Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Reviews

Of mice and men: novel insights regarding constitutive and recruitable brown adipocytes

Abstract

Recently, there has been great attention given to the possibility of combating obesity by targeting brown fat activity or increasing differentiation of brown adipocytes in white fat depots through a process termed ‘browning’. Sympathetic innervation of brown and white adipose tissues provides adrenergic input that drives thermogenesis and regulates fatty acid metabolism, as well as stimulating adipogenesis of recruitable brown adipocyte tissue (rBAT, also known as beige or brite) in white fat. Other factors acting in an endocrine or autocrine/paracrine manner in adipose tissue may also stimulate browning. There have been significant recent advances in understanding the mechanisms of increasing adipose tissue energy expenditure, as well as how brown adipocytes appear in white fat depots, including via de novo adipogenesis from tissue precursor cells. In this article, we integrate this new knowledge with a historical perspective on the discovery of ‘browning’. We also provide an overview of constitutive BAT vs rBAT in mouse and human.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Lazar MA . How obesity causes diabetes: not a tall tale. Science 2005; 307: 373–375.

    Article  CAS  PubMed  Google Scholar 

  2. Gesta S, Tseng YH, Kahn CR . Developmental origin of fat: tracking obesity to its source. Cell 2007; 131: 242–256.

    Article  CAS  PubMed  Google Scholar 

  3. Lowell BB, Spiegelman BM . Towards a molecular understanding of adaptive thermogenesis. Nature 2000; 404: 652–660.

    Article  CAS  PubMed  Google Scholar 

  4. Schulz TJ, Tseng YH . Emerging role of bone morphogenetic proteins in adipogenesis and energy metabolism. Cytokine Growth Factor Rev 2009; 20: 523–531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ravussin E, Kozak LP . Have we entered the brown adipose tissue renaissance? Obes Rev 2009; 10: 265–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cannon B, Nedergaard J . Metabolic consequences of the presence or absence of the thermogenic capacity of brown adipose tissue in mice (and probably in humans). Int J Obes (Lond) 2010; 34: S7–S16.

    Article  CAS  Google Scholar 

  7. Morrison SF, Nakamura K . Central neural pathways for thermoregulation. Front Biosci (Landmark Ed) 2011; 16: 74–104.

    Article  CAS  Google Scholar 

  8. Townsend KL, Tseng YH . Brown adipose tissue: recent insights into development, metabolic function, and therapeutic potential. Adipocyte 2012; 1: 13–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bartelt A, Merkel M, Heeren J . A new, powerful player in lipoprotein metabolism: brown adipose tissue. J Mol Med (Berl) 2012; 90: 887–893.

    Article  CAS  Google Scholar 

  10. Orava J, Nuutila P, Lidell ME, Oikonen V, Noponen T, Viljanen T et al. Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab 2011; 14: 272–279.

    Article  CAS  PubMed  Google Scholar 

  11. Hondares E, Iglesias R, Giralt A, Gonzalez FJ, Giralt M, Mampel T et al. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem 2011; 286: 12983–12990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chartoumpekis DV, Habeos IG, Ziros PG, Psyrogiannis AI, Kyriazopoulou VE, Papavassiliou AG . Brown adipose tissue responds to cold and adrenergic stimulation by induction of FGF21. Mol Med 2011; 17: 736–740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012; 481: 463–468.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Roca-Rivada A, Castelao C, Senin LL, Landrove MO, Baltar J, Belen CA et al. FNDC5/irisin is not only a myokine but also an adipokine. PLoS One 2013; 8: e60563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Burysek L, Houstek J . beta-Adrenergic stimulation of interleukin-1alpha and interleukin-6 expression in mouse brown adipocytes. Growth Regul 1997; 411: 83–86.

    CAS  Google Scholar 

  16. Villarroya J, Cereijo R, Villarroya F . An endocrine role for brown adipose tissue? Am J Physiol Endocrinol Metab 2013; 305: E567–E572.

    Article  CAS  PubMed  Google Scholar 

  17. Nedergaard J, Bengtsson T, Cannon B . Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 2007; 293: E444–E452.

    Article  CAS  PubMed  Google Scholar 

  18. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med 2009; 360: 1509–1517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med 2009; 360: 1500–1508.

    Article  PubMed  Google Scholar 

  20. Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 2009; 58: 1526–1531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T et al. Functional brown adipose tissue in healthy adults. N Engl J Med 2009; 360: 1518–1525.

    Article  CAS  PubMed  Google Scholar 

  22. Zingaretti MC, Crosta F, Vitali A, Guerrieri M, Frontini A, Cannon B et al. The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J 2009; 23: 3113–3120.

    Article  CAS  PubMed  Google Scholar 

  23. Celi FS . Brown adipose tissue—when it pays to be inefficient. N Engl J Med 2009; 360: 1553–1556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tseng YH, Cypess AM, Kahn CR . Cellular bioenergetics as a target for obesity therapy. Nat Rev Drug Discov 2010; 9: 465–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Whittle AJ, Lopez M, Vidal-Puig A . Using brown adipose tissue to treat obesity - the central issue. Trends Mol Med 2011; 17: 405–411.

    Article  PubMed  Google Scholar 

  26. Enerback S . The origins of brown adipose tissue. N Engl J Med 2009; 360: 2021–2023.

    Article  PubMed  Google Scholar 

  27. Harms M, Seale P . Brown and beige fat: development, function and therapeutic potential. Nat Med 2013; 19: 1252–1263.

    Article  CAS  PubMed  Google Scholar 

  28. Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J . Chronic PPARgamma activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classical brown adipocytes. J Biol Chem 2010; 285: 7153–7164.

    Article  CAS  PubMed  Google Scholar 

  29. Guerra C, Koza RA, Yamashita H, Walsh K, Kozak LP . Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. J Clin Invest 1998; 102: 412–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xue B, Rim JS, Hogan JC, Coulter AA, Koza RA, Kozak LP . Genetic variability affects the development of brown adipocytes in white fat but not in interscapular brown fat. J Lipid Res 2007; 48: 41–51.

    Article  CAS  PubMed  Google Scholar 

  31. Almind K, Manieri M, Sivitz WI, Cinti S, Kahn CR . Ectopic brown adipose tissue in muscle provides a mechanism for differences in risk of metabolic syndrome in mice. Proc Natl Acad Sci USA 2007; 104: 2366–2371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Frontini A, Cinti S . Distribution and development of brown adipocytes in the murine and human adipose organ. Cell Metab 2010; 11: 253–256.

    Article  CAS  PubMed  Google Scholar 

  33. Richard D, Monge-Roffarello B, Chechi K, Labbe SM, Turcotte EE . Control and physiological determinants of sympathetically mediated brown adipose tissue thermogenesis. Front Endocrinol (Lausanne) 2012; 3: 36.

    Article  Google Scholar 

  34. Morrison SF, Madden CJ, Tupone D . Central control of brown adipose tissue thermogenesis. Front Endocrinol (Lausanne) 2012; 3: 5.

    Article  CAS  Google Scholar 

  35. Schulz TJ, Huang TL, Tran TT, Zhang H, Townsend KL, Shadrach JL et al. Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proc Natl Acad Sci USA 2011; 108: 143–148.

    Article  CAS  PubMed  Google Scholar 

  36. Vaughan CH, Bartness TJ . Anterograde transneuronal viral tract tracing reveals central sensory circuits from brown fat and sensory denervation alters its thermogenic responses. Am J Physiol Regul Integr Comp Physiol 2012; 302: R1049–R1058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Young P, Arch JR, Ashwell M . Brown adipose tissue in the parametrial fat pad of the mouse. Growth Regul 1984; 167: 10–14.

    CAS  Google Scholar 

  38. Loncar D, Bedrica L, Mayer J, Cannon B, Nedergaard J, Afzelius BA et al. The effect of intermittent cold treatment on the adipose tissue of the cat. Apparent transformation from white to brown adipose tissue. J Ultrastruct Mol Struct Res 1986; 97: 119–129.

    Article  CAS  PubMed  Google Scholar 

  39. Loncar D, Afzelius BA, Cannon B . Epididymal white adipose tissue after cold stress in rats. II. Mitochondrial changes. J Ultrastruct Mol Struct Res 1988; 101: 199–209.

    Article  CAS  PubMed  Google Scholar 

  40. Cousin B, Cinti S, Morroni M, Raimbault S, Ricquier D, Penicaud L et al. Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J Cell Sci 1992; 103: 931–942.

    CAS  PubMed  Google Scholar 

  41. Cousin B, Casteilla L, Lafontan M, Ambid L, Langin D, Berthault MF et al. Local sympathetic denervation of white adipose tissue in rats induces preadipocyte proliferation without noticeable changes in metabolism. Endocrinology 1993; 133: 2255–2262.

    Article  CAS  PubMed  Google Scholar 

  42. Champigny O, Ricquier D, Blondel O, Mayers RM, Briscoe MG, Holloway BR . Beta 3-adrenergic receptor stimulation restores message and expression of brown-fat mitochondrial uncoupling protein in adult dogs. Proc Natl Acad Sci USA 1991; 88: 10774–10777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Himms-Hagen J, Cui J, Danforth E Jr, Taatjes DJ, Lang SS, Waters BL et al. Effect of CL-316,243, a thermogenic beta 3-agonist, on energy balance and brown and white adipose tissues in rats. Am J Physiol 1994; 266: R1371–R1382.

    CAS  PubMed  Google Scholar 

  44. Bartelt A, Heeren J . Adipose tissue browning and metabolic health. Nat Rev Endocrinol 2014; 10: 24–36.

    Article  CAS  PubMed  Google Scholar 

  45. Bordicchia M, Liu D, Amri EZ, Ailhaud G, Dessi-Fulgheri P, Zhang C et al. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest 2012; 122: 1022–1036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ramadori G, Fujikawa T, Fukuda M, Anderson J, Morgan DA, Mostoslavsky R et al. SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity. Cell Metab 2010; 12: 78–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Qiang L, Wang L, Kon N, Zhao W, Lee S, Zhang Y et al. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of PPARgamma. Cell 2012; 150: 620–632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cao L, Choi EY, Liu X, Martin A, Wang C, Xu X et al. White to brown fat phenotypic switch induced by genetic and environmental activation of a hypothalamic-adipocyte axis. Cell Metab 2011; 14: 324–338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sellayah D, Bharaj P, Sikder D . Orexin is required for brown adipose tissue development, differentiation, and function. Cell Metab 2011; 14: 478–490.

    Article  CAS  PubMed  Google Scholar 

  50. Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F et al. FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 2012; 26: 271–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fisher FM, Estall JL, Adams AC, Antonellis PJ, Bina HA, Flier JS et al. Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocrinology 2011; 152: 2996–3004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tseng YH, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 2008; 454: 1000–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Whittle AJ, Carobbio S, Martins L, Slawik M, Hondares E, Vazquez MJ et al. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 2012; 149: 871–885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yadav H, Quijano C, Kamaraju AK, Gavrilova O, Malek R, Chen W et al. Protection from obesity and diabetes by blockade of TGF-beta/Smad3 signaling. Cell Metab 2011; 14: 67–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Qian SW, Tang Y, Li X, Liu Y, Zhang YY, Huang HY et al. BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis. Proc Natl Acad Sci USA 2013; 110: E798–E807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sawada T, Miyoshi H, Shimada K, Suzuki A, Okamatsu-Ogura Y, Perfield JW et al. Perilipin overexpression in white adipose tissue induces a brown fat-like phenotype. PLoS One 2010; 5: e14006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Tiraby C, Tavernier G, Lefort C, Larrouy D, Bouillaud F, Ricquier D et al. Acquirement of brown fat cell features by human white adipocytes. J Biol Chem 2003; 278: 33370–33376.

    Article  CAS  PubMed  Google Scholar 

  58. Auffret J, Viengchareun S, Carre N, Denis RG, Magnan C, Marie PY et al. Beige differentiation of adipose depots in mice lacking prolactin receptor protects against high-fat-diet-induced obesity. FASEB J 2012; 26: 3728–3737.

    Article  CAS  PubMed  Google Scholar 

  59. De MR, Lucertini F, Guescini M, Polidori E, Zeppa S, Stocchi V et al. Exercise as a new physiological stimulus for brown adipose tissue activity. Nutr Metab Cardiovasc Dis 2013; 23: 582–590.

    Article  CAS  Google Scholar 

  60. Chao PT, Yang L, Aja S, Moran TH, Bi S . Knockdown of NPY expression in the dorsomedial hypothalamus promotes development of brown adipocytes and prevents diet-induced obesity. Cell Metab 2011; 13: 573–583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sun K, Wernstedt Astrerholm I, Kusminski CM, Bueno AC, Wang ZV, Pollard JW et al. Dichotomous effects of VEGF-A on adipose tissue dysfunction. Proc Natl Acad Sci USA 2012; 109: 5874–5879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kiefer FW, Vernochet C, O’Brien P, Spoerl S, Brown JD, Nallamshetty S et al. Retinaldehyde dehydrogenase 1 regulates a thermogenic program in white adipose tissue. Nat Med 2012; 18: 918–925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tsukiyama-Kohara K, Poulin F, Kohara M, DeMaria CT, Cheng A, Wu Z et al. Adipose tissue reduction in mice lacking the translational inhibitor 4E-BP1. Nat Med 2001; 7: 1128–1132.

    Article  CAS  PubMed  Google Scholar 

  64. Hansen JB, Jorgensen C, Petersen RK, Hallenborg P, De Matteis R, Boye HA et al. Retinoblastoma protein functions as a molecular switch determining white versus brown adipocyte differentiation. Proc Natl Acad Sci USA 2004; 101: 4112–4117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Christian M, Kiskinis E, Debevec D, Leonardsson G, White R, Parker MG . RIP140-targeted repression of gene expression in adipocytes. Mol Cell Biol 2005; 25: 9383–9391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang H, Zhang Y, Yehuda-Shnaidman E, Medvedev AV, Kumar N, Daniel KW et al. Liver X receptor alpha is a transcriptional repressor of the uncoupling protein 1 gene and the brown fat phenotype. Mol Cell Biol 2008; 28: 2187–2200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cederberg A, Gronning LM, Ahren B, Tasken K, Carlsson P, Enerback S . FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell 2001; 106: 563–573.

    Article  CAS  PubMed  Google Scholar 

  68. Picard F, Gehin M, Annicotte J, Rocchi S, Champy MF, O’Malley BW et al. SRC-1 and TIF2 control energy balance between white and brown adipose tissues. Cell 2002; 111: 931–941.

    Article  CAS  PubMed  Google Scholar 

  69. Scime A, Grenier G, Huh MS, Gillespie MA, Bevilacqua L, Harper ME et al. Rb and p107 regulate preadipocyte differentiation into white versus brown fat through repression of PGC-1alpha. Cell Metab 2005; 2: 283–295.

    Article  CAS  PubMed  Google Scholar 

  70. Romanatto T, Roman EA, Arruda AP, Denis RG, Solon C, Milanski M et al. Deletion of tumor necrosis factor-alpha receptor 1 (TNFR1) protects against diet-induced obesity by means of increased thermogenesis. J Biol Chem 2009; 284: 36213–36222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sun L, Xie H, Mori MA, Alexander R, Yuan B, Hattangadi SM et al. Mir193b-365 is essential for brown fat differentiation. Nat Cell Biol 2011; 13: 958–965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mori M, Nakagami H, Rodriguez-Araujo G, Nimura K, Kaneda Y . Essential role for miR-196a in brown adipogenesis of white fat progenitor cells. PLoS Biol 2012; 10: e1001314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yin H, Pasut A, Soleimani VD, Bentzinger CF, Antoun G, Thorn S et al. MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16. Cell Metab 2013; 17: 210–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wu Y, Zuo J, Zhang Y, Xie Y, Hu F, Chen L et al. Identification of miR-106b-93 as a negative regulator of brown adipocyte differentiation. Biochem Biophys Res Commun 2013; 438: 575–580.

    Article  CAS  PubMed  Google Scholar 

  75. Chen Y, Siegel F, Kipschull S, Haas B, Frohlich H, Meister G et al. miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit. Nat Commun 2013; 4: 1769.

    Article  PubMed  CAS  Google Scholar 

  76. Trajkovski M, Lodish H . MicroRNA networks regulate development of brown adipocytes. Trends Endocrinol Metab 2013; 24: 442–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Himms-Hagen J, Melnyk A, Zingaretti MC, Ceresi E, Barbatelli G, Cinti S . Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am J Physiol Cell Physiol 2000; 279: C670–C681.

    Article  CAS  PubMed  Google Scholar 

  78. Cinti S . Adipocyte differentiation and transdifferentiation: plasticity of the adipose organ. J Endocrinol Invest 2002; 25: 823–835.

    Article  CAS  PubMed  Google Scholar 

  79. Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K et al. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab 2010; 298: E1244–E1253.

    Article  CAS  PubMed  Google Scholar 

  80. Hull D, Segall MM . Distinction of brown from white adipose tissue. Nature 1966; 212: 469–472.

    Article  CAS  PubMed  Google Scholar 

  81. Kozak LP, Koza RA, Anunciado-Koza R, Mendoza T, Newman S . Inherent plasticity of brown adipogenesis in white fat of mice allows for recovery from effects of post-natal malnutrition. PLOS One 2012; 7: e30392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rosenwald M, Perdikari A, Rulicke T, Wolfrum C . Bi-directional interconversion of brite and white adipocytes. Nat Cell Biol 2013; 15: 659–667.

    Article  CAS  PubMed  Google Scholar 

  83. Lee YH, Petkova AP, Mottillo EP, Granneman JG . In vivo identification of bipotential adipocyte progenitors recruited by beta3-adrenoceptor activation and high-fat feeding. Cell Metab 2012; 15: 480–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Berry R, Rodeheffer MS . Characterization of the adipocyte cellular lineage in vivo. Nat Cell Biol 2013; 15: 302–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 2012; 150: 366–376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang QA, Tao C, Gupta RK, Scherer PE . Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med 2013; 19: 1338–1344.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Martinez-Lopez N, Athonvarangkul D, Sahu S, Coletto L, Zong H, Bastie CC et al. Autophagy in Myf5+ progenitors regulates energy and glucose homeostasis through control of brown fat and skeletal muscle development. EMBO Rep 2013; 14: 795–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Christian P, Sacco J, Adeli K . Autophagy: Emerging roles in lipid homeostasis and metabolic control. Biochim Biophys Acta 2013; 1831: 819–824.

    Article  CAS  PubMed  Google Scholar 

  89. Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 2008; 454: 961–967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schulz TJ, Huang P, Huang TL, Xue R, McDougall LE, Townsend KL et al. Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature 2013; 495: 379–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Harris RB . Sympathetic denervation of one white fat depot changes norepinephrine content and turnover in intact white and brown fat depots. Obesity (Silver Spring) 2012; 20: 1355–1364.

    Article  Google Scholar 

  92. Bartness TJ, Vaughan CH, Song CK . Sympathetic and sensory innervation of brown adipose tissue. Int J Obes (Lond) 2010; 34: S36–S42.

    Article  Google Scholar 

  93. Sanchez-Gurmaches J, Hung CM, Sparks CA, Tang Y, Li H, Guertin DA . PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors. Cell Metab 2012; 16: 348–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yadav H, Rane SG . TGF-beta/Smad3 Signaling Regulates Brown Adipocyte Induction in White Adipose Tissue. Front Endocrinol (Lausanne) 2012; 3: 35.

    Article  CAS  Google Scholar 

  95. Sanchez-Gurmaches J, Guertin DA . Adipocyte lineages: Tracing back the origins of fat. Biochim Biophys Acta 2014; 1842: 340–351.

    Article  CAS  PubMed  Google Scholar 

  96. Ye L, Wu J, Cohen P, Kazak L, Khandekar MJ, Jedrychowski MP et al. Fat cells directly sense temperature to activate thermogenesis. Proc Natl Acad Sci USA 2013; 110: 12480–12485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nishiyama S, Ohno S, Ohta N, Inoue Y, Fukuoka H, Ishijima A et al. Thermosensing function of the Escherichia coli redox sensor Aer. J Bacteriol 2010; 192: 1740–1743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Heaton JM . The distribution of brown adipose tissue in the human. J Anat 1972; 112: 35–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Lidell ME, Betz MJ, Leinhard OD, Heglind M, Elander L, Slawik M et al. Evidence for two types of brown adipose tissue in humans. Nat Med 2013; 19: 631–634.

    Article  CAS  PubMed  Google Scholar 

  100. Walden TB, Hansen IR, Timmons JA, Cannon B, Nedergaard J . Recruited vs. nonrecruited molecular signatures of brown, "brite," and white adipose tissues. Am J Physiol Endocrinol Metab 2012; 302: E19–E31.

    Article  CAS  PubMed  Google Scholar 

  101. Wu J, Cohen P, Spiegelman BM . Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev 2013; 27: 234–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sacks H, Symonds ME . Anatomical locations of human brown adipose tissue: functional relevance and implications in obesity and type 2 diabetes. Diabetes 2013; 62: 1783–1790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yoneshiro T, Aita S, Matsushita M, Kayahara T, Kameya T, Kawai Y et al. Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest 2013; 123: 3404–3408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. van der Lans AA, Hoeks J, Brans B, Vijgen GH, Visser MG, Vosselman MJ et al. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Invest 2013; 123: 3395–3403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cypess AM, White AP, Vernochet C, Schulz TJ, Xue R, Sass CA et al. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat Med 2013; 19: 635–639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jespersen NZ, Larsen TJ, Peijs L, Daugaard S, Homoe P, Loft A et al. A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metab 2013; 17: 798–805.

    Article  CAS  PubMed  Google Scholar 

  107. Sharp LZ, Shinoda K, Ohno H, Scheel DW, Tomoda E, Ruiz L et al. Human BAT possesses molecular signatures that resemble beige/brite cells. PLOS One 2012; 7: e49452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Geisler JG . Targeting energy expenditure via fuel switching and beyond. Diabetologia 2011; 54: 237–244.

    Article  CAS  PubMed  Google Scholar 

  109. Nedergaard J, Bengtsson T, Cannon B . New powers of brown fat: fighting the metabolic syndrome. Cell Metab. 2011; 13: 238–240.

    Article  CAS  PubMed  Google Scholar 

  110. Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med 2011; 17: 200–205.

    Article  CAS  PubMed  Google Scholar 

  111. Trayhurn P . Thermoregulation in the diabetic-obese (db/db) mouse. The role of non-shivering thermogenesis in energy balance. Pflugers Arch 1979; 380: 227–232.

    Article  CAS  PubMed  Google Scholar 

  112. Cypess AM, Kahn CR . Brown fat as a therapy for obesity and diabetes. Curr Opin Endocrinol Diabetes Obes 2010; 17: 143–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yoneshiro T, Ogawa T, Okamoto N, Matsushita M, Aita S, Kameya T et al. Impact of UCP1 and beta3AR gene polymorphisms on age-related changes in brown adipose tissue and adiposity in humans. Int J Obes (Lond) 2013; 37: 993–998.

    Article  CAS  Google Scholar 

  114. Ouellet V, Labbe SM, Blondin DP, Phoenix S, Guerin B, Haman F et al. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest 2012; 122: 545–552.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Collins S . ß-adrenoceptor signaling networks in adipocytes for recruiting stored fat and energy expenditure. Front Endocrin (Lausanne) 2012; 2: 102.

    Google Scholar 

  116. Krief S, Lonnqvist F, Raimbault S, Baude B, Van Spronsen A, Arner P et al. Tissue distribution of beta 3-adrenergic receptor mRNA in man. J Clin Invest 1993; 91: 344–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wijers SL, Schrauwen P, van Baak MA, Saris WH, Marken Lichtenbelt WD . Beta-adrenergic receptor blockade does not inhibit cold-induced thermogenesis in humans: possible involvement of brown adipose tissue. J Clin Endocrinol Metab 2011; 96: E598–E605.

    Article  CAS  PubMed  Google Scholar 

  118. Bachman ES, Dhillon H, Zhang CY, Cinti S, Bianco AC, Kobilka BK et al. betaAR signaling required for diet-induced thermogenesis and obesity resistance. Science 2002; 297: 843–845.

    Article  CAS  PubMed  Google Scholar 

  119. Jimenez M, Leger B, Canola K, Lehr L, Arboit P, Seydoux J et al. Beta(1)/beta(2)/beta(3)-adrenoceptor knockout mice are obese and cold-sensitive but have normal lipolytic responses to fasting. FEBS Lett 2002; 530: 37–40.

    Article  CAS  PubMed  Google Scholar 

  120. Ueta CB, Fernandes GW, Capelo LP, Fonseca TL, Maculan FD, Gouveia CH et al. beta(1) Adrenergic receptor is key to cold- and diet-induced thermogenesis in mice. J Endocrinol 2012; 214: 359–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yoshida T, Sakane N, Wakabayashi Y, Umekawa T, Kondo M . Anti-obesity effect of CL 316,243, a highly specific beta 3-adrenoceptor agonist, in mice with monosodium-L-glutamate-induced obesity. Eur J Endocrinol 1994; 131: 97–102.

    Article  CAS  PubMed  Google Scholar 

  122. de Souza CJ, Hirshman MF, Horton ES . CL-316,243, a beta3-specific adrenoceptor agonist, enhances insulin-stimulated glucose disposal in nonobese rats. Diabetes 1997; 46: 1257–1263.

    Article  CAS  PubMed  Google Scholar 

  123. Arch JR . The discovery of drugs for obesity, the metabolic effects of leptin and variable receptor pharmacology: perspectives from beta3-adrenoceptor agonists. Naunyn Schmiedebergs Arch Pharmacol 2008; 378: 225–240.

    Article  CAS  PubMed  Google Scholar 

  124. Clapham JC, Arch JR . Thermogenic and metabolic antiobesity drugs: rationale and opportunities. Diabetes Obes Metab 2007; 9: 259–275.

    Article  CAS  PubMed  Google Scholar 

  125. Shabalina IG, Petrovic N, de Jong JM, Kalinovich AV, Cannon B, Nedergaard J . UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. Cell Rep 2013; 5: 1196–1203.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E Caniano for administrative assistance and MD Lynes for assistance with the mouse and human drawings in Figure 1. This work was supported in part by National Institutes of Health (NIH) grants R01 DK077097 (to Y-HT) and P30 DK036836 (Diabetes Research Center to the Joslin Diabetes Center), a research grant from the American Diabetes Association (to Y-HT), and funding from the Harvard Stem Cell Institute (to Y-HT). KLT was funded by NIH grants T32 DK007260-33 and F32 DK091996 as well as a BADERC P&F, a BNORC P&F, and an ADA Junior Faculty Award 1-14-JF-55.

Disclaimer

The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. This article is published as part of a supplement sponsored by the Université Laval’s Research Chair in Obesity, in an effort to inform the public on the causes, consequences, treatments and prevention of obesity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y-H Tseng.

Ethics declarations

Competing interests

Y-HT has received consulting fees from Ember Therapeutics, lecture fees from Pfizer Inc., and received grant support from Chugai Pharma Co., Ltd and MedImmune LLC. KLT declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Townsend, K., Tseng, YH. Of mice and men: novel insights regarding constitutive and recruitable brown adipocytes. Int J Obes Supp 5 (Suppl 1), S15–S20 (2015). https://doi.org/10.1038/ijosup.2015.5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijosup.2015.5

This article is cited by

Search

Quick links