Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Overview
  • Published:

Development, brain plasticity and reward: early high-fat diet exposure confers vulnerability to obesity—view from the chair

Abstract

The significant increase in childhood obesity has become a particular concern, and it is recognized that the programming of obesity can arise from events occurring in the peri-conception period, prenatally and/or during the early postnatal period. In particular, high intake of dietary fat by the mother has long-term effects that are worse than once thought. This symposium was designed to outline some of the important consequences of maternal high-fat feeding during gestation and lactation, as well as exposure to a high-fat diet (HFD) after weaning, on the programming of homeostatic and hedonic regulation of food intake in both rodents and nonhuman primates (NHPs). Although a consensus emerges that high-fat feeding in early development increases the risk of developing obesity and the metabolic syndrome in adulthood, there is less agreement on the mechanisms through which this risk is conferred. Epigenetic modifications in specific gene promoters within the dopaminergic reward pathways and on the histone code will be discussed. We will also examine the effects of metabolic hormones such as leptin and ghrelin to shape the early development of hypothalamic projections that are critical to control food intake; finally, the importance of placental function in increasing obesity risk in NHP fetus from HFD mothers will be debated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Karnik S, Kanekar A . Childhood obesity: a global public health crisis. Int J Prev Med 2012; 3: 1–7.

    PubMed  PubMed Central  Google Scholar 

  2. Waters E, de Silva-Sanigorski A, Hall BJ, Brown T, Campbell KJ, Gao Y et al. Interventions for preventing obesity in children. Cochrane Database Syst Rev 2011; 12: CD001871.

    Google Scholar 

  3. Barker DJ . The origins of the developmental origins theory. J Intern Med 2007; 261: 412–417.

    Article  CAS  PubMed  Google Scholar 

  4. Wadhwa PD, Buss C, Entringer S, Swanson JM . Developmental origins of health and disease: brief history of the approach and current focus on epigenetic mechanisms. Semin Reprod Med 2009; 27: 358–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dyer JS, Rosenfeld CR . Metabolic imprinting by prenatal, perinatal, and postnatal overnutrition: a review. Semin Reprod Med 2011; 29: 266–276.

    Article  CAS  PubMed  Google Scholar 

  6. Patel AI, Madsen KA, Maselli JH, Cabana MD, Stafford RS, Hersh AL . Underdiagnosis of pediatric obesity during outpatient preventive care visits. Acad Pediatr 2010; 10: 405–409.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Oken E, Taveras EM, Kleinman KP, Rich-Edwards JW, Gillman MW . Gestational weight gain and child adiposity at age 3 years. Am J Obstet Gynecol 2007; 196: 322. e1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Woods SC, D’Alessio DA . Central control of body weight and appetite. J Clin Endocrinol Metab 2008; 93 (Suppl 1): S37–S50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Berthoud HR . Metabolic and hedonic drives in the neural control of appetite: who is the boss? Curr Opin Neurobiol 2011; 21: 888–896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kenny PJ . Reward mechanisms in obesity: new insights and future directions. Neuron 2011; 69: 664–679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McNay DE, Briançon N, Kokoeva MV, Maratos-Flier E, Flier JS . Remodeling of the arcuate nucleus energy-balance circuit is inhibited in obese mice. J Clin Invest 2012; 122: 142–152.

    Article  CAS  PubMed  Google Scholar 

  12. Orozco-Solís R, Matos RJ, Guzmán-Quevedo O, Lopes de Souza S, Bihouée A, Houlgatte R et al. Nutritional programming in the rat is linked to long-lasting changes in nutrient sensing and energy homeostasis in the hypothalamus. PLoS One 2010; 5: e13537.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Chang GQ, Gaysinskaya V, Karatayev O, Leibowitz SF . Maternal high-fat diet and fetal programming: increased proliferation of hypothalamic peptide-producing neurons that increase risk for overeating and obesity. J Neurosci 2008; 28: 12107–12119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bouret SG, Draper SJ, Simerly RB . Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 2004; 304: 108–110.

    Article  CAS  PubMed  Google Scholar 

  15. Bouret SG, Draper SJ, Simerly RB . Formation of projection pathways from the arcuate nucleus of the hypothalamus to hypothalamic regions implicated in the neural control of feeding behavior in mice. J Neurosci 2004; 24: 2797–2805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Walker CD, Naef L, d’Asti E, Long H, Xu Z . Maternal fat intake and offspring brain development: focus on the mesocorticolimbic dopaminergic system’. In: Bridges R (ed). Neurobiology of the Parental Brain. Academic Press, 2008, pp 293–300.

    Chapter  Google Scholar 

  17. Vickers MH, Gluckman PD, Coveny AH, Hofman PL, Cutfield WS, Gertler A et al. Neonatal leptin treatment reverses developmental programming. Endocrinology 2005; 146: 4211–4216.

    Article  CAS  PubMed  Google Scholar 

  18. Steculorum SM, Bouret SG . Maternal diabetes compromises the organization of hypothalamic feeding circuits and impairs leptin sensitivity in offspring. Endocrinology 2011; 152: 4171–4179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bouret SG, Bates SH, Chen S, Myers Jr MG, Simerly RB . Distinct roles for specific leptin receptor signals in the development of hypothalamic feeding circuits. J Neurosci 2012; 32: 1244–1252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang W, Hu Y, Lin TR, Fan Y, Mulholland MW . Stimulation of neurogenesis in rat nucleus of the solitary tract by ghrelin. Peptides 2005; 26: 2280–2288.

    Article  CAS  PubMed  Google Scholar 

  21. Steculorum SM, Bouret SG . Developmental effects of ghrelin. Peptides 2011; 32: 2362–2366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fulton S, Pissios P, Manchon RP, Stiles L, Frank L, Pothos EN et al. Leptin regulation of the mesoaccumbens dopamine pathway. Neuron 2006; 51: 811–822.

    Article  CAS  PubMed  Google Scholar 

  23. Abizaid A, Liu ZW, Andrews ZB, Shanabrough M, Borok E, Elsworth JD et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest 2006; 116: 3229–3239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gomez G, Han S, Englander EW, Greeley Jr GH . Influence of a long-term high-fat diet on ghrelin secretion and ghrelin-induced food intake in rats. Regul Pept 2012; 173: 60–63.

    Article  CAS  PubMed  Google Scholar 

  25. Naef L, Srivastava L, Gratton A, Hendrickson H, Owens SM, Walker CD . Maternal high fat diet during the perinatal period alters mesocorticolimbic dopamine in the adult rat offspring: reduction in the behavioral responses to repeated amphetamine administration. Psychopharmacology (Berl) 2008; 197: 83–94.

    Article  CAS  Google Scholar 

  26. Naef L, Moquin L, Dal Bo G, Giros B, Gratton A, Walker CD . Maternal high-fat intake alters presynaptic regulation of dopamine in the nucleus accumbens and increases motivation for fat rewards in the offspring. Neuroscience 2011; 176: 225–236.

    Article  CAS  PubMed  Google Scholar 

  27. Shalev U, Tylor A, Schuster K, Frate C, Tobin S, Woodside B . Long-term physiological and behavioral effects of exposure to a highly palatable diet during the perinatal and post-weaning periods. Physiol Behav 2010; 101: 494–502.

    Article  CAS  PubMed  Google Scholar 

  28. Ong ZY, Muhlhausler BS . Maternal ″junk-food″ feeding of rat dams alters food choices and development of the mesolimbic reward pathway in the offspring. FASEB J 2011; 25: 2167–2179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vucetic Z, Kimmel J, Totoki K, Hollenbeck E, Reyes TM . Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes. Endocrinology 2010; 151: 4756–4764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Teegarden SL, Scott AN, Bale TL . Early life exposure to a high fat diet promotes long-term changes in dietary preferences and central reward signaling. Neuroscience 2009; 162: 924–932.

    Article  CAS  PubMed  Google Scholar 

  31. Vucetic Z, Kimmel J, Reyes TM . Chronic high-fat diet drives postnatal epigenetic regulation of ì-opioid receptor in the brain. Neuropsychopharmacology 2011; 36: 1199–1206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vucetic Z, Carlin JL, Totoki K, Reyes TM . Epigenetic dysregulation of the dopamine system in diet-induced obesity. J Neurochem 2012; 120: 891–898.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Levin BE . Metabolic imprinting: critical impact of the perinatal environment on the regulation of energy homeostasis. Philos Trans R Soc Lond B Biol Sci 2006; 361: 1107–1121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alfaradhi MZ, Ozanne SE . Developmental programming in response to maternal overnutrition. Front Genet 2011; 2: 27.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lewis DS, Bertrand HA, McMahan CA, McGill Jr HC, Carey KD, Masoro EJ . Preweaning food intake influences the adiposity of young adult baboons. J Clin Invest 1986; 78: 899–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McCurdy CE, Bishop JM, Williams SM, Grayson BE, Smith MS, Friedman JE et al. Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates. J Clin Invest 2009; 119: 323–335.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Frias AE, Morgan TK, Evans AE, Rasanen J, Oh KY, Thornburg KL et al. Maternal high-fat diet disturbs uteroplacental hemodynamics and increases the frequency of stillbirth in a nonhuman primate model of excess nutrition. Endocrinology 2011; 152: 2456–2464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bilbo SD, Tsang V . Enduring consequences of maternal obesity for brain inflammation and behavior of offspring. FASEB J 2010; 24: 2104–2115.

    Article  CAS  PubMed  Google Scholar 

  39. Sullivan EL, Grayson B, Takahashi D, Robertson N, Maier A, Bethea CL et al. Chronic consumption of a high-fat diet during pregnancy causes perturbations in the serotonergic system and increased anxiety-like behavior in nonhuman primate offspring. J Neurosci 2010; 30: 3826–3830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sullivan EL, Smith MS, Grove KL . Perinatal exposure to high-fat diet programs energy balance, metabolism and behavior in adulthood. Neuroendocrinology 2011; 93: 1–8.

    Article  CAS  PubMed  Google Scholar 

  41. Lillycrop KA, Slater-Jefferies JL, Hanson MA, Godfrey KM, Jackson AA, Burdge GC . Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br J Nutr 2007; 97: 1064–1073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stöger R . In vivo methylation patterns of the leptin promoter in human and mouse. Epigenetics 2006; 1: 155–162.

    Article  PubMed  Google Scholar 

  43. Li M, Sloboda DM, Vickers MH . Maternal obesity and developmental programming of metabolic disorders in offspring: evidence from animal models. Exp Diabetes Res 2011; 2011: 592408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Suter M, Bocock P, Showalter L, Hu M, Shope C, McKnight R et al. Epigenomics: maternal high-fat diet exposure in utero disrupts peripheral circadian gene expression in nonhuman primates. FASEB J 2011; 25: 714–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gabory A, Attig L, Junien C . Epigenetic mechanisms involved in developmental nutritional programming. World J Diabetes 2011; 2: 164–175.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Dolinsky VW, Rueda-Clausen CF, Morton JS, Davidge ST, Dyck JR . Continued postnatal administration of resveratrol prevents diet-induced metabolic syndrome in rat offspring born growth restricted. Diabetes 2011; 60: 2274–2284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen KH, Cheng ML, Jing YH, Chiu DT, Shiao MS, Chen JK . Resveratrol ameliorates metabolic disorders and muscle wasting in streptozotocin-induced diabetic rats. Am J Physiol Endocrinol Metab 2011; 301: E853–E863.

    Article  CAS  PubMed  Google Scholar 

  48. Hanley B, Dijane J, Fewtrell M, Grynberg A, Hummel S, Junien C et al. Metabolic imprinting, programming and epigenetics—a review of present priorities and future opportunities. Br J Nutr 2010; 104 (Suppl 1): S1–S25.

    Article  CAS  PubMed  Google Scholar 

  49. Melzer K, Schutz Y . Pre-pregnancy and pregnancy predictors of obesity. Int J Obes (Lond) 2010; 34 (Suppl 2): S44–S52.

    Article  Google Scholar 

  50. d’Asti E, Long H, Tremblay-Mercier J, Grazier M, Cunnane S, Di Marzo V et al. Maternal dietary fat determines metabolic profile and the magnitude of endocannabinoid inhibition of the stress response in neonatal rat offspring. Endocrinology 2010; 151: 1685–1694.

    Article  PubMed  CAS  Google Scholar 

  51. Dunn GA, Bale TL . Maternal high-fat diet effects on third-generation female body size via the paternal lineage. Endocrinology 2011; 152: 2228–2236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank Dr Barbara Woodside (Concordia University) for critical reading of the manuscript. This work was supported by a grant from Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canadian Institutes of Health Research (CIHR) to CDW (#84299).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C-D Walker.

Ethics declarations

Competing interests

The author declares no conflict of interest.

Additional information

This article was published as part of a supplement funded with an unrestricted educational contribution from Desjardins Sécurité Financière.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, CD. Development, brain plasticity and reward: early high-fat diet exposure confers vulnerability to obesity—view from the chair. Int J Obes Supp 2 (Suppl 2), S3–S6 (2012). https://doi.org/10.1038/ijosup.2012.14

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijosup.2012.14

Keywords

Search

Quick links