Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Coordinate control of adipose ‘browning’ and energy expenditure by β-adrenergic and natriuretic peptide signalling

Abstract

The catecholamines and the adrenergic receptors have been long known to be vital components in the regulation of fat cell metabolism. Whether in response to stress, cold temperature or diet, the β-adrenergic receptors (βARs) respond to epinephrine/norepinephrine to activate a signalling cascade that drives triglyceride hydrolysis to free fatty acids for use as fuel for skeletal and cardiac muscle work. The βARs also are well-established activators of brown fat for the conversion of substrate energy to generate heat from the oxidation of glucose and fatty acids. Long thought to be irrelevant to the biology of adult humans, the realization that there is indeed functional brown fat in humans has now created great interest and enthusiasm over the possibility that recruiting brown fat to target obesity and metabolic disease could represent a viable therapeutic option. Coupled with newer evidence that various stimuli independent of the βARs may also be able to increase active brown adipocytes, including the cardiac natriuretic peptides, it is an exciting time to be working in this area. This review will focus on the catecholamines and natriuretic peptides as cooperative actors in promoting fat metabolism, and will consider areas in need of further research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Aherne W, Hull D . The site of heat production in the newborn infant. Proc R Soc Med 1964; 57: 1172–1173.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Nedergaard J, Bengtsson T, Cannon B . Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 2007; 293: E444–E452.

    Article  CAS  PubMed  Google Scholar 

  3. Nedergaard J, Bengtsson T, Cannon B . Three years with adult human brown adipose tissue. Ann NY Acad Sci 2010; 1212: E20–E36.

    Article  PubMed  Google Scholar 

  4. Collins S, Petro AE, Surwit RS . Strain-specific response to β3-adrenergic receptor agonist treatment of diet-induced obesity in mice. Endocrinology 1997; 138: 405–413.

    Article  CAS  PubMed  Google Scholar 

  5. Guerra C, Koza RA, Yamashita H, Walsh K, Kozak LP . Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. J Clin Invest 1998; 102: 412–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Almind K, Kahn CR . Genetic determinants of energy expenditure and insulin resistance in diet-induced obesity in mice. Diabetes 2004; 53: 3274–3285.

    Article  CAS  PubMed  Google Scholar 

  7. Auffret J, Viengchareun S, Carre N, Denis RG, Magnan C, Marie PY et al. Beige differentiation of adipose depots in mice lacking prolactin receptor protects against high-fat-diet-induced obesity. FASEB J 2012; 26: 3728–3737.

    Article  CAS  PubMed  Google Scholar 

  8. Ouellet V, Labbe SM, Blondin DP, Phoenix S, Guerin B, Haman F et al. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest 2012; 122: 545–552.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 2009; 58: 1526–1531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med 2009; 360: 1500–1508.

    Article  CAS  PubMed  Google Scholar 

  11. Vijgen GH, Bouvy ND, Teule GJ, Brans B, Hoeks J, Schrauwen P et al. Increase in brown adipose tissue activity after weight loss in morbidly obese subjects. J Clin Endocrinol Metab 2012; 97: E1229–E1233.

    Article  CAS  PubMed  Google Scholar 

  12. Sarzani R, Paci VM, Dessi-Fulgheri P, Espinosa E, Rappelli A . Comparative analysis of atrial natriuretic peptide receptor expression in rat tissues. J Hypertens Suppl 1993; 11: S214–S215.

    Article  CAS  PubMed  Google Scholar 

  13. Sarzani R, Dessi-Fulgheri P, Paci VM, Espinosa E, Rappelli A . Expression of natriuretic peptide receptors in human adipose and other tissues. J Endocrinol Invest 1996; 19: 581–585.

    Article  CAS  PubMed  Google Scholar 

  14. Potter LR . Natriuretic peptide metabolism, clearance and degradation. FEBS J 2011; 278: 1808–1817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dessi-Fulgheri P, Sarzani R, Tamburrini P, Moraca A, Espinosa E, Cola G et al. Plasma atrial natriuretic peptide and natriuretic peptide receptor gene expression in adipose tissue of normotensive and hypertensive obese patients. J Hypertens 1997; 15 (12 Part 2): 1695–1699.

    Article  CAS  PubMed  Google Scholar 

  16. Wang TJ, Larson MG, Levy D, Benjamin EJ, Leip EP, Wilson PW et al. Impact of obesity on plasma natriuretic peptide levels. Circulation 2004; 109: 594–600.

    Article  CAS  PubMed  Google Scholar 

  17. Khan AM, Cheng S, Magnusson M, Larson MG, Newton-Cheh C, McCabe EL et al. Cardiac natriuretic peptides, obesity, and insulin resistance: evidence from two community-based studies. J Clin Endocrinol Metab 2011; 96: 3242–3249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sugisawa T, Kishimoto I, Kokubo Y, Makino H, Miyamoto Y, Yoshimasa Y . Association of plasma B-type natriuretic peptide levels with obesity in a general urban Japanese population: the Suita Study. Endocr J 2010; 57: 727–733.

    Article  CAS  PubMed  Google Scholar 

  19. Modan M, Halkin H, Almog S, Lusky A, Eshkol A, Shefi M et al. Hyperinsulinemia. A link between hypertension obesity and glucose intolerance. J Clin Invest 1985; 75: 809–817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Landsberg L . Diet, obesity and hypertension: an hypothesis involving insulin, the sympathetic nervous system, and adaptive thermogenesis. Q J Med 1986; 61: 1081–1090.

    CAS  PubMed  Google Scholar 

  21. Clerico A, Giannoni A, Vittorini S, Emdin M . The paradox of low BNP levels in obesity. Heart Fail Rev 2012; 17: 81–96.

    Article  CAS  PubMed  Google Scholar 

  22. Sengenes C, Berlan M, De Glisezinski I, Lafontan M, Galitzky J . Natriuretic peptides: a new lipolytic pathway in human adipocytes. FASEB J 2000; 14: 1345–1351.

    Article  CAS  PubMed  Google Scholar 

  23. Galitzky J, Sengenes C, Thalamas C, Marques MA, Senard JM, Lafontan M et al. The lipid-mobilizing effect of atrial natriuretic peptide is unrelated to sympathetic nervous system activation or obesity in young men. J Lipid Res 2001; 42: 536–544.

    CAS  PubMed  Google Scholar 

  24. Bordicchia M, Liu D, Amri EZ, Ailhaud G, Dessi-Fulgheri P, Zhang C et al. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest 2012; 122: 1022–1036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cao W, Medvedev AV, Daniel KW, Collins S . Adrenergic activation of p38 MAP kinase in adipocytes: cAMP induction of the uncoupling protein-1 (UCP1) gene requires p38 MAP kinase. J Biol Chem 2001; 276: 27077–27082.

    Article  CAS  PubMed  Google Scholar 

  26. Cao W, Robidoux J, Puigserver P, Daniel KW, Medvedev AV, Bai X et al. p38 MAP kinase is the central regulator of cAMP-dependent transcription of the brown fat uncoupling protein-1 gene. Mol Cell Biol 2004; 24: 3057–3067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Reynisdottir S, Wahrenberg H, Carlström K, Rössner S, Arner P . Catecholamine resistance in fat cells of women with upper-body obesity due to decreased expression of beta2-adrenoceptors. Diabetolgia 1994; 37: 428–435.

    Article  CAS  Google Scholar 

  28. Reynisdottir S, Ellerfeldt K, Wahrenberg H, Lithell H, Arner P . Multiple lipolysis defects in the insulin resistance (metabolic) syndrome. J Clin Invest 1994; 93: 2590–2599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Collins S, Daniel KW, Rohlfs EM, Ramkumar V, Taylor IL, Gettys TW . Impaired expression and functional activity of the β3- and β1-adrenergic receptors in adipose tissue of congenitally obese (C57BL/6J ob/ob) mice. Mol Endocrinol 1994; 8: 518–527.

    CAS  PubMed  Google Scholar 

  30. Collins S, Daniel KW, Rohlfs EM . Depressed expression of adipocyte beta-adrenergic receptors is a common feature of congenital and diet-induced obesity in rodents. Int J Obes Relat Metab Disord 1999; 23: 669–677.

    Article  CAS  PubMed  Google Scholar 

  31. Soloveva V, Graves R, Rasenick M, Spiegelman B, Ross S . Transgenic mice overexpressing the β1-adrenergic adipose tissue are resistant to obesity. Mol Endocrinol 1997; 11: 27–38.

    CAS  PubMed  Google Scholar 

  32. Sarzani R, Paci VM, Zingaretti CM, Pierleoni C, Cinti S, Cola G et al. Fasting inhibits natriuretic peptides clearance receptor expression in rat adipose tissue. J Hypertens 1995; 13: 1241–1246.

    Article  CAS  PubMed  Google Scholar 

  33. Garg R, Oliver PM, Maeda N, Pandey KN . Genomic structure, organization, and promoter region analysis of murine guanylyl cyclase/atrial natriuretic peptide receptor-A gene. Gene 2002; 291: 123–133.

    Article  CAS  PubMed  Google Scholar 

  34. Sengenes C, Zakaroff-Girard A, Moulin A, Berlan M, Bouloumie A, Lafontan M et al. Natriuretic peptide-dependent lipolysis in fat cells is a primate specificity. Am J Physiol Regul Integr Comp Physiol 2002; 283: R257–R265.

    Article  CAS  PubMed  Google Scholar 

  35. Oliver PM, Fox JE, Kim R, Rockman HA, Kim HS, Reddick RL et al. Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc Natl Acad Sci USA 1997; 94: 14730–14735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Oliver PM, John SW, Purdy KE, Kim R, Maeda N, Goy MF et al. Natriuretic peptide receptor 1 expression influences blood pressures of mice in a dose-dependent manner. Proc Natl Acad Sci USA 1998; 95: 2547–2551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Matsukawa N, Grzesik WJ, Takahashi N, Pandey KN, Pang S, Yamauchi M et al. The natriuretic peptide clearance receptor locally modulates the physiological effects of the natriuretic peptide system. Proc Natl Acad Sci USA 1999; 96: 7403–7408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Engeli S, Birkenfeld AL, Badin PM, Bourlier V, Louche K, Viguerie N et al. Natriuretic peptides enhance the oxidative capacity of human skeletal muscle. J Clin Invest 2012; 122: 4675–4679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Collins.

Ethics declarations

Competing interests

SC has received consulting fees from Merck and Astra-Zeneca and received grant support through the Novo Nordisk Diabetes Innovation Award. The remaining authors declare no conflict of interest.

Additional information

This article is published as part of a supplement sponsored by the Université Laval's Research Chair in Obesity in an effort to inform the public on the causes, consequences, treatments, and prevention of obesity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collins, S., Sarzani, R. & Bordicchia, M. Coordinate control of adipose ‘browning’ and energy expenditure by β-adrenergic and natriuretic peptide signalling. Int J Obes Supp 4 (Suppl 1), S17–S20 (2014). https://doi.org/10.1038/ijosup.2014.6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijosup.2014.6

Keywords

This article is cited by

Search

Quick links