Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Pediatric Original Article
  • Published:

Metabolic profiling of umbilical cord blood in macrosomia

Abstract

Background/Objective:

The term macrosomia is used to describe neonates with a birth weight of 4000 g or more. Macrosomia is a potential risk factor for obesity and metabolic syndromes in postnatal and adult life, yet little is known about its associations with metabolic difference in the early age. We performed metabolic profiling of umbilical cord blood to discover differential metabolites of macrosomia.

Methods:

We conducted a case–control study of full-term singletons with normal maternal glucose tolerance [50 cases (macrosomia, birth weight 4000 g); 50 controls (normal weight, birth weight 2500–3999 g)]. Metabolites in umbilical cord blood were detected using an untargeted metabolomic approach based on gas chromatography/mass spectrometry. We performed logistic regression to evaluate the associations between metabolites and macrosomia. We also performed pathway analysis based on KEGG and MBRole.

Results:

Compared with controls, the macrosomia cases had a greater male proportion, gestational age, paternal body mass index (BMI) and maternal pre-pregnancy BMI. Forty-two metabolites differed between the cases and controls. After multivariable adjustment, 2-methylfumarate [adjusted odds ratio (AOR)=1.232, 95% confidence interval (CI): 1.102–1.376], uracil (AOR=38.494, 95% CI: 5.635–262.951), elaidic acid (AOR=0.834, 95% CI: 0.761–0.915), ribose (AOR=0.089, 95% CI: 0.021–0.378), lactulose (AOR=0.815, 95% CI: 0.743–0.894) and 4-aminobutyric acid (AOR=0.835, 95% CI: 0.764–0.912) remained significantly associated with macrosomia. Pyrimidine metabolism and pentose and glucuronate interconversions were the two top-ranking pathways enriched with those metabolites (−log P-value=3.49 and 2.47, respectively).

Conclusion:

Levels of 2-methylfumarate, uracil, ribose, elaidic acid, lactulose and 4-aminobutyric acid were associated with the incidence of macrosomia. The alteration of pathways involving those factors might be linked with the incidence of macrosomia and relevant metabolic syndromes later in life, and further studies are needed to confirm it and verify the mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Ng SK, Olog A, Spinks AB, Cameron CM, Searle J, McClure RJ . Risk factors and obstetric complications of large for gestational age births with adjustments for community effects: results from a new cohort study. BMC pub health 2010; 10: 460.

    Article  Google Scholar 

  2. Wang D, Hong Y, Zhu L, Wang X, Lv Q, Zhou Q et al. Risk factors and outcomes of macrosomia in China: a multicentric survey based on birth data. J matern fetal neonatal med 2017; 30: 623–627.

    Article  Google Scholar 

  3. Ren JH, Wang C, Wei YM, Yang HX . Incidence of singleton macrosomia in Beijing and its risk factors. Zhonghua fu chan ke za zhi 2016; 51: 410–414.

    CAS  PubMed  Google Scholar 

  4. Cheng YK, Lao TT, Sahota DS, Leung VK, Leung TY . Use of birth weight threshold for macrosomia to identify fetuses at risk of shoulder dystocia among Chinese populations. Int j gynaecol Obstet 2013; 120: 249–253.

    Article  Google Scholar 

  5. Wang D, Zhu L, Zhang S, Wu X, Wang X, Lv Q et al. Predictive macrosomia birthweight thresholds for adverse maternal and neonatal outcomes. J Matern Fetal Neonatal Med 2016; 29: 3745–3750.

    Article  Google Scholar 

  6. Agbozo F, Abubakari A, Der J, Jahn A . Prevalence of low birth weight, macrosomia and stillbirth and their relationship to associated maternal risk factors in Hohoe Municipality, Ghana. Midwifery 2016; 40: 200–206.

    Article  Google Scholar 

  7. Mohammadbeigi A, Farhadifar F, Soufi Zadeh N, Mohammadsalehi N, Rezaiee M, Aghaei M . Fetal macrosomia: risk factors, maternal, and perinatal outcome. Ann med health sci res 2013; 3: 546–550.

    Article  CAS  Google Scholar 

  8. Yang S, Zhou A, Xiong C, Yang R, Bassig BA, Hu R et al. Parental body mass index, gestational weight gain, and risk of macrosomia: a population-based case–control study in China. Paediatr perinat epidemiol 2015; 29: 462–471.

    Article  Google Scholar 

  9. Li G, Kong L, Li Z, Zhang L, Fan L, Zou L et al. Prevalence of macrosomia and its risk factors in china: a multicentre survey based on birth data involving 101,723 singleton term infants. Paediatr Perinat epidemiol 2014; 28: 345–350.

    Article  Google Scholar 

  10. Kerenyi Z, Tamas G, Kivimaki M, Peterfalvi A, Madarasz E, Bosnyak Z et al. Maternal glycemia and risk of large-for-gestational-age babies in a population-based screening. Diabetes care 2009; 32: 2200–2205.

    Article  CAS  Google Scholar 

  11. Hehir MP, McHugh AF, Maguire PJ, Mahony R . Extreme macrosomia-obstetric outcomes and complications in birthweights >5000 g. Aust N Z j obstet gynaecol 2015; 55: 42–46.

    Article  Google Scholar 

  12. Swank ML, Caughey AB, Farinelli CK, Main EK, Melsop KA, Gilbert WM et al. The impact of change in pregnancy body mass index on macrosomia. Obesity (Silver Spring, MD) 2014; 22: 1997–2002.

    Article  Google Scholar 

  13. Li Y, Liu QF, Zhang D, Shen Y, Ye K, Lai HL et al. Weight gain in pregnancy, maternal age and gestational age in relation to fetal macrosomia. Clin nutr res 2015; 4: 104–109.

    Article  Google Scholar 

  14. Hermann GM, Dallas LM, Haskell SE, Roghair RD . Neonatal macrosomia is an independent risk factor for adult metabolic syndrome. Neonatology 2010; 98: 238–244.

    Article  CAS  Google Scholar 

  15. Wurtz P, Wang Q, Kangas AJ, Richmond RC, Skarp J, Tiainen M et al. Metabolic signatures of adiposity in young adults: mendelian randomization analysis and effects of weight change. PLoS med 2014; 11: e1001765.

    Article  Google Scholar 

  16. Hellmuth C, Kirchberg FF, Lass N, Harder U, Peissner W, Koletzko B et al. Tyrosine is associated with insulin resistance in longitudinal metabolomic profiling of obese children. J diabetes res 2016; 2016: 2108909.

    Article  Google Scholar 

  17. Chen HH, Tseng YJ, Wang SY, Tsai YS, Chang CS, Kuo TC et al. The metabolome profiling and pathway analysis in metabolic healthy and abnormal obesity. Int j obesity 2015; 39: 1241–1248.

    Article  CAS  Google Scholar 

  18. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E et al. Metabolite profiles and the risk of developing diabetes. Nat Med 2011; 17: 448–453.

    Article  Google Scholar 

  19. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 2009; 9: 311–326.

    Article  CAS  Google Scholar 

  20. Perng W, Gillman MW, Fleisch AF, Michalek RD, Watkins SM, Isganaitis E et al. Metabolomic profiles and childhood obesity. Obesity (Silver Spring, MD) 2014; 22: 2570–2578.

    CAS  Google Scholar 

  21. Son HH, Kim SH, Moon JY, Chung BC, Park MJ, Choi MH . Serum sterol profiling reveals increased cholesterol biosynthesis in childhood obesity. J steroid biochem mol biol 2015; 149: 138–145.

    Article  CAS  Google Scholar 

  22. Wahl S, Yu Z, Kleber M, Singmann P, Holzapfel C, He Y et al. Childhood obesity is associated with changes in the serum metabolite profile. Obes Facts 2012; 5: 660–670.

    Article  CAS  Google Scholar 

  23. Xia J, Sinelnikov IV, Han B, Wishart DS . MetaboAnalyst 3.0-making metabolomics more meaningful. Nucleic Acids Res 2015; 43: W251–W257.

    Article  CAS  Google Scholar 

  24. Xia J, Psychogios N, Young N, Wishart DS . MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res 2009; 37 (Web Server issue): W652–W660.

    Article  CAS  Google Scholar 

  25. Wardrope C, Mowat CG, Walkinshaw MD, Reid GA, Chapman SK . Fumarate reductase: structural and mechanistic insights from the catalytic reduction of 2-methylfumarate. FEBS Lett 2006; 580: 1677–1680.

    Article  CAS  Google Scholar 

  26. Koy A, Waldhaus A, Hammen HW, Wendel U, Mayatepek E, Schadewaldt P . Urinary excretion of pentose phosphate pathway-associated polyols in early postnatal life. Neonatology 2009; 95: 256–261.

    Article  CAS  Google Scholar 

  27. Anichini C, Lo Rizzo C, Longini M, Paoli G, di Bartolo RM, Proietti F et al. Beckwith-Wiedemann syndrome: potassium ascorbate with ribose therapy in a syndrome with high neoplastic risk. Anticancer Res 2011; 31: 3973–3976.

    CAS  PubMed  Google Scholar 

  28. Ohmori H, Fujii K, Kadochi Y, Mori S, Nishiguchi Y, Fujiwara R et al. Elaidic acid, a trans-fatty acid, enhances the metastasis of colorectal cancer cells. Pathobiology 2016; 84: 144–151.

    Article  Google Scholar 

  29. Schlormann W, Kramer R, Lochner A, Rohrer C, Schleussner E, Jahreis G et al. Foetal cord blood contains higher portions of n-3 and n-6 long-chain PUFA but lower portions of trans C18:1 isomers than maternal blood. Food Nutr Res 2015; 59: 29348.

    Article  Google Scholar 

  30. De Preter V, Coopmans T, Rutgeerts P, Verbeke K . Influence of long-term administration of lactulose and Saccharomyces boulardii on the colonic generation of phenolic compounds in healthy human subjects. J Am Coll Nutr 2006; 25: 541–549.

    Article  CAS  Google Scholar 

  31. Benitez-Paez A, Moreno FJ, Sanz ML, Sanz Y . Genome structure of the symbiont Bifidobacterium pseudocatenulatum CECT 7765 and gene expression profiling in response to lactulose-derived oligosaccharides. Front Microbiol 2016; 7: 624.

    Article  Google Scholar 

  32. Li J, Casteels T, Frogne T, Ingvorsen C, Honore C, Courtney M et al. Artemisinins target GABAA receptor signaling and impair alpha cell identity. Cell 2017; 168: 86–100.e15.

    Article  CAS  Google Scholar 

  33. Franklin IK, Wollheim CB . GABA in the endocrine pancreas: its putative role as an islet cell paracrine-signalling molecule. J Gen Physiol 2004; 123: 185–190.

    Article  CAS  Google Scholar 

  34. Maruyama H, Hisatomi A, Orci L, Grodsky GM, Unger RH . Insulin within islets is a physiologic glucagon release inhibitor. J Clin Invest 1984; 74: 2296–2299.

    Article  CAS  Google Scholar 

  35. Xu E, Kumar M, Zhang Y, Ju W, Obata T, Zhang N et al. Intra-islet insulin suppresses glucagon release via GABA-GABAA receptor system. Cell Metab 2006; 3: 47–58.

    Article  CAS  Google Scholar 

  36. van den Oord EJ . Controlling false discoveries in genetic studies. Am J Med Genet Part B, Neuropsychiatr Genet 2008; 147b: 637–644.

    Article  CAS  Google Scholar 

  37. Abdullah M, Kornegay JN, Honcoop A, Parry TL, Balog-Alvarez CJ, O'Neal SK et al. Non-targeted metabolomics analysis of golden retriever muscular dystrophy-affected muscles reveals alterations in arginine and proline metabolism, and elevations in glutamic and oleic acid in vivo. Metabolites 2017; 7: 38.

    Article  Google Scholar 

  38. Takahashi S, Izawa Y, Suzuki N . Astroglial pentose phosphate pathway rates in response to high-glucose environments. ASN neuro 2012; 4: e00078.

    Article  Google Scholar 

  39. Gupte SA . Targeting the pentose phosphate pathway in syndrome X-related cardiovascular complications. Drug Dev Res 2010; 71: 161–167.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lm T, Or T . Pre and post-natal risk and determination of factors for child obesity. J Med Life 2016; 9: 386–391.

    Google Scholar 

  41. Rona G, Scheer I, Nagy K, Palinkas HL, Tihanyi G, Borsos M et al. Detection of uracil within DNA using a sensitive labeling method for in vitro and cellular applications. Nucleic Acids Res 2016; 44: e28.

    Article  Google Scholar 

  42. Luhnsdorf B, Epe B, Khobta A . Excision of uracil from transcribed DNA negatively affects gene expression. J Biol Chem 2014; 289: 22008–22018.

    Article  Google Scholar 

  43. Nielsen HR, Sjolin KE, Nyholm K, Baliga BS, Wong R, Borek E . Beta-aminoisobutyric acid, a new probe for the metabolism of DNA and RNA in normal and tumorous tissue. Cancer Res 1974; 34: 1381–1384.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The present study was supported by the National Natural Science Foundation of China (No. 81072378) and the Natural Science Funds of Zhejiang (No. Y2101185). We gratefully acknowledge the Department of Obstetrics, the 2nd Affiliated Hospital of Wenzhou Medical University, for the umbilical cord blood samples. We also thank Wenzhou residents for their support for our epidemiological study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X J Yang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Wang, Y., Wang, C. et al. Metabolic profiling of umbilical cord blood in macrosomia. Int J Obes 42, 679–685 (2018). https://doi.org/10.1038/ijo.2017.288

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2017.288

Search

Quick links