Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Bugs, guts and brains, and the regulation of food intake and body weight

Abstract

The microbiota–gut–brain axis is currently being explored in many types of rodent models, including models of behavioral, neurodegenerative and metabolic disorders. Our laboratory is interested in determining the mechanisms and consequences of activation of vagal afferent neurons that lead to activation of parasympathetic reflexes and changes in feeding behavior in the context of obesity. Obesity is associated with microbial dysbiosis, decreased intestinal barrier function, gut inflammation, metabolic endotoxemia, chronic low-grade systemic inflammation and desensitization of vagal afferent nerves. This review will present the evidence that altered gut microbiota together with decreased gut barrier function allows the passage of bacterial components or metabolites in obese individuals, leading to the disruption of vagal afferent signaling and consequently resulting in an increase in body weight. We first review the most recent descriptions of gut microbial dysbiosis due to a high fat diet and describe changes in the gut barrier and the evidence of increased intestinal permeability in obesity. We then will review the evidence to show how manipulating the gut microbiota via pre and probiotics can restore gut barrier function and prevent weight gain. Lastly, we present possible mechanisms by which the microbe–gut–brain axis may have a role in obesity. The studies mentioned in this review have provided new targets to treat and prevent obesity and have highlighted how the microbiota–gut–brain axis is involved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Kashyap PC, Marcobal A, Ursell LK, Larauche M, Duboc H, Earle KA et al. Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice. Gastroenterology 2013; 144: 967–977.

    Article  PubMed  Google Scholar 

  2. Cryan JF, O'Mahony SM . The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol Motil 2011; 23: 187–192.

    Article  CAS  PubMed  Google Scholar 

  3. de Lartigue G, de La Serre CB, Raybould HE . Vagal afferent neurons in high fat diet-induced obesity; intestinal microflora, gut inflammation and cholecystokinin. Physiol Behav 2011; 105: 100–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Paulino G, Barbier de la Serre C, Knotts TA, Oort PJ, Newman JW, Adams SH et al. Increased expression of receptors for orexigenic factors in nodose ganglion of diet-induced obese rats. Am J Physiol Endocrinol Metab 2009; 296: E898–E903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Covasa M, Ritter RC . Rats maintained on high-fat diets exhibit reduced satiety in response to CCK and bombesin. Peptides 1998; 19: 1407–1415.

    Article  CAS  PubMed  Google Scholar 

  6. Brennan IM, Seimon RV, Luscombe-Marsh ND, Otto B, Horowitz M, Feinle-Bisset C . Effects of acute dietary restriction on gut motor, hormone and energy intake responses to duodenal fat in obese men. Int J Obes (Lond) 2011; 35: 448–456.

    Article  CAS  Google Scholar 

  7. Paulino G, Darcel N, Tome D, Raybould H . Adaptation of lipid-induced satiation is not dependent on caloric density in rats. Physiol Behav 2008; 93: 930–936.

    Article  CAS  PubMed  Google Scholar 

  8. Raybould HE . Gut microbiota, epithelial function and derangements in obesity. J Physiol 2012; 590: 441–446.

    Article  CAS  PubMed  Google Scholar 

  9. Tilg H, Kaser A . Gut microbiome, obesity, and metabolic dysfunction. J Clin Invest 2011; 121: 2126–2132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Neish AS, Naumann M . Microbial-induced immunomodulation by targeting the NF-κB system. Trends Microbiol 2011; 19: 596–605.

    Article  CAS  PubMed  Google Scholar 

  11. Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 2004; 101: 15718–15723.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Backhed F, Manchester JK, Semenkovich CF, Gordon JI . Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA 2007; 104: 979–984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI . An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444: 1027–1031.

    Article  PubMed  Google Scholar 

  14. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI . Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 2005; 102: 11070–11075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ley RE, Turnbaugh PJ, Klein S, Gordon JI . Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444: 1022–1023.

    Article  CAS  PubMed  Google Scholar 

  16. Sekirov I, Russell SL, Antunes LC, Finlay BB . Gut microbiota in health and disease. Physiol Rev 2010; 90: 859–904.

    Article  CAS  PubMed  Google Scholar 

  17. Brown EM, Sadarangani M, Finlay BB . The role of the immune system in governing host-microbe interactions in the intestine. Nat Immunol 2013; 14: 660–667.

    Article  CAS  PubMed  Google Scholar 

  18. Salzman NH, Hung K, Haribhai D, Chu H, Karlsson-Sjoberg J, Amir E et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol 2010; 11: 76–83.

    Article  CAS  PubMed  Google Scholar 

  19. Hodin CM, Verdam FJ, Grootjans J, Rensen SS, Verheyen FK, Dejong CH et al. Reduced Paneth cell antimicrobial protein levels correlate with activation of the unfolded protein response in the gut of obese individuals. J Pathol 2011; 225: 276–284.

    Article  CAS  PubMed  Google Scholar 

  20. de La Serre CB, Ellis CL, J L, Al H, Jc R, HE R . Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol Gastrointest Liver Physiol 2010; 299: 27.

    Article  CAS  Google Scholar 

  21. Ravussin Y, Koren O, Spor A, LeDuc C, Gutman R, Stombaugh J et al. Responses of gut microbiota to diet composition and weight loss in lean and obese mice. Obesity (Silver Spring) 2012; 20: 738–747.

    Article  CAS  Google Scholar 

  22. Steinert M, Hentschel U, Hacker J . Symbiosis and pathogenesis: evolution of the microbe-host interaction. Naturwissenschaften 2000; 87: 1–11.

    Article  CAS  PubMed  Google Scholar 

  23. Winter SE, Winter MG, Xavier MN, Thiennimitr P, Poon V, Keestra AM et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 2013; 339: 708–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fei N, Zhao L . An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice. ISME J 2013; 7: 880–884.

    Article  CAS  PubMed  Google Scholar 

  25. Abreu MT . Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol 2010; 10: 131–144.

    Article  CAS  PubMed  Google Scholar 

  26. Bogunovic M, Dave SH, Tilstra JS, Chang DT, Harpaz N, Xiong H et al. Enteroendocrine cells express functional Toll-like receptors. Am J Physiol Gastrointest Liver Physiol 2007; 292: G1770–G1783.

    Article  CAS  PubMed  Google Scholar 

  27. de Lartigue G, Barbier de la Serre C, Espero E, Lee J, Raybould HE . Diet-induced obesity leads to the development of leptin resistance in vagal afferent neurons. Am J Physiol Endocrinol Metab 2011; 301: E187–E195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hawkesworth S, Moore SE, Fulford AJ, Barclay GR, Darboe AA, Mark H et al. Evidence for metabolic endotoxemia in obese and diabetic Gambian women. Nutr Diabetes 2013; 3: e83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007; 56: 1761–1772.

    Article  CAS  PubMed  Google Scholar 

  30. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008; 57: 1470–1481.

    Article  CAS  PubMed  Google Scholar 

  31. de La Serre CB, de Lartigue G, Raybould HE . Chronic exposure to Low dose bacterial lipopolysaccharide inhibits leptin signaling in vagal afferent neurons. Physiol Behav 2014; 139C: 188–194.

    Google Scholar 

  32. Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 2012; 482: 179–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wernstedt Asterholm I, Tao C, Morley TS, Wang QA, Delgado-Lopez F, Wang ZV et al. Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metab 2014; 20: 103–118.

    Article  CAS  PubMed  Google Scholar 

  34. Francois F, Roper J, Joseph N, Pei Z, Chhada A, Shak JR et al. The effect of H. pylori eradication on meal-associated changes in plasma ghrelin and leptin. BMC Gastroenterol 2011; 11: 37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Trasande L, Blustein J, Liu M, Corwin E, Cox LM, Blaser MJ . Infant antibiotic exposures and early-life body mass. Int J Obes (Lond) 2013; 37: 16–23.

    Article  CAS  Google Scholar 

  36. Veiga P, Gallini CA, Beal C, Michaud M, Delaney ML, DuBois A et al. Bifidobacterium animalis subsp. lactis fermented milk product reduces inflammation by altering a niche for colitogenic microbes. Proc Natl Acad Sci USA 2010; 107: 18132–18137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Backhed HK et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 2012; 150: 470–480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ding S, Chi MM, Scull BP, Rigby R, Schwerbrock NM, Magness S et al. High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS ONE 2010; 5: e12191.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Hamilton MK, Boudry G, Lemay DG, Raybould HE . Changes in intestinal barrier function and gut microbiota in high-fat diet fed rats are dynamic and region-dependent. Am J Physiol Gastrointest Liver Physiol 2015; 308: G840–G851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Teixeira TF, Souza NC, Chiarello PG, Franceschini SC, Bressan J, Ferreira CL et al. Intestinal permeability parameters in obese patients are correlated with metabolic syndrome risk factors. Clin Nutr 2012; 31: 735–740.

    Article  CAS  PubMed  Google Scholar 

  41. Turner JR, Buschmann MM, Sailer A, Calvo IR, Shen L . The role of molecular remodeling in differential regulation of tight junction permeability. Semin Cell Dev Biol 2014; 36: 204–212.

    Article  CAS  PubMed  Google Scholar 

  42. Sanz Y, Moya-Perez A . Microbiota, inflammation and obesity. Adv Exp Med Biol 2014; 817: 291–317.

    Article  CAS  PubMed  Google Scholar 

  43. Ghoshal S, Witta J, Zhong J, de Villiers W, Eckhardt E . Chylomicrons promote intestinal absorption of lipopolysaccharides. J Lipid Res 2009; 50: 90–97.

    Article  CAS  PubMed  Google Scholar 

  44. Qiao S, Luo Q, Zhao Y, Zhang XC, Huang Y . Structural basis for lipopolysaccharide insertion in the bacterial outer membrane. Nature 2014; 511: 108–111.

    Article  CAS  PubMed  Google Scholar 

  45. Honda K, Littman DR . The microbiome in infectious disease and inflammation. Ann Rev Immunol 2012; 30: 759–795.

    Article  CAS  Google Scholar 

  46. Madsen KL, Malfair D, Gray D, Doyle JS, Jewell LD, Fedorak RN . Interleukin-10 gene-deficient mice develop a primary intestinal permeability defect in response to enteric microflora. Inflamm Bowel Dis 1999; 5: 262–270.

    Article  CAS  PubMed  Google Scholar 

  47. Madsen KL, Lewis SA, Tavernini MM, Hibbard J, Fedorak RN . Interleukin 10 prevents cytokine-induced disruption of T84 monolayer barrier integrity and limits chloride secretion. Gastroenterology 1997; 113: 151–159.

    Article  CAS  PubMed  Google Scholar 

  48. Leclercq S, Matamoros S, Cani PD, Neyrinck AM, Jamar F, Starkel P et al. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc Natl Acad Sci USA 2014; 111: E4485–E4493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pierre N, Deldicque L, Barbe C, Naslain D, Cani PD, Francaux M . Toll-like receptor 4 knockout mice are protected against endoplasmic reticulum stress induced by a high-fat diet. PLoS ONE 2013; 8: e65061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S et al. Metabolic Syndrome and Altered Gut Microbiota in Mice Lacking Toll-Like Receptor 5. Science 2010; 328: 228–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chait A, Kim F . Saturated fatty acids and inflammation: who pays the toll? Arterioscler Thromb Vasc Biol 2010; 30: 692–693.

    Article  CAS  PubMed  Google Scholar 

  52. Pal D, Dasgupta S, Kundu R, Maitra S, Das G, Mukhopadhyay S et al. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat Med 2012; 18: 1279–1285.

    Article  CAS  PubMed  Google Scholar 

  53. Shen Y, Giardino Torchia ML, Lawson GW, Karp CL, Ashwell JD, Mazmanian SK . Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host Microbe 2012; 12: 509–520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 2013; 155: 1451–1463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ciorba MA, Riehl TE, Rao MS, Moon C, Ee X, Nava GM et al. Lactobacillus probiotic protects intestinal epithelium from radiation injury in a TLR-2/cyclo-oxygenase-2-dependent manner. Gut 2012; 61: 829–838.

    Article  CAS  PubMed  Google Scholar 

  56. Venkatesh M, Mukherjee S, Wang H, Li H, Sun K, Benechet AP et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity 2014; 41: 296–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sanz Y, Rastmanesh R, Agostoni C . Understanding the role of gut microbes and probiotics in obesity: how far are we? Pharmacol Res 2013; 69: 144–155.

    Article  PubMed  Google Scholar 

  58. Takemura N, Okubo T, Sonoyama K . Lactobacillus plantarum strain No. 14 reduces adipocyte size in mice fed high-fat diet. Exp Biol Med (Maywood) 2010; 235: 849–856.

    Article  CAS  Google Scholar 

  59. Aronsson L, Huang Y, Parini P, Korach-Andre M, Hakansson J, Gustafsson JA et al. Decreased fat storage by Lactobacillus paracasei is associated with increased levels of angiopoietin-like 4 protein (ANGPTL4). PLoS ONE 2010; 5.

  60. Tachon S, Lee B, Marco ML . Diet alters probiotic Lactobacillus persistence and function in the intestine. Environ Microbiol 2014; 16: 2915–2926.

    Article  CAS  PubMed  Google Scholar 

  61. Kantor ED, Lampe JW, Kratz M, White E . Lifestyle factors and inflammation: associations by body mass index. PLoS ONE 2013; 8: e67833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cani PD, Hoste S, Guiot Y, Delzenne NM . Dietary non-digestible carbohydrates promote L-cell differentiation in the proximal colon of rats. Br J Nutr 2007; 98: 32–37.

    Article  CAS  PubMed  Google Scholar 

  63. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 2013; 110: 9066–9071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Serino M, Luche E, Gres S, Baylac A, Berge M, Cenac C et al. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut 2012; 61: 543–553.

    Article  CAS  PubMed  Google Scholar 

  65. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013; 341: 569–573.

    Article  CAS  PubMed  Google Scholar 

  66. Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci USA 2008; 105: 16767–16772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bjursell M, Admyre T, Goransson M, Marley AE, Smith DM, Oscarsson J et al. Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am J Physiol Endocrinol Metab 2011; 300: E211–E220.

    Article  CAS  PubMed  Google Scholar 

  68. Fernandes J, Su W, Rahat-Rozenbloom S, Wolever TM, Comelli EM . Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr Diabetes 2014; 4: e121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zivkovic AM, German JB, Lebrilla CB, Mills DA . Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc Natl Acad Sci USA 2011; 108, (Suppl 1) 4653–4658.

    Article  CAS  PubMed  Google Scholar 

  70. de Crécy-Lagard V, Kim J-H, An HJ, Garrido D, German JB, Lebrilla CB et al. Proteomic Analysis of Bifidobacterium longum subsp. infantis Reveals the Metabolic Insight on Consumption of Prebiotics and Host Glycans. PLoS ONE 2013; 8: e57535.

    Article  CAS  Google Scholar 

  71. Dewulf EM, Cani PD, Claus SP, Fuentes S, Puylaert PG, Neyrinck AM et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 2013; 62: 1112–1121.

    Article  CAS  PubMed  Google Scholar 

  72. Tarini J, Wolever TM . The fermentable fibre inulin increases postprandial serum short-chain fatty acids and reduces free-fatty acids and ghrelin in healthy subjects. Appl Physiol Nutr Metab 2010; 35: 9–16.

    Article  CAS  PubMed  Google Scholar 

  73. Vincent KM, Sharp JW, Raybould HE . Intestinal glucose-induced calcium-calmodulin kinase signaling in the gut-brain axis in awake rats. Neurogastroenterol Motil 2011; 23: e282–e293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K . Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov 2008; 7: 678–693.

    Article  CAS  PubMed  Google Scholar 

  75. Ma H, Patti ME . Bile acids, obesity, and the metabolic syndrome. Best Pract Res Clin Gastroenterol 2014; 28: 573–583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vegezzi G, Anselmi L, Huynh J, Barocelli E, Rozengurt E, Raybould H et al. Diet-induced regulation of bitter taste receptor subtypes in the mouse gastrointestinal tract. PLoS ONE 2014; 9: e107732.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009; 58: 1091–1103.

    Article  CAS  PubMed  Google Scholar 

  78. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 2011; 108: 16050–16055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. de Lartigue G, Barbier de la Serre C, Espero E, Lee J, Raybould HE . Leptin resistance in vagal afferent neurons inhibits cholecystokinin signaling and satiation in diet induced obese rats. PLoS ONE 2012; 7: e32967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Darling RA, Zhao H, Kinch D, Li AJ, Simasko SM, Ritter S . Mercaptoacetate and fatty acids exert direct and antagonistic effects on nodose neurons via GPR40 fatty acid receptors. Am J Physiol Regul Integr Comp Physiol 2014; 307: R35–R43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 2014; 156: 84–96.

    Article  CAS  PubMed  Google Scholar 

  82. Chen Z, Guo L, Zhang Y, Walzem RL, Pendergast JS, Printz RL et al. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. J Clin Invest 2014; 124: 3391–3406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

HER funded by NIH (DK41004). Publication of this article was sponsored by the Université Laval’s Research Chair in Obesity in an effort to inform the public on the causes, consequences, treatments, and prevention of obesity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H E Raybould.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamilton, M., Raybould, H. Bugs, guts and brains, and the regulation of food intake and body weight. Int J Obes Supp 6 (Suppl 1), S8–S14 (2016). https://doi.org/10.1038/ijosup.2016.3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijosup.2016.3

This article is cited by

Search

Quick links