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microRNAs, an active and versatile group in cancers 
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microRNAs (miRNAs) are a class of non-coding RNAs that function as endogenous triggers of the RNA 

interference pathway. Studies have shown that thousands of human protein-coding genes are regulated by 

miRNAs, indicating that miRNAs are master regulators of many important biological processes, such as cancer 

development. miRNAs frequently have deregulated expression in many types of human cancers, and play 

critical roles in tumorigenesis, which functions either as tumor suppressors or as oncogenes. Recent studies 

have shown that miRNAs are highly related with cancer progression, including initiating, growth, apoptosis, 

invasion, and metastasis. Furthermore, miRNAs are shown to be responsible for the cancer-related inflam- 

mation, anti-cancer drug resistance, and regulation of cancer stem cells. Therefore, miRNAs have generated 

great interest as a novel strategy in cancer diagnosis and therapy. Here we review the versatile roles of miRNAs 

in cancers and their potential applications for diagnosis, prognosis, and treatment as biomarkers. 
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Introduction 

 

  microRNAs (miRNAs), which negatively regulate gene 

expression at the post-transcriptional and/or translational 

level, are short non-coding RNAs 19–25 nucleotides in 

length, first discovered in Caenorhabditis elegans to 

control developmental timing [1-3]. Mature miRNAs are 

formed from longer primary transcripts by two se- 

quential processing steps mediated by a nuclear (Drosha) 

and a cytoplasmic (Dicer) RNase Ⅲ endonulease [4-5]. 

In most animals, miRNAs direct gene regulation at the 

level of translation. They can down-regulate gene expre- 

ssion either by degradation of messenger RNA (mRNA) 
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through the RNA interference (RNAi) pathway or by 

inhibiting protein translation [6]. To date, over 1 000 

miRNAs have been identified in animal genomes through 

cloning and bioinformatics approaches. Although the bio- 

logical roles of only a small fraction of identified miRNAs 

have been elucidated, in mammals, these miRNAs regulate 

processes essential to cell growth, embryogenesis, stem 

cell maintenance, hematopoietic cell differentiation, and 

brain development [7-11]. Since Croce‘s research group 

first reported the link between the abnormal expression 

of miRNAs and cancer in 2002 [12], more and more 

studies have shown that many miRNAs take part in the 

progressions of various cancers, including tumor growth, 

differentiation, adhesion, apoptosis, invasion, and metas- 

tasis [13-15]. Cancer is ultimately a consequence of 

disordered gene expression. miRNA profiling experiments 

have revealed that many miRNAs are abnormally 

expressed in clinical cancer samples. In addition, in in 

vitro and in vivo models, these abnormal expressions 

have been pointed out to be closely related to various 



microRNAs in cancers 

 

International Journal of Oral Science | Vol 3 No 4| October 2011 

166 

biological behaviors of cancers [16-17]. Thus, alterations 

of miRNAs expression may promote tumor formation by 

modulating the functional expression of critical genes 

involved in tumor development and progression [18]. 

Here we present the progress of miRNAs in cancers and 

prospect the great potential of miRNAs in cancer diag- 

nosis and therapy in the future. 

 

Tumorigenesis 

 

miRNAs were reported to be involved in tumorige- 

nesis by targeting tumor suppressor genes or oncogenes 

directly or indirectly. Because miRNAs are negative re- 

gulators of gene expression, the changes of the expre- 

ssion level of these miRNAs can be tumorigenic if they 

target mRNAs from a tumor suppressor gene, as well as 

an oncogene. For example, miR-373 was identified as an 

oncogene that cooperates with Ras in oncogenic trans- 

formation by a suppressing signaling through the p53 

pathways [19]; miR-31 was found to directly target tumor 

suppressor genes, large tumor suppressor 2 (LATS2) and 

protein phosphatase 2A (PP2A) regulatory subunit B 

alpha isoform, and repress lung cancer cell growth and 

tumorigenicity independently and substantially [20]; 

miR-183, as an oncogene by targeting early growth 

response 1 (EGR1) and phosphatase and tensin homolog 

(PTEN), was significantly overexpressed in synovial 

sarcoma, rhabdomyosarcoma, and colon cancer cell lines, 

and promoting the tumor cell migration [21]; miR-93, 

one of the miRNAs within the miR-106b-25 cluster, was 

able to promote tumor growth and angiogenesis by 

targeting integrin-β8 which was associated with cell death 

in tumor mass in vivo [22]; Another well-characterized 

example is the miR-17-92 cluster which is transcrip- 

tionally activated by the oncogene c-Myc. They are 

susceptibility gene at the chr13q13 amplicon and reported 

to have the causal role in cancer. In a mouse model for 

lymphoma, co-expression of miR-17-19b, a truncated 

portion of miR-17-92, strongly accelerated lymphoma- 

genesis [23]; miR-17-5p and miR-20a, two of the 

miRNAs in the miR-17-92 cluster, could repress the 

translation of E2F1, a protein that is increased by c-Myc 

and enhance both cell cycle progression and apoptosis 

[24-25]. Medina et al. [26] showed that overexpression 

of miR-21 led to a pre-B malignant lymphoid-like 

phenotype in vivo. When miR-21 was inactivated, the 

tumors regressed completely in a few days, partly as a 

result of apoptosis. Their results supported efforts to 

treat human cancers through pharmacological inacti- 

vation of miRNAs such as miR-21. This conclusion was 

also confirmed in breast cancer, colon cancer, pancreas 

cancer, lung cancer, prostate cancer, liver cancer, stomach 

cancer, and oral squamous cell carcinoma (OSCC) [27- 

32]. Evidence above showed that these tiny non-coding 

RNAs were playing important roles in the malignant 

progression of tumors.  

 

Tumor suppressor 

 

miRNAs have been implicated as tumor suppressor 

genes. Typical examples are miR-15a and miR-16, which 

are down-regulated in 68% of chronic lymphocytic leu- 

kemia (CLL). Since these two miRNAs can negatively 

regulate the expression of the anti-apoptotic factor BCL2, 

their down-regulation could result in higher BCL2 protein 

level and anti-apoptotic activity [33-34]. Let-7/miR-98 

family is another example for down-regulation of 

miRNAs that target a number of well-known onco- 

genes. The roles of let-7 and miR-98 as suppressors in 

lung cancer were supported by experiments showing that 

they negatively regulate the expression of the Ras and 

Myc oncogenes [35-36]. miR-330 was reported to have 

the suppression roles by negatively regulating E2F1 and 

inducing apoptosis through E2F1-mediated suppression 

of Akt phosphorylation in human prostate cancer cell 

lines PC-3 [37]. A similar situation was also applied to 

miR-34a, which was reported to directly target E2F3 and 

significantly reduced the level of E2F3 protein (a protein 

transcriptional inducer of cell-cycle progression), acting 

as a potential tumor suppressor by inducing apoptosis. 

miR-34a also participated in the regulation of tumor cell 

scattering, migration, and invasion via down-regulation 

of c-Met and its downstream signaling cascades [38]. In 

general, the genomic alterations, particularly tumor 

suppressor genes amplification or oncogene deletion, 

can be a major mechanism of inactivation of the tumor 

suppression function of miRNAs.  

Interestingly, recent estimates suggested that as many as 

50% of all nucleotides were transcribed and only 2% of 

nucleotides reside in known exons. Moreover, more than 

half of such transcripts are non-polyadenylated. These 

RNAs would be invisible to many analyses because the 

first step is often reverse transcription from the ―canonical‖ 

polyA tail. And miRNAs are one major group of these 

hidden RNAs. It is remarkable, because these findings 

raise the possibility that many miRNAs as oncogenes or 

suppressors remain to be discovered [39-40]. 

 

Invasion and metastasis 

 

Invasion and metastasis are responsible for >90% of 

cancer-related mortality. As tumors progress with increa- 

sed malignancy, cells within them develop the ability to 

invade into surrounding normal tissues and through 
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tissue boundaries to form new growths (metastases) at 

sites distinct from the primary tumor. The molecular 

mechanisms involved in this process are associated with 

cell-cell and cell-matrix adhesion, with the degradation 

of extracellular matrix, and with the initiation and main- 

tenance of early growth at the new site [41-42]. 

Epithelial-mesenchymal transition (EMT), mainly cha- 

racterized by E-cadherin degradation, is an important 

event in invasion and metastasis. E-cadherin, which is 

encoded by E-cadherin gene (CDH1) and regulated by 

Snail, Slug, Zeb1, Zeb2, Klf8, Twist1 and Twist2, is a 

well-known molecule witch maintains the cell-to-cell 

junctions in epithelial cells [43-44]. Its aberrant expre- 

ssion has been implicated in cancer progression and 

metastasis [45-46]. miR-373 was considered to have an 

effective role in E-cadherin targeting. It has been 

confirmed that the transfection of miR-373 and its 

precursor hairpin RNA into PC-3 cells readily induced 

E-cadherin expression. Together with miR-520c, they are 

considered to be metastasis-promoting miRNAs by direct 

suppression of CD44 which is consistently reduced in 

metastatic breast, colon and prostate cancers [47-50]. 

In breast cancer cells, both miR-10b and -9 are impor- 

tant participants of invasion and metastasis. Homeobox 

D10 (HOXD10) is a validated target of miR-10b. Ectopic 

expression of miR-10b has consistently led to the down- 

regulation of HOXD10 expression, and in turn, the 

induction of RhoC expression. Importantly, either over- 

expression of HOXD10 or knockdown of RhoC almost 

completely reversed miR-10b-induced migration and 

invasion in vitro [51]. It has been shown that miR-9 

could directly target CDH1, the E-cadherin encoding 

mRNA, leading to increased cell motility and invasive- 

ness [52]. miR-21 was found up-regulated in many solid 

tumors. When anti-sense oligo against miR-21 was 

introduced into metastatic cancer cells, their metastatic 

ability was inhibited, as gauged by a tail-vein metastasis 

assay and a chick-embryo chorioallantoic-membrane 

metastasis assay. With further study, it was found that 

miR-21 could target phosphatase and tensin homolog 

(PTEN), tumor suppressor gene tropomyosin 1 (TPM1), 

and programmed cell death 4 (PDCD4), to promote the 

metastasis of cancers [53-57]. Meanwhile, some miRNAs 

play a role in inhibiting tumor invasion and metastasis. 

The let-7 miRNA family of tumor suppressors is down- 

regulated in a variety of tumors. This family of miRNAs 

has been identified as the silencer of the Ras and 

HMGA2 oncogenes which promote tumor metastasis 

[36, 58-60]. The miR-200 family, organized as two 

clusters in the genome, were expressed during EMT and 

able to hinder EMT by enhancing E-cadherin trans- 

criptional expression through directly targeting Zeb1 and 

Zeb2 [61-63]. Martello have shown that high levels of 

miR-103/-107 were associated with metastasis and poor 

outcome in human breast cancer. At the cellular level, a 

key event fostered by miR-103/-107 was the induction 

of EMT, attained by down-regulating miR-200 levels 

[64]. Hedgehog signaling cascade cross-talks with Wnt, 

epidermal growth factor (EGF)/fibroblast growth factor 

(FGF), and tumor growth factor-β (TGF-β/Activin/Nodal/ 

bone morphogenetic protein (BMP) signaling cascades, 

which are implicated in epithelial-mesenchymal transition 

(EMT) through E-cadherin repression [65-67]. It was 

reported that TGF-β could down-regulate the expre- 

ssion of human miR-141, -200a/b/c, -205, and -429, which 

in turn down-regulate Zeb1 and Zeb2. It is noteworthy 

that these miRNAs may play important roles in EMT as 

participants in the Hedgehog signaling cascade [68]. 

Angiogenesis is another important mechanism in 

cancer invasion and metastasis. It frequently happens in 

various tumors and is highly related with invasion, 

metastasis and poor outcome [69]. Early studies have 

indicated the contribution of specific miRNAs (e.g. 

miR-21, -155, and 126) to vascular diseases [70]. At 

present, miR-126 is widely accepted as an important 

factor for angiogenesis. Two groups published their 

investigations back-to-back that miR-126 could regulate 

the response of endothelial cells to vascular endothelial 

growth factor (VEGF), and regulate vascular integrity and 

angiogenesis in vivo [71-72]. Nicoli et al. [73] reported 

that zinc finger transcription factor Klf2a induced the 

expression of miR-126 leading to the activation of the 

VEGF signaling pathway. Their work described a novel 

genetic mechanism in which a miRNA facilitated the 

integration of a physiological stimulus with growth factor 

signaling in endothelial cells to guide angiogenesis. Epi- 

dermal growth factor-like domain 7 (EGFL7) was des- 

cribed as a novel endothelial cell-derived factor involved 

in the blood vessel formation. Fish and colleagues 

described the transcriptional regulation of EGFL7 in 

human endothelial cells by miR-126 [71]. Sun et al. [74] 

reported that EGFL7 was a direct target of miR-126 in 

lung cancer cells and hinted that this could be at least 

partly explain the observed effect of miR-126 on tumori- 

genesis. Taken together, these results demonstrated that 

miR-126 and EGFL7 may share a tightly regulated 

function in tumor vessel formation. Except the miRNAs 

mentioned above, miR-17/-20, -31, and -335 have all 

been shown to have inhibitory roles in tumor invasion 

and metastasis as demonstrated in recent studies [75-76].            

 

miRNAs and cancer-related inflammation 

 

Chronic inflammation is a major cause of cancer. 
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Epidemiologic and clinical studies show that appro- 

ximately 25% of all human cancers in adults result from 

chronic inflammation. The oncogenic mechanisms in 

chronic inflammation are complicated and not fully 

revealed. Some studies have suggested that induced epi- 

genetic changes and genomic instability were involved 

in inflammation-induced carcinogenesis. Several trans- 

cription factors and key inflammation mediators, such as 

tumor necrosis factor-α (TNF-α), cyclooxygenase-2 

(COX-2), cytokines, hypoxia inducible factor-1α (HIF-1α), 

and nuclear factor-κB (NF-κB), have been identified as 

playing important roles inflammation-induced cancers 

[77-79]. miRNAs have emerged as a critical regulatory 

factor in the mammalian immune system. Genetic abla- 

tion of the miRNA machinery, as well as loss or 

deregulation of certain individual miRNAs, severely 

compromises immune response leading to immune 

disorders like autoimmunity and cancer [80].  

miR-146a is one of the first miRNAs identified to be 

involved in the regulation of immune function. Lipo- 

polysaccharide (LPS)-induced induction of miR-146a 

was observed in several other cell lines of myeloid 

origin, but not in B cell lines, suggesting the LPS- 

induced regulation of miR-146a is cell-type specific. In 

addition to the effect on Toll-like receptor (TLR) ligands, 

miR-146a was induced by TNF-α and interleukin (IL)- 

1β in an NF-κB dependent manner [81-82]. miR-21 is 

one of the most abundant miRNAs in T cells in the 

immune system, indicating that it is critical for T cell 

homeostasis [83]. In the expression profiling studies 

during the innate immune response to aerosolized LPS 

in the mouse lung, miR-21 was found to be involved in 

the inflammatory responses [84]. Recent research has 

shown that miR-21, expressed by inflammatory leuko- 

cytes, was the most highly induced miRNA in an 

IL-13-induced asthma mode. One potential target for 

miR-21 is IL-12p35, a subunit of IL-12, a key cytokine 

from macrophages and dendritic cells involved in 

adaptive immune responses [85]. Schetter et al. [86] 

examined the expression of 23 inflammatory genes in 

colon adenocarcinomas and adjacent noncancerous tissues 

from 196 patients. The results showed that miR-21 was 

functionally associated with IL-6, -8, -10, -12a and nitric 

oxide synthase 2a (NOS2a), suggesting that miR-21 

expression was associated with cancer-specific mortality 

and cancer-related inflammation. These results imply 

that miR-21 might contribute to the inflammation- 

induced cancers, at least part, by modulating cytokine 

responses. miR-155 is regarded as a multifunctional 

miRNA. Besides acting as an important oncogene, it 

plays essential roles in both B and T cell response 

identified by two independent groups [87-89]. Similar to 

miR-146, miR-155 is regulated by LPS in mouse 

macrophages. It is also regulated by virally relevant 

stimuli, such as the synthetic TLR3 ligand poly and by 

antiviral response cytokines (interferin (IFN)-β, -γ), 

suggesting that miR-155 is a component of the innate 

immune response [81, 90-91]. Overexpression of miR- 

155 also caused the repression of tumor through targeting 

p53-induced nuclear protein 1, a pro-apoptotic gene 

downstream of p53 signaling, suggesting that miR-155 

has a pro-tumorigenic function via regulation of inflam- 

mation-induced carcinogenesis [92].  

miR-17-92 cluster encodes six miRNAs (miR-17, 

-18a, -19a, -19b-1, -20a, and -92-1) in the human 

genome. Studies on mouse models have implicated the 

importance of miR-17-92 cluster in B cell development 

and T cell function. In addition, in vivo studies indicate a 

role for these miRNAs in monocytic development [93-95]. 

These findings suggest that there might be a potential 

link between the expression of miR-17-92 cluster and 

immune system. However, the exact roles of miR-17-92 

in inflammation need further investigations. Iliopoulos et 

al. [96] found that let-7 directly inhibited IL6 expression, 

resulting in higher levels of IL6 than achieved by NF-κB 

activation in several cancer cell lines. This result suggests 

that let-7 might be important to the cancer-related 

inflammation. Except the miRNAs described above, 

many other miRNAs, such as miR-9, miR-101, -192, 

and -203, have been also associated with inflammatory 

diseases or immune responses [97-102].  

 

miRNAs and cancer stem cells  

 

Cancer stem cell (CSC) model in tumorigenesis pro- 

poses that a small fraction of cells in a tumor has pro- 

perties of stem cells, being responsible for initiating and 

maintaining the tumor. miRNAs have been found specially 

expressing in CSCs and controlling their self-renewal 

and differentiation through regulating the expression of 

certain key genes [103-106]. Yu et al. [107] found that 

let-7 regulated multiple stem cell-like properties of breast 

tumor-initiating cells (BT-ICs) by silencing Harvey rat 

sarcoma virus oncogene or high mobility group AT- 

hook 2 (HMGA2). Another study showed that enforced 

let-7 expression depleted the self-renewing compartment 

through identification of miRNA signature in a popu- 

lation of purified self-renewing progenitor cells [108]. 

miR-205 and -22 were found to highly express in 

mammary progenitor cells, while let-7 and miR-93 were 

depleted. Further studies demonstrated that let-7 sensors 

could be used to prospectively enrich self-renewing 

populations, and that enforced let-7 expression induced 

loss of self-renewing cells from mixed cultures. These 
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results revealed a role for let-7 in regulating stemness, 

suggesting that miRNAs might play important roles in 

CSC proliferation, differentiation and tumor formation. 

Some miRNAs themselves are considered to be stem 

cell-like miRNAs recently. Cairo et al. [109] reported 

that undifferentiated aggressive hepatoblastoma (HBs) 

overexpressed the miR-371-3 cluster with concomitant 

down-regulation of the miR-100/let-7a-2/miR-125b-1 

cluster. Their combined deregulation cooperated in modu- 

lating the hepatic tumor phenotype, implicating stem 

cell-like regulation of Myc-dependent miRNAs in poorly 

differentiated HBs. This important finding adds miRNAs 

as new role in tumor regulation. 

 

miRNAs and anticancer drug resistance  

 

Drug resistance remains a major clinical obstacle to 

successful treatment. The understanding of the drug 

resistance mechanism is important for the cancer therapy. 

Increasing evidence has indicated that aberrant miRNA 

expression is strongly implicated in anticancer drug 

resistance [110-112]. Significant overexpression of 8 

miRNAs and down-regulation of 7 miRNAs were detec- 

ted in a tamoxifen-resistant breast cancer cell line com- 

pared with the tamoxifen-sensitive cell line [113]. 

Kovalchuk et al. [114] reported that miR-451 regulated 

the expression of multidrug resistance 1 (MDR-1) gene 

in the doxorubicin-resistant human breast adenocarci- 

noma cell line MCF-7. In ovarian cancer, Yang et al. 

[115] demonstrated that the up-regulation of miR-214 

promoted the survival of ovarian cancer cells and 

induced resistance of cisplatin. Sorrentino et al. [116] 

showed that a panel of miRNAs (let-7e, miR-30c, -125b, 

-130a and -335) were diversely expressed in all the 

resistant cell lines of ovarian cancer. In non-small cell 

lung cancer, 5 miRNAs (miR-15b, -100, -125b, -221, 

and -222) were found to up-regulate in the resistant cell 

lines [117]. Forced overexpression of the miR-222, -100, 

and -221 in the sensitive H460 cells increased resistance 

to TNF-related apoptosis inducing ligand (TRAIL), 

indicating that inhibition of their target proteins results 

in TRAIL resistance. Bertino et al. [118] put forward the 

concept of miRNA pharmacogenomics, a novel and 

promising field of research that holds new possibilities 

for medical therapy. This model can be defined as the 

study miRNAs and the miRSNPs/polymorphisms in 

their target genes may determine drug behavior in order 

to improve efficiency of drugs. Upon reaching a deeper 

understanding of the mechanism of miRNA in anticancer 

drug resistance, miRNAs might well fulfill their promise 

as valuable therapeutics in overcoming anticancer drug 

resistance. 

miRNAs related cancer diagnosis and therapy 

 

As the important roles of miRNAs in cancer are 

gradually revealed, their potential applications as useful 

and effective targets have generated great interest in 

cancer gene therapy strategies, as well as diagnosis, 

classification, prognosis and risk factor evaluations. 

Based on microarrays for miRNA expression profiling 

studies, differences in miRNA expression could be 

detected between normal and cancer tissues, which can 

classify different tumor types and tumor grades [119- 

121]. Certain miRNA signatures are correlated with 

prognosis and can potentially be used to determine the 

specific course of treatment. Michael et al. [122] found 

aberrant miRNA expression in solid tumors as they 

identified 28 different miRNAs in colonic adenocar- 

cinoma compared with normal mucosa. miR-143 and 

-145 were significantly down-regulated in the cancer. 

Similar situation was detected in other cancers, as 

miR-221, -222, and -146 in papillary thyroid carcinoma 

[123], miR-21 and -155 in pancreatic cancer [124], and 

miR-141 in prostate cancer [125]. Through analyzing the 

expression of 217 miRNAs in 334 samples that included 

primary tumors, tumor-derived cell lines and normal 

tissues, Lu et al. [16] found that miRNA profiles can 

distinguish between normal and cancer tissues, separate 

different cancer types, stratify the cancer differentiation 

state and cluster sample groups according to their emb- 

ryonic lineage. Single nucleotide polymorphisms (SNPs) 

within the miRNA coding genes or within miRNA target 

genes are likely to be deleterious and can affect an 

individual‘s risk to develop diseases such as cancers. Yu 

et al. [126] found that 12 miRNA-related SNPs showed 

an aberrant allele frequency in human cancers. Chin et al. 

[127] identified an SNP in let-7 complementary site 6 

(LCS6) in the KRAS 30 UTR that is associated with 

smoking-induced lung cancer risk. This variant allele is 

found in 20% of the 74 non-small cell lung carcinoma 

patients in the study. These unique miRNA expression 

signatures might be the hallmarks of tumor progressions 

and prognosis evaluations.  

Many miRNAs, as discussed above, have great poten- 

tial in tumorigenesis, tumor invasion, ametastasis, malig- 

nant progression, and poor prognosis. In in vitro and in 

vivo experiments, it has been confirmed that knockdown 

of certain miRNAs could change the tumor progression 

and biological characteristics as potential therapeutic 

targets [128-129]. In cell culture and xenograft mice 

models, synthetic anti-miRNA oligonucleotide (AMO) 

with 2‘-O-methyl modification have been shown to 

effectively inhibit endogenous miRNAs. Krützfeldt et al. 

[130] studied the utility of AMOs in vivo through 
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intravenous injection of modified AMOs to target the 

liver-specific miR-122. Impressively, a single injection 

of 240 mg·kg
-1

 body weight conferred specific miR-122 

silencing for up to 23 days. As an alternative to 

2ʹ-hydroxyl-modified AMOs, lock nucleic acid based 

oligonucleotides (LNA-antimiR) have been shown to be 

more stable and less toxic in inhibiting endogenous 

miRNAs in vivo. Kota et al. [131] showed that the 

systemic delivery of a single miRNA could cause tumor 

regression in a mice model of liver cancer. They 

delivered adeno-associated virus 8 (AAV8)-expressing 

miR-26a intravenously in Myc-induced mice harboring 

preformed liver tumors. After 3 weeks, they observed a 

significant regression of tumors in mice with the 

miR-26a treatment. These findings indicate a possibility 

of specific miRNAs-target therapy. 

 

Conclusion and perspective 

 

The importance of miRNAs in cancer has been well 

established and some special miRNAs have been regarded 

as hallmarks in tumor progressions and hot targets in 

cancer therapy. However, there is still a long and arduous 

way to go for substantial applications of miRNAs in 

cancer treatments. To date, the exact mechanisms and 

entire networks of miRNAs in cancer progressions are 

still unclear, and there is even some controversy about 

their roles in tumor regulation. For example, Ma et al. 

[52] reported that miR-9 acted as an oncogene and 

regulates the metastasis of lung cancer cell, while Wan et 

al. [132] suggested miR-9 as a tumor suppressive gene 

by targeting NF-κB in gastric cancer; Similarly to miR-9, 

-107 and -125b function as oncogenes in some tumors 

and as a tumor-suppressor in others [133-138]. In OSCC, 

expression of miR-31 was reported to be up-regulated 

[139-140]. However, it appeared to down-regulation in 

gastric carcinoma and prostate carcinoma [141-142]. 

These results need to be further confirmed. It is also 

possible that the contradictory results implied regulation 

mechanisms uncovered in the relationships between 

miRNAs and cancers. One hypothesis is that certain 

miRNAs might have different roles in different tissues or 

different cancer types, or even there are some unknown 

molecules or genes regulating the same miRNAs to 

perform various roles in different situations. As a ―star 

molecule‖ since 2002, miRNAs have become the focus 

in recent years and the studies of their roles in cancers 

have continued. In 2010, Guo et al. [143] found that 

changes in mRNA levels closely reflected the impact of 

miRNAs on gene expression, indicating that destabili- 

zation of target mRNAs was the predominant reason for 

reduced protein output. This means that miRNAs play 

their roles mainly by degrading the target mRNA (≥84% 

lowered mRNA levels account for of the decreased 

protein production) rather than by inhibiting their 

translation. Meanwhile, Zhang et al. [144] reported that 

cells can secrete miRNAs and deliver them into recipient 

cells where the exogenous miRNAs can regulate target 

gene expression and recipient cell function as signaling 

molecules mediating intercellular communication. These 

results provide the potential mechanism of miRNAs in 

cancers, and indicate a novel approach for future 

research. Although our knowledge about the exact roles 

of miRNAs as well as their regulating genes in cancers 

is limited, we believe that the prospects of cancer 

research on miRNA field are broad. 
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