Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Pediatric Original Article
  • Published:

Dysregulation of mitochondrial function and biogenesis modulators in adipose tissue of obese children

Abstract

Background/Objectives:

We aimed to evaluate mitochondrial biogenesis (MB), structure, metabolism and dysfunction in abdominal adipose tissue from male pediatric patients with obesity.

Subjects/Methods:

Samples were collected from five children with obesity (percentile 95) and five eutrophic boys (percentile 5/85) (8–12 years old) following parental informed consent. We analyzed the expression of key genes involved in MB (sirtuin-1 (SIRT1), peroxisome proliferator-activated receptor-γ (PPARγ), PPARγ coactivator-1α (PGC1α), nuclear respiratory factors 1 and 2 (NRF1, NRF2) and mitochondrial transcription factor A (TFAM) and surrogates for mitochondrial function/structure/metabolism (porin, TOMM20, complex I and V, UCP1, UCP2, SIRT3, SOD2) by western blot. Citrate synthase (CS), complex I (CI) activity, adenosine triphosphate (ATP) levels, mitochondrial DNA (mtDNA) content and oxidative stress end points were also determined.

Results:

Most MB proteins were significantly decreased in samples from children with obesity except complex I, V and superoxide dismutase-2 (SOD2). Similarly, CS and CI activity showed a significant reduction, as well as ATP levels and mtDNA content. PPARγ, PGC1α, complex I and V and SOD2 were hyperacetylated compared with lean samples. Concurrently, in samples from children with obesity, we found decreased SOD2 activity and redox state imbalance highlighted by decreased reduced glutathione/oxidized glutathione (GSH/GSSG) ratio and significant increases in protein carbonylation.

Conclusions:

Adipose tissue from children with obesity demonstrates a dysregulation of key modulators of MB and organelle structure, and displays hyperacetylation of key proteins and altered expression of upstream regulators of cell metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Lipek T, Igel U, Gausche R, Kiess W, Grande G . Obesogenic environments: environmental approaches to obesity prevention. J Pediatr Endocrinol Metab 2015; 28: 485–495.

    Article  Google Scholar 

  2. Martin A, Saunders DH, Shenkin SD, Sproule J . Lifestyle intervention for improving school achievement in overweight or obese children and adolescents. Cochrane Database Syst Rev 2014; 3: CD009728.

    Google Scholar 

  3. Messiah SE, Lipshultz SE, Natale RA, Miller TL . The imperative to prevent and treat childhood obesity: why the world cannot afford to wait. Clin Obes 2013; 3: 163–171.

    Article  CAS  Google Scholar 

  4. Gutiérrez JP, Rivera-Dommarco JA, Shamah-Levy T, Villalpando-Hernández S, Franco A, Cuevas-Nasu L et al Encuesta Nacional de Salud y Nutrición 2012. Resultados Nacionales. 2a. ed. [Internet]. Instituto Nacional de Salud Publica. 2013.

  5. Boudina S, Graham TE . Mitochondrial function/dysfunction in white adipose tissue. Exp Physiol 2014; 99: 1168–1178.

    Article  Google Scholar 

  6. Arruda AP, Pers BM, Parlakgül G, Güney E, Inouye K, Hotamisligil GS . Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity. Nat Med 2014; 20: 1427–1435.

    Article  CAS  Google Scholar 

  7. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW . Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112: 1796–1808.

    Article  CAS  Google Scholar 

  8. Kraunsøe R, Boushel R, Hansen CN, Schjerling P, Qvortrup K, Støckel M et al. Mitochondrial respiration in subcutaneous and visceral adipose tissue from patients with morbid obesity. J Physiol 2010; 588: 2023–2032.

    Article  Google Scholar 

  9. Hansen M, Lund MT, Gregers E, Kraunsøe R, Van Hall G, Helge JW et al. Adipose tissue mitochondrial respiration and lipolysis before and after a weight loss by diet and RYGB. Obesity (Silver Spring) 2015; 23: 2022–2029.

    Article  CAS  Google Scholar 

  10. Muoio DM, Neufer PD . Lipid-induced mitochondrial stress and insulin action in muscle. Cell Metab 2012; 15: 595–605.

    Article  CAS  Google Scholar 

  11. Brownlee M . Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414: 813–820.

    Article  CAS  Google Scholar 

  12. Zhang D, Liu Z-X, Choi CS, Tian L, Kibbey R, Dong J et al. Mitochondrial dysfunction due to long-chain Acyl-CoA dehydrogenase deficiency causes hepatic steatosis and hepatic insulin resistance. Proc Natl Acad Sci USA 2007; 104: 17075–17080.

    Article  CAS  Google Scholar 

  13. Petersen KF, Dufour S, Shulman GI . Decreased insulin-stimulated ATP synthesis and phosphate transport in muscle of insulin-resistant offspring of type 2 diabetic parents. PLoS Med 2005; 2: 0879–0884.

    Article  CAS  Google Scholar 

  14. Befroy DE, Petersen KF, Dufour S, Mason GF, de Graaf RA, Rothman DL et al. impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients. Diabetes 2007; 56: 1376–1381.

    Article  CAS  Google Scholar 

  15. Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci USA 2003; 100: 8466–8471.

    Article  CAS  Google Scholar 

  16. Petersen KF, Dufour S, Befroy D, Garcia RSG . Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 2004; 9: 223–224.

    Google Scholar 

  17. Civitarese AE, Ukropcova B, Carling S, Hulver M, DeFronzo RA, Mandarino L et al. Role of adiponectin in human skeletal muscle bioenergetics. Cell Metab 2006; 4: 75–87.

    Article  CAS  Google Scholar 

  18. De Pauw A, Tejerina S, Raes M, Keijer J, Arnould T . Mitochondrial (dys)function in adipocyte (de)differentiation and systemic metabolic alterations. Am J Pathol 2009; 175: 927–939.

    Article  CAS  Google Scholar 

  19. Costa CDS, Hammes TO, Rohden F, Margis R, Bortolotto JW, Padoin AV et al. SIRT1 transcription is decreased in visceral adipose tissue of morbidly obese patients with severe hepatic steatosis. Obes Surg 2010; 20: 633–639.

    Article  Google Scholar 

  20. Hirschey MD, Shimazu T, Huang J-Y, Schwer B, Verdin E . SIRT3 regulates mitochondrial protein acetylation and intermediary metabolism. Cold Spring Harb Symp Quant Biol 2011; 76: 267–277.

    Article  CAS  Google Scholar 

  21. He W, Barak Y, Hevener A, Olson P, Liao D, Le J et al. Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle. Proc Natl Acad Sci USA 2003; 100: 15712–15717.

    Article  CAS  Google Scholar 

  22. Sies H . Glutathione and its role in cellular functions. Free Radic Biol Med 1999; 27: 916–921.

    Article  CAS  Google Scholar 

  23. Scarpulla RC . Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta Mol Cell Res 2011; 1813: 1269–1278.

    Article  CAS  Google Scholar 

  24. Cantó C, Auwerx J . PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 2009; 20: 98–105.

    Article  Google Scholar 

  25. Banks AS, Kon N, Knight C, Matsumoto M, Gutiérrez-Juárez R, Rossetti L et al. SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab 2008; 8: 333–341.

    Article  CAS  Google Scholar 

  26. Gillum MP, Kotas ME, Erion DM, Kursawe R, Chatterjee P, Nead KT et al. SirT1 regulates adipose tissue inflammation. Diabetes 2011; 60: 3235–3245.

    Article  CAS  Google Scholar 

  27. Yoshizaki T, Milne JC, Imamura T, Schenk S, Sonoda N, Babendure JL et al. SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol Cell Biol 2009; 29: 1363–1374.

    Article  CAS  Google Scholar 

  28. Shoar Z, Goldenthal MJ, De Luca F, Suarez E . Mitochondrial DNA content and function, childhood obesity, and insulin resistance. Endocr Res 2016; 41: 49–56.

    Article  CAS  Google Scholar 

  29. Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim S-H, Mostoslavsky R et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α. EMBO J 2007; 26: 1913–1923.

    Article  CAS  Google Scholar 

  30. Feldmann HM, Golozoubova V, Cannon B, Nedergaard J . UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab 2009; 9: 203–209.

    Article  CAS  Google Scholar 

  31. Langin D, Larrouy D, Barbe P, Millet L, Viguerie-Bascands N, Andreelli F et al. Uncoupling protein-2 (UCP2) and uncoupling protein-3 (UCP3) expression in adipose tissue and skeletal muscle in humans. Int J Obes Relat Metab Disord 1999; 23 (Suppl 6): S64–S67.

    Article  CAS  Google Scholar 

  32. Thompson MP, Kim D . Links between fatty acids and expression of UCP2 and UCP3 mRNAs. FEBS Lett 2004; 568: 4–9.

    Article  CAS  Google Scholar 

  33. Skulachev VP . Uncoupling: new approaches to an old problem of bioenergetics. Biochim Biophys Acta 1998; 1363: 100–124.

    Article  CAS  Google Scholar 

  34. Pecqueur C, Alves-Guerra MC, Gelly C, Lévi-Meyrueis C, Couplan E, Collins S et al. Uncoupling protein 2, in vivo distribution, induction upon oxidative stress, and evidence for translational regulation. J Biol Chem 2001; 276: 8705–8712.

    Article  CAS  Google Scholar 

  35. Mahadik SR, Lele RD, Saranath D, Seth A, Parikh V . Uncoupling protein-2 (UCP2) gene expression in subcutaneous and omental adipose tissue of Asian Indians. Adipocyte 2012; 1: 101–107.

    Article  CAS  Google Scholar 

  36. Joseph A-M, Joanisse DR, Baillot RG, Hood DA . Mitochondrial dysregulation in the pathogenesis of diabetes: potential for mitochondrial biogenesis-mediated interventions. Exp Diabetes Res 2012; 2012: 642038.

    Article  Google Scholar 

  37. Srere PA . [1] Citrate synthase. [EC 4.1.3.7. Citrate oxaloacetate-lyase (CoA-acetylating)]. Methods Enzymol 1969; 13: 3–11.

    Article  CAS  Google Scholar 

  38. Christe M, Hirzel E, Lindinger A, Kern B, von Flüe M, Peterli R et al. Obesity affects mitochondrial citrate synthase in human omental adipose tissue. ISRN Obes 2013; 2013: 1–8.

    Article  Google Scholar 

  39. Vieira VJ, Valentine RJ . Mitochondrial biogenesis in adipose tissue: can exercise make fat cells ‘fit’? J Physiol 2009; 587: 3427–3428.

    Article  CAS  Google Scholar 

  40. Kaaman M, Sparks LM, van Harmelen V, Smith SR, Sjölin E, Dahlman I et al. Strong association between mitochondrial DNA copy number and lipogenesis in human white adipose tissue. Diabetologia 2007; 50: 2526–2533.

    Article  CAS  Google Scholar 

  41. Chattopadhyay M, GuhaThakurta I, Behera P, Ranjan KR, Khanna M, Mukhopadhyay S et al. Mitochondrial bioenergetics is not impaired in nonobese subjects with type 2 diabetes mellitus. Metabolism 2011; 60: 1702–1710.

    Article  CAS  Google Scholar 

  42. Norvell A, McMahon SB . Rise of the rival. Science 2010; 327: 964–965.

    Article  CAS  Google Scholar 

  43. Qiu X, Brown K, Hirschey MD, Verdin E, Chen D . Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 2010; 12: 662–667.

    Article  CAS  Google Scholar 

  44. Tao R, Coleman MC, Pennington JD, Ozden O, Park S-H, Jiang H et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell 2010; 40: 893–904.

    Article  CAS  Google Scholar 

  45. Fernandez-Marcos PJ, Auwerx J . Regulation of PGC-1, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 2011; 93: 884S–890S.

    Article  CAS  Google Scholar 

  46. Lombard DB, Alt FW, Cheng H-L, Bunkenborg J, Streeper RS, Mostoslavsky R et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol 2007; 27: 8807–8814.

    Article  CAS  Google Scholar 

  47. Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B, Lombard DB et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 2010; 464: 121–125.

    Article  CAS  Google Scholar 

  48. Ahn B-H, Kim H-S, Song S, Lee IH, Liu J, Vassilopoulos A et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci USA 2008; 105: 14447–14452.

    Article  CAS  Google Scholar 

  49. Shimazu T, Hirschey MD, Hua L, Dittenhafer-Reed KE, Schwer B, Lombard DB et al. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab 2010; 12: 654–661.

    Article  CAS  Google Scholar 

  50. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003; 112: 1821–1830.

    Article  CAS  Google Scholar 

  51. Liu Y, Qi W, Richardson A, Van Remmen H, Ikeno Y, Salmon AB . Oxidative damage associated with obesity is prevented by overexpression of CuZn- or Mn-superoxide dismutase. Biochem Biophys Res Commun 2013; 438: 78–83.

    Article  CAS  Google Scholar 

  52. Kobayashi H, Matsuda M, Fukuhara A, Komuro R, Shimomura I . Dysregulated glutathione metabolism links to impaired insulin action in adipocytes. Am J Physiol Endocrinol Metab 2009; 296: E1326–E1334.

    Article  CAS  Google Scholar 

  53. Frohnert BI, Sinaiko AR, Serrot FJ, Foncea RE, Moran A, Ikramuddin S et al. Increased adipose protein carbonylation in human obesity. Obesity (Silver Spring) 2011; 19: 1735–1741.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by CONACyT (SALUD-2009-01-111494). FV is a co-founder and stockholder in Cardero Therapeutics Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Ramirez-Sanchez.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamora-Mendoza, R., Rosas-Vargas, H., Ramos-Cervantes, M. et al. Dysregulation of mitochondrial function and biogenesis modulators in adipose tissue of obese children. Int J Obes 42, 618–624 (2018). https://doi.org/10.1038/ijo.2017.274

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2017.274

This article is cited by

Search

Quick links