the best among them achieved a 41500-fold
improvement in activity over the wild type. Thus, the statistical model underlying the experiment was
validated, and its predictions were shown to reduce laboratory labor and resources.
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Introduction

Improving the activity of a protein by manipulating
its sequence—a process termed protein design—is of
great interest in medicine and biotechnology, and
has been widely practiced. However, the sequence
space is ‘more than astronomically’ vast (Dennett,
1995; Chatterjee and Yuan, 2006), and it is neither
experimentally feasible to test all possible mutants
of a protein nor is it necessary, since many of the
resulting sequences do not fold into functioning
proteins (Arnold, 2006).

One mutagenesis approach, termed rational de-
sign, uses information about the three-dimensional
structure of the protein and its target molecule to
identify promising sequence changes. Thus, Grove
et al. (2003) improved the activity of the Escherichia
coli nitroreductase, NfsB, for prodrug reduction by

targeted changes in amino acids around its active
site; several other such structure-based improve-
ments in proteins have been made (Chica et al.,
2005). However, deciphering the structure of a
protein is expensive, laborious and time consuming,
and activity predictions based on structure are
limited in their success. Thus, design methods that
do not rely on structural knowledge are needed, not
only for proteins whose structure is not known but
also where structural information is available, since
activity may be influenced by amino acids not
residing in the active site (Qian and Lutz, 2005;
Park et al., 2006).

An alternative to structure-based rational design
is directed evolution—a selective process that
mimics nature, whereby a protein is ‘bred’ through
successive generation of gene libraries; the members
of these libraries are randomly mutated and
shuffled, and their resulting proteins are then
screened for improved activity. Common methods
for generating such libraries include error-prone
PCR and recombination between homologous re-
gions of related genes (Chen and Arnold, 1993;
Stemmer, 1994; Aharoni et al., 2005; Barak et al.,
2006a, b). Directed evolution is widely practiced and
has produced important results, yet it typically
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necessitates expression, purification and screening
of thousands of protein mutants. In addition,
directed evolution is a ‘blind’ process, and it is
virtually impossible to mathematically predict its
success in improving activity.

A third approach to protein design models the
relation between the sequence of a protein mutant
and its activity (fitness) as a statistical relationship.
That is, one assigns a distribution of activity levels
for each protein mutant, rather than a single
predicted activity, and can thereby specify probabil-
ities for the various activity levels. Among the
models that belong to this class are the NK model
of Kauffman and Levin (1987), the Mount Fuji
model of Aita and Husimi (2000) and various
regression-like methods (Mee et al., 1997; Lejon
et al., 2001). Many variants of the Mount Fuji and
the NK models are Gaussian, and most of the
regression-based methods are implicitly Gaussian,
as they assume Gaussian distribution of the errors
when computing confidence intervals, P-values, etc.
The statistical approach to protein design circum-
vents the need to decipher a protein’s structure and
promotes identification of promising mutant candi-
dates, thus significantly reducing the number of
mutants that need to be screened.

Of special interest is recent work by Fox et al.
(2007), in which the activity of bacterial halohydrin
dehalogenase was significantly improved to meet
design criteria in the commercial production of
atorvastatin (Lipitor), a cholesterol-lowering drug.
The enzyme was optimized through a statistical
analysis method termed protein sequence activity
relationship, combined with directed evolution and
rational design.

We report here a successful first empirical
application of a novel method belonging to the last
mentioned class; the method is based on a statistical
model for the sequence–activity relationship pro-
posed by Nov and Wein (hereafter referred to as ‘the
model’), whose theoretical and mathematical details
were published previously (Nov and Wein, 2005).
Briefly, this model is additive, in the sense that it
assumes that after proper transformation of the data,
the change in activity caused by a multiple-residue
mutation roughly equals the sum of the activity
changes caused by the corresponding single-residue
mutations; the degree of non-additivity is captured
through one of the model’s parameters. The model is
sparse in parameters, and is mathematically tract-
able, conveniently allowing one to update the
activity distributions of the yet-unexplored mutants
from the sequence–activity data of tested mutants.
In addition to their sequence–activity relationship
model, Nov and Wein suggested an optimization
module for selecting promising mutant candidates; a
variant of this module was used in this study. The
relevant aspects of the model used in this study are
presented in the Materials and methods section.

The improvement efforts targeted the E. coli
enzyme ChrR, an NAD(P)H-dependant oxidoreduc-

tase of unknown structure, which has a wide
substrate range (Ackerley et al., 2004), including
several beneficial activities such as chromate and
uranyl (U(VI)) reduction (useful in the bioremedia-
tion of these widespread pollutants (Ackerley et al.,
2004, 2006; Barak et al., 2006b)) and prodrug
reduction (useful in cancer chemotherapy (Barak
et al., 2006a)). Improvement in all three activities is
reported.

Materials and methods

Strains, plasmids, genes, primers and growth
conditions
Supplementary Table 1 lists the strains, plasmids
and primers used in this study. The various strains
were grown at 37 1C to mid-exponential phase,
induced by 0.5mM isopropyl-b-D-thiogalactoside
and incubated overnight for protein production.

DNA techniques
Routine DNA manipulations were performed as
described (Sambrook et al., 1989; Barak et al.,
2006a, b). Plasmid DNA purification from E. coli
was carried out by miniprep (Qiagen Inc., Valencia,
CA, USA). DNA was sequenced by Sequetech
Corporation, CA, USA, using appropriate primers
(Supplementary Table 1).

Directed evolution of the chrR gene for improving
chromate reductase activity
Error-prone PCR was used to introduce random
mutations in the chrR gene (Barak et al., 2006a, b),
using the GeneMorph II Random Mutagenesis kit
(Stratagene Corporation, La Jolla, CA, USA). For-
ward and reverse chrR primers (Supplementary
Table 1) were used to amplify full-length hybrid
products.

The shuffled genes were ligated into the pET28aþ

plasmid, and transformed into E. coli BL21 (DE3)
(Invitrogen Inc., Carlsbad, CA, USA) to allow over-
expression. Recombinants were selected on plates
containing kanamycin (50 mgml�1). High-throughput
screening of 7000 recombinants was performed by
inoculating colonies into individual wells of 96-well
microtiter plates, containing 200 ml Luria–Bertani
medium and kanamycin. After growth to stationary
phase (overnight incubation, final A660, 1–1.5), 20 ml
aliquots from each well were used to inoculate a
second series of plates, using M9 minimal medium
(Sigma Inc., St Louis, MO, USA). Each well received
the same initial inoculum. The first set of plates was
stored at �80 1C after addition of glycerol. Cells in
the second inoculation series were allowed to grow
to mid-exponential phase and then exposed to
0.5mM isopropyl-b-D-thiogalactoside to induce the
recombinant gene expression. After overnight in-
cubation, cells were lysed by addition of 30 ml
BugBuster (Novagen Inc., San Diego, CA, USA),
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incubated for 20min at room temperature, and
centrifuged for 20min at 3000 g. Supernatant
(100 ml) was mixed with 10 ml solution of the
following composition: 500 mM potassium chromate,
2mM NADH, 100mM Tris-HCl (pH 7) and ddH2O
(Barak et al., 2006a, b); and chromate reduction was
assayed as described below.

The most efficient enzymes for Cr(VI) reductase
activity were purified on nickel columns, as previously
described (Ackerley et al., 2004), using inocula
obtained from the frozen plates. Protein concentrations
were determined with the Bio-Rad Dc protein assay
kit, using bovine serum albumin as a standard.

Site-directed mutagenesis
Appropriate primers (Supplementary Table 1)
were used for site-directed mutagenesis. These were
designed to create single-codon mutations following
the method of Kuipers et al. (1991). Verification that
the desired mutations had been generated was
obtained by sequencing. Proteins encoded by the
modified genes were generated as described above.

Cr(VI) assays
Determination of Cr(VI) reduction rates by cell
extract preparation and chromate reductase assays
were conducted as described previously (Ackerley
et al., 2004; Park et al., 2000). Kinetic measurements
of enzyme activity were performed at pH 7 and at
37 1C. Each assay was conducted four times unless
otherwise stated.

Assay for prodrug reduction
Reductive prodrugs become strong killing agents of
biological cells upon reduction. The capacity of the
mutant enzymes to carry out this reduction was
determined with minor modifications as previously
described (Barak et al., 2006a). Briefly, prodrug
reduction mixtures contained mitomycin C, CB
1954 (5-aziridinyl-2,4-dinitrobenzamide) or 17-AAG
(17-allylamino-17-demethoxygeldanamycin) at a con-
centration of 15mM, 10mgml–1 pure enzyme, 50mM
NADPH and Dulbecco’s modified Eagle’s medium
(Barak et al., 2006a) to a final volume of 0.5ml.
Following prodrug reduction for 30min at 37 1C,
0.5ml of JC breast cancer cells (B0.5–1� 105) were
added and the cells were incubated for additional
24h. After the latter incubation, 20ml of the color
reagent, CellTiter 96 AqueousOne (Promega Inc.,
Madison, CA, USA) was added to 100ml aliquots
of the reaction mixture. Following 1h of further
incubation, A490 was measured in an ASYS UVM340
reader.

U(VI) determination
For selected mutant enzymes, uranyl reductase
activity was also determined. This was carried out
as described (Teixeira et al., 1999). Briefly, samples

were collected after incubation for the specified
time. A 120 ml sample was mixed with 130 ml reagent
mixture containing 5:1:1:1:5 proportion of complex-
ing solution, TAC (2-(2-thiazolyazo-p-cresol)), Triton
X-100 (0.15M), CTAB (N-cetyl-N,N,N-trimethyam-
monium bromide) and triethanolamine buffer (pH
6.5). The method depends on the TAC binding to
U(VI), which is aided by Triton and CTAB. After
15min of color development, the samples were
read at A588nm using a Micro-Plate Reader (ASYS
UVM340).

Computer programs
Sequences were aligned with Clustal W (http://
searchlauncher.bcm.tmc.edu/multi-align/multi-align.
html). Optimization for the maximum likelihood
estimation of the model parameters, as well as other
scientific programming, was carried out through
MATLAB (The MathWorks Inc., Natick, MA, USA).

The model
The model has four parameters: the driftm, which is
the expected change in fitness due to introduction of
a new, arbitrary mutation (a negative number, as
mutations more often decrease than increase fit-
ness); the site variance sS

2, which is the variance of
the change in expected fitness contribution due to a
mutation across sites; the residue variance sR

2, which
is the variance of the fitness contribution of a
specific single-residue mutation within a site; and
the non-additivity variance sN

2 , which captures
both the degree of non-additivity and the level of

Table 1 First phase: the effect of sequence changes on chromate
reductase activity (Vmax) of the E. coli ChrR protein

Mutants Residue substitutions
in WT ChrR

Vmax (nmol Cr(VI)
reduced per mg
protein per min)

ChrR None 295±27
ChrR6 V120A, Y128N, T160N, Q175L 8810±611
ChrR7 V120A, Y128N, N154T, T160N,

Q184H
23200±8180

ChrR8 V120A, Y128N, T160N 35400±2700
ChrR9 V120A, Y128N, G150S 11100±3450
ChrR10 V120A, Y128N 19000±2100
ChrR11 V120A 1100±544
ChrR12 A44V, V120A, Y128N 38300±±4300
ChrR13 V120A, Y128N, G150S, Q153H 67500±3950
ChrR14 V120A, Y128N, Q175L 7800±3210
ChrR15 V120A, T160N 52100±3600
ChrR16 Y128N, T160N 625±235
ChrR17 V120A, Y128N, T160N, Q175H,

K187T
20600±7180

ChrR18 D103G, V120A, T160N 311±86
ChrR19 A120V, T160N, Q175L 252±42
ChrR20 Y128N, T160N, Q175L 9200±545
ChrR21 Y128N 148600±46600

Abbreviation: WT, wild type.
Mutants ChrR6–ChrR20 were obtained through directed evolution,
and ChrR21 was produced through site-directed mutagenesis.
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measurement noise (as in all additive models, these
two effects cannot be distinguished from one
another). For a thorough presentation of the model,
see Nov and Wein (2005). Due to reasons discussed
below, a variant of the model, with only three
parameters, was used. The fitness Fs of a mutant
having sequence s and activity Vmax (in nmole
substrate converted per milligram protein per min-
ute) was taken to equal log10(Vmax/vwt), where vwt is
the Vmax value of the wild-type enzyme (which was
295; Table 1). This transformation improved the
goodness-of-fit of the data to the model, and set
the fitness of the wild type to 0, as required by the
model.

The 16 mutant proteins sequenced in the first
phase involved mutations in n¼ 11 sites (A44,
D103, V120, Y128, G150, Q153, N154, T160, Q175,
Q184, K187; Table 1). Only one of these sites, Q175,
had more than one substituent amino acid—Q175L
and Q175H—of which the latter appeared in only
one sequence, ChrR17. To improve the numerical
stability of the estimation computations, ChrR17
was omitted from the data, so that only 15 sequences
were used; otherwise, the parameter sR

2 would have
appeared in only two entries of a 16� 16 covariance
matrix. It is for this reason that a three-parameter
version of the model was used, employing the
parameters m, sS

2 and sN
2 . More specifically,

the model is a Gaussian random field F¼ {Fs}, where
the index set of F consists of all 211¼ 2048 sequences
that may be generated from the genetic diversity of
the 15 mutants found in the first phase. The joint
distribution of the elements of F is given by the
following equations:

EðFsÞ ¼ dðs; ŝÞm ð1Þ

VarðFsÞ ¼ dðs; ŝÞs2S þ s2N ð2Þ

CovðFs;Fs0 Þ ¼ Mðs; s0Þs2S ð3Þ
where d(s, ŝ) is the number of sites in which a
sequence s differs from the wild-type sequence ŝ
and M(s, s0) is the number of sites in which both
sequences s and s0 differ from the wild-type
sequence. In this three-parameter form (but not in
the full four-parameter form), the model is similar to
a regression model with random coefficients (some-
time called hierarchical regression) without
an intercept, in which the predictors are binary
variables, indicating the presence or absence of
a mutation, their coefficients are N(m, sS

2) random
variables, and the variance of the error terms is sN

2 .
As no prior distribution is assumed over the
parameters, the model is not Bayesian.

Parameter estimation
The parameters of the model were estimated by the
maximum likelihood method. Specifically, m, sS

2

and sN
2 were initially estimated to be the maximizers

of the likelihood function

Lðm; s2S; s
2
N;F1Þ ¼

1

ð2pÞr=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðS1Þ

p

� exp �1
2ðF1�m1Þ0S�1

1 ðF1�m1Þ
� �

;

ð4Þ
where F1 is the log-transformed r-vector (r¼ 15) of
the 15 Vmax values of the mutant proteins (Table 1,
excluding the wild type and ChrR17), m1 is its mean
vector (computed according to Equation (1)) and S1

is its r� r covariance matrix (computed according
to Equations (2) and (3)). The resulting estimates
were sS

2 ¼ 0.4861 and sN
2 ¼ 0.1478. The estimate of

the third parameter, m, was positive, in contrast to
the model’s assumptions. This finding was ex-
pected: the sequences obtained in the first phase
were not a random sample from the sequence space,
in which a priori it is expected that most mutations
are deleterious (corresponding to a negative m);
rather, these sequences were chosen by the selective
directed evolution process due to their improved
fitness, and thus carry seriously distorted informa-
tion about m. Therefore, for fitness prediction
purposes (see below), only the two estimated
variance parameters sS

2 and sN
2 were used, and the

value of m was varied, in jumps of size 0.2, across
the range �1.5 to �0.1.

For the second application of the model predic-
tions, after the activity information of the first
round’s five mutants became available, the para-
meters were re-estimated in a similar way, using
r¼ 15þ 5¼ 20 in Equation (4) and appropriately
modified F1, m1 and S1. The resulting estimates were
sS
2 ¼ 0.4361 and sN

2 ¼ 0.1961, very similar to those
from the first round.

Fitness prediction
By the additivity of the model, the conditional
expected fitness of a sequence s given the data,
E(Fs|F1), is the sum of the conditional expected
fitness contributions from each of the 11 mutated
sites. The contribution from a site having the wild-
type residue is 0 (and hence so is its expected
contribution), and that of a site i with a non-wild-
type residue is a random variable fi. The conditional
expected value of the vector f¼ (f1, ..., fn) is

Eðf jF1Þ ¼ mþ S2 S�1
1 ðF1 � m1Þ; ð5Þ

where m is a constant n-vector, having all of its
element equal to m; the matrix S1

–1 is the inverse of
S1 and S2 is an n� r matrix, having sS

2 as its (i, j)th
entry, if mutant j had a mutation at site i, and
0 otherwise.

In the first round of the second phase, the
estimated variance parameters sS

2 and sN
2 corres-

pond to a proportion of non-additive variance of
0.1478/(2� 0.4861þ 0.1478)¼ 0.132 among double
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mutants, which is low enough to allow reliable
predictions. As mentioned above, the value of m
was not estimated from the data, and was varied
from �1.5 to �0.1. For each value of m, the n-vector
E(f|F1) was computed according to Equation (5) (see
Supplementary Table 2), and the conditional ex-
pected fitness values of all possible n(n�1)/2¼ 55
double mutants were calculated. Among these, the
five double mutants with the highest expected
fitness (averaged across all m, and not including
sequences already in the data set) were identified,
and their sequences are shown in Table 2A (second
column). The sequences for the second round were
chosen in the same method, with the appropriate
changes to r, F1, m1 and S1. Since only triple-residue
mutants were considered in this round, the mutants
chosen were the top ones, in terms of conditional
expected fitness, among all n(n�1)(n�2)/6¼ 165
triple mutants.

Results

A two-phase strategy for ChrR improvement was
employed: a ‘blind’ directed-evolution approach in
the first phase and the model-based predictions to
obtain further improvement in the second. In the
first phase, ChrR protein mutants were obtained by
subjecting the chrR gene to three rounds of error-
prone PCR. Each round was followed by screening
the resulting mutant proteins for chromate reductase
activity, using a colorimetric method that provides
an approximate indication of the degree of improve-
ment in this activity. Around 6000 mutants were
screened. The top 15 mutant proteins were purified
and sequenced, and their Vmax (in nmole Cr(VI)
reduced per milligram protein per minute) was
measured (mutants ChrR6–ChrR20; Table 1). Eleven
of these showed significantly higher Vmax for this
reduction (425-fold improvement) compared to the
wild-type enzyme, the best, ChrR13, showing a Vmax

of 67 500, corresponding to about 230-fold improved
activity.

Sequence analysis revealed that the Y128N sub-
stitution was common to almost all of the improved

mutants isolated in this phase, so an additional
mutant, containing the single mutation Y128N,
was generated through site-directed mutagenesis.
This mutant (ChrR21; Table 1) surpassed the other
mutants in chromate reductase activity, exhibiting
a 500-fold improvement over the wild type. An
additional (fourth) round of directed evolution,
using DNA from ChrR6 to ChrR21 as template and
screening around 1000 variants, did not yield
further improvement.

The second phase of the study consisted of
applying the model to the sequence–activity data
of Table 1. The parameters of the model were
estimated from the entire information of Table 1,
and the sequences of the five most promising double
mutants (that is, the five mutants that possess the
highest conditional expected activity, among those
differing from the wild type in two amino acids)
were mathematically identified (ChrR22 to ChrR26;
Table 2A). These mutant proteins were generated in
pure form by site-directed mutagenesis and nickel
column purification as described (Barak et al.,
2006a), and their Vmax for chromate reduction was
measured (third column of Table 2A). One of these,
ChrR23, exhibited a Vmax of 258 000, corresponding
to an 876-fold improvement in activity over the wild
type, around fourfold improvement over ChrR13
(the best mutant obtained in four rounds of directed
evolution, which necessitated screening of 7000
mutants), and a 1.75-fold improvement over ChrR21
(the best mutant isolated in the first phase). In
addition, the average Vmax of mutants ChrR22–
ChrR26 was significantly higher than the average
Vmax of the first-phase mutants ChrR6–ChrR21
(104 000 vs 26 000; P¼ 0.0084 in a one-tailed
Mann–Whitney test for median comparison).

To further improve the ChrR enzyme, we con-
ducted a second screening round according to the
model predictions. The parameters of the model
were re-estimated, using the sequence–activity data
of both Tables 1 and 2A, and the sequences of the
seven most promising triple mutants were identi-
fied. One of these mutants could not be generated,
but the remaining six were produced as described
above, and their chromate reductase Vmax values
were measured (Table 2B). Strikingly, one of these,
ChrR30, exhibited 1554-, 6.6- and 3.1-fold improve-
ments over the wild type, ChrR13 and ChrR21,
respectively. Thus, by screening just a few mutants,
a multifold enhancement was obtained in an
enzyme already improved to a large degree. The
aggregate average Vmax of the 11 mutants ChrR22–
ChrR32 (117 000) was also significantly higher
than that of the first-phase mutants ChrR6–ChrR21
(P¼ 0.0034).

Previous results had shown a positive correlation
between chromate reductase activity and other
useful activities in ChrR mutants (Barak et al.,
2006a, b). We therefore examined the activity of
three of the most active mutants in chromate
reductase—ChrR21, ChrR23 and ChrR30—in two

Table 2A First round of second phase: sequence and Vmax

activity of five mutants predicted by the Nov–Wein model to
have improved chromate reductase activity

Mutants Amino-acid
substitutions
from WT ChrR

Vmax (nmol Cr(VI)
reduced per mg
protein per min)

ChrR22 A44V, Y128N 38300±14500
ChrR23 Y128N, G150S 258300±21900
ChrR24 Y128N, Q153H 53900±17300
ChrR25 Y128N, N154T 147200±44900
ChrR26 Y128N, Q184H 25000±7200

Abbreviation: WT, wild type.
Predictions were based on the sequence–activity data of Table 1.
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additional respects, namely, prodrug and U(VI)
reduction. The capacity of the mutants to reduce
prodrugs was determined by the efficiency with
which they killed cells of the JC breast cancer cell
line. Three prodrugs, namely, mitomycin C, CB 1954
and 17-AAG, were used. All three mutants were
more potent than the wild-type enzyme in activating
each of the drugs, and in causing the drug-mediated
killing of the cells (Figure 1). This activity corre-
lated, by and large, with improved chromate

reductase activity for each mutant; ChrR30 being
the most efficient in this respect.

The three mutants also exhibited improved uranyl
reductase activity compared to the wild-type en-
zyme (Table 3). However, unlike chromate reductase
activity, no further improvement in this activity was
shown by the other mutants over ChrR21.

Discussion

Directed evolution has resulted in successful gene-
ration of many improved proteins, but this approach
is blind, laborious and time consuming. Typically,
the improvements achieved in the early rounds of
directed evolution are significant, but in later
rounds, even when a large number of further
mutants is screened, improvements become smaller
and less frequent. For example, Minagawa and
Hiroki (2000) and Minagawa et al. (2007) were able
to improve the thermostability of lactate oxidase by
18-fold after screening around 3000 mutants, but
had to screen more than 20000 additional mutants
for a twofold further improvement. Since mutations
are more often deleterious to protein activity, it has
been thought that increased mutational rate was
likely to correlate with loss of function, and 1–3
mutation rate per gene was considered desirable
(Suzuki et al., 1996; Arnold, 1998). Recently,
however this notion has been questioned. Daugherty
et al. (2000) and Drummond et al. (2005) have
shown that higher mutation rate libraries (15–30 per
gene) have a better probability of generating im-
proved mutant proteins. The mutation rate
employed in our experiment was low (1–5 per gene)
and therefore the fourth round of directed evolution
resulting with no improvement might be explained
by ‘masking’ of deleterious mutations over bene-
ficial ones.

While we could have obtained further improve-
ment in ChrR activity using the directed evolution
process by screening a large number of additional
mutants (perhaps 20 000 or more) in later rounds,
our use of the Nov and Wein model clearly afforded
a significant saving in screening effort in these later
stages. To provide a perspective: it was necessary to
screen around 7000 mutants in four rounds of
directed evolution (the last of which yielded no
additional improvement) to obtain a 230-fold in-
crease in ChrR activity; in contrast, the model made
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Figure 1 The effect of mitomycin C ( ), CB 1954 (5-aziridinyl-
2,4-dinitrobenzamide) ( ) and 17-AAG (17-allylamino-17-de-
methoxygeldanamycin) ( ) on the killing of JC breast cancer
cells in the presence of the wild-type or the evolved enzymes
(10mgml�1). The concentration of the drugs was 15mM. The
enzymes were incubated with the drug for 30min (37 1C),
followed by the addition of the cells. After 24-h incubation
(37 1C), cell viability was determined as described in the Materials
and Methods section.

Table 3 Uranyl reduction kinetics of selected evolved mutants

Mutants Vmax (nmol U(VI) reduced
per mg protein per min)

Km (mM) Kcat (s
�1) Kcat/Km (M�1 s�1)

ChrR 213±17 108±49 29±11 2.7�105±2.3�105

ChrR21 6010±226 228±13 361±24 1.5�106±1.6�105

ChrR23 4810±462 221±54 333±37 7�105±7� 104

ChrR30 5830±502 237±75 446±32 1.8�106±1.5�105

Table 2B Second round of second phase: sequence and Vmax

activity of six additional mutants chosen according to the
Nov–Wein model

Mutants Amino-acid
substitutions from
WT ChrR

Vmax (nmol Cr(VI)
reduced per mg
protein per min)

ChrR27 Y128N, V120A, Q153H 19200±2060
ChrR28 Y128N, Q153H, N154T 43300±9300
ChrR29 Y128N, Q153H, G150S 22500±2400
ChrR30 Y128N, G150S, N154T 458300±83 600
ChrR31 Y128N, N154T, V120A 203000±80 200
ChrR32 Y128N, Q153H, A44V 18600±5600

Abbreviation: WT, wild type.
Predictions were based on the data of Tables 1 and 2A.
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it possible to improve the enzyme significantly
further (46-fold improvement over the best mutant
obtained by directed evolution and 41500-fold
improvement over the wild type) by screening only
11 targeted new mutants. This saving in screening is
especially attractive when the screening cost is high
compared to the cost of producing site-directed
mutants, as required by the model.

Recently, Fox et al. (2007) elegantly demonstrated
how a statistical model can augment directed
evolution to significantly improve the cyanation
activity of bacterial halohydrin dehalogenase.
Although both studies employed additive statistical
models coupled with traditional techniques, their
results do not permit easy comparison, since (a)
enzyme activity was measured differently in the two
studies and (b) it is not known which of the two
enzymes is more amenable to optimization. How-
ever, Fox et al. improved activity by B4000-fold
after screening more than 500 000 mutants in 18
rounds, while in the present work, we achieved
B1500-fold activity improvement after screening
B7000 variants in six rounds. Furthermore, as the
structure of the halohydrin dehalogenase enzyme is
known, some of the diversity in Fox et al. experi-
ments was generated through rational design. In this
work, no structural knowledge was used, as the
structure of the ChrR enzyme is unknown. Both
studies demonstrate the power of statistical model-
ing in protein design, and both permit beneficial use
of information gained from mutants with reduced
activity.

The genetic diversity spanned by the directed
evolution mutants (Table 1) encompasses more than
3000 possible combinations, among which (after
omitting ChrR17) 55 are double mutants and 165 are
triple mutants. As diversity increases, the numbers
grow exponentially: when one considers 15 mutated
positions with two possible mutations in each, there
are 4107 possible combinations (420 double mu-
tants, 3640 triple mutants); and with 20 mutated
positions and three possible mutations in each,
there are 41012 possible combinations (1710 double
mutants, 430 000 triple mutants). Thus, exhaustive
search in a laboratory, even only for double and
triple mutants, does not scale well, and system-
atically producing and screening all of them would
be an extensive and highly laborious feat. The
predictions of the model allow one to screen instead
only a few targeted mutants, and still improve
activity.

It is serendipitously possible to identify promis-
ing mutants by simply ‘gazing’ at activity data and
detecting beneficial mutations, as was done in the
discovery of the single-residue mutant ChrR21 in
this work. However, a systematic mathematical
approach is needed to identify more complex
mutants, such as ChrR30. The model is shown here
to be a valuable tool for such situations, as it allows
one to rigorously separate the expected contribution
to activity from each of the mutations in a data set of

mutant activity (such as Table 1), and thus to isolate
mutants that otherwise may have been difficult to
discover.

All mutants designed in the second phase based
on the model predictions are built from mutations
generated through directed evolution in the first
phase. Thus, in principle, it was possible to obtain
the new mutants through additional rounds of
directed evolution, without using the statistical
model. However, as directed evolution is a blind
process governed by chance, it is not clear screening
of how many additional mutants would have been
required to achieve an improvement comparable
to that which the application of the model made
possible; it should be kept in mind that the
last round of directed evolution yielded no
improvement.

The model postulates that mutations are approxi-
mately additive. Is this assumption supported by the
data? Based on the second, more complete estimate
of the parameters, the fraction of the total variance of
the fitness of a double mutant that is due to non-
additivity (and measurement noise) is 0.1961/
(2� 0.4361þ 0.1961)¼ 0.18; for triple mutants,
the fraction is 0.1961/(3� 0.4361þ 0.1961)¼ 0.13.
These relatively low numbers indicate that the data
are not particularly noisy, there are no strong
epistatic effects and that the mutational effects are
mostly additive. Two additional points regarding
additivity are noteworthy. First, additivity is as-
sumed to apply to the transformed activity measure-
ments, rather than to the raw data. For example,
ChrR31 is the combination of ChrR11 and ChrR25,
and the deviation from perfect additivity in
the raw data (202 778 vs 1000þ 147 222) is much
greater than that in the transformed data (2.83 vs
0.53þ 2.70). Second, as often happens in statistical
analysis, even when approximate additivity holds,
some considerable exceptions occur; this can be
seen in our data when comparing ChrR10, whose
transformed activity is 1.81, against ChrR11 com-
bined with ChrR21, whose sum of transformed
activities is 3.23.

Producing designed mutants through site-directed
mutagenesis, as our approach required, is not
always simple, as certain designed mutants are
difficult to generate in a laboratory. A potential
remedy for this problem is to create in the second
phase, after statistically analyzing sequence–activity
data from the first phase, combinatorial libraries
containing only putatively beneficial mutations.
These focused libraries will then be subject to
directed evolution, and are more likely to achieve
improvement than straightforward directed evolu-
tion libraries that do not incorporate statistical
analysis in their design. This approach is pursued
in a sequel to this work.

One might suggest that our statistical analysis
could benefit from adopting a Bayesian approach,
where prior distributions are set over the para-
meters. However, as this work is the first to study
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enzyme activity data in light of the model, we could
not use informative priors for Bayesian estimation.
The proper choice of non-informative priors is
under debate among statisticians, especially for
parameters of the type appearing in our model,
which are not constrained to lie in a known interval.
We note, though, that when varying the value of m
in our analysis, we effectively used a Bayesian-like
approach with a non-informative prior for estima-
tion and prediction.

Work is now in progress to use ChrR30 in
improving bacterial bioremediation and prodrug
cancer chemotherapy.
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