Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Clinical Studies and Practice

Partitioning of adipose lipid metabolism by altered expression and function of PPAR isoforms after bariatric surgery

A Correction to this article was published on 06 August 2019

Abstract

Background:

Bariatric surgery remains the most effective treatment for reducing adiposity and eliminating type 2 diabetes; however, the mechanism(s) responsible have remained elusive. Peroxisome proliferator-activated receptors (PPAR) encompass a family of nuclear hormone receptors that upon activation exert control of lipid metabolism, glucose regulation and inflammation. Their role in adipose tissue following bariatric surgery remains undefined.

Materials and Methods:

Subcutaneous adipose tissue biopsies and serum were obtained and evaluated from time of surgery and on postoperative day 7 in patients randomized to Roux-en-Y gastric bypass (n=13) or matched caloric restriction (n=14), as well as patients undergoing vertical sleeve gastrectomy (n=33). Fat samples were evaluated for changes in gene expression, protein levels, β-oxidation, lipolysis and cysteine oxidation.

Results:

Within 7 days, bariatric surgery acutely drives a change in the activity and expression of PPARγ and PPARδ in subcutaneous adipose tissue thereby attenuating lipid storage, increasing lipolysis and potentiating lipid oxidation. This unique metabolic alteration leads to changes in downstream PPARγ/δ targets including decreased expression of fatty acid binding protein (FABP) 4 and stearoyl-CoA desaturase-1 (SCD1) with increased expression of carnitine palmitoyl transferase 1 (CPT1) and uncoupling protein 2 (UCP2). Increased expression of UCP2 not only facilitated fatty acid oxidation (increased 15-fold following surgery) but also regulated the subcutaneous adipose tissue redoxome by attenuating protein cysteine oxidation and reducing oxidative stress. The expression of UCP1, a mitochondrial protein responsible for the regulation of fatty acid oxidation and thermogenesis in beige and brown fat, was unaltered following surgery.

Conclusions:

These results suggest that bariatric surgery initiates a novel metabolic shift in subcutaneous adipose tissue to oxidize fatty acids independently from the beiging process through regulation of PPAR isoforms. Further studies are required to understand the contribution of this shift in expression of PPAR isoforms to weight loss following bariatric surgery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. International Diabetes Federation (IDF) IDF Diabetes Atlas, 7th edn. idf.org, 2015 doi:10.1289/image.ehp.v119.i03.

  2. Statements P. Standards of medical care in diabetes—2012. Diabetes Care 2012; 35: S11–S63.

    Article  Google Scholar 

  3. Ikramuddin S, Korner J, Lee W-J, Connett JE, Inabnet Iii WB, Billington CJ et al. Roux-en-Y gastric bypass vs intensive medical management for the control of type 2 diabetes, hypertension, and hyperlipidemia: The Diabetes Surgery Study Randomized Clinical Trial. JAMA 2013; 309: 2240–2249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Brethauer Sa, Navaneethan SD et al. Bariatric surgery versus intensive medical therapy for diabetes—3-year outcomes. N Engl J Med 2014; 370: 1–12.

    Article  Google Scholar 

  5. Tilg H, Moschen AR . Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 2006; 6: 772–783.

    Article  CAS  PubMed  Google Scholar 

  6. Chondronikola M, Harris LLS, Klein S . Bariatric surgery and type 2 diabetes: are there weight loss-independent therapeutic effects of upper gastrointestinal bypass? J Intern Med 2016; 280: 476–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen Y, Corsino L, Shantavasinkul PC, Grant J, Portenier D, Ding L et al. Gastric bypass surgery leads to long-term remission or improvement of type 2 diabetes and significant decrease of microvascular and macrovascular complications. Ann Surg 2016; 263: 1138–1142.

    Article  PubMed  Google Scholar 

  8. Abraham A, Ikramuddin S, Jahansouz C, Arafat F, Hevelone N, Leslie D . Trends in bariatric surgery: procedure selection, revisional surgeries, and readmissions. Obes Surg 2016; 26: 1371–1377.

    Article  PubMed  Google Scholar 

  9. Gastaldelli A, Iaconelli A, Gaggini M, Magnone MC, Veneziani A, Rubino F . Short-term effects of laparoscopic adjustable gastric banding versus Roux-en-Y gastric bypass. Diabetes Care 2016; 39: 1–7.

    Article  Google Scholar 

  10. Tam C, Berthoud H-R, Bueter M, Chakravarthy M, Geliebter A, Hajnal A et al. Could the mechanisms of bariatric surgery hold the key for novel therapies? A report from the Pennington Scientific Symposium. Obes Rev 2011; 12: 984–994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fuentes E, Guzmán-jofre L, Moore-carrasco R, Palomo I . Role of PPARs in inflammatory processes associated with metabolic syndrome. Mol Med Rep 2013; 8: 1611–1616.

    Article  CAS  PubMed  Google Scholar 

  12. Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM . mPPARγ2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 1994; 8: 1224–1234.

    Article  CAS  PubMed  Google Scholar 

  13. Wang YX, Lee CH, Tiep S, Yu RT, Ham J, Kang H et al. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 2003; 113: 159–170.

    Article  CAS  PubMed  Google Scholar 

  14. Wagner K, Wagner N . Pharmacology & therapeutics peroxisome proliferator-activated receptor beta/delta (PPAR β/δ) acts as regulator of metabolism linked to multiple cellular functions. Pharmacol Ther 2010; 125: 423–435.

    Article  CAS  PubMed  Google Scholar 

  15. Jahansouz C, Xu H, Hertzel AV, Serrot FJ, Kvalheim N, Cole A et al. Bile acids increase independently from hypocaloric restriction after bariatric surgery. Ann Surg 2016; 264: 1022–1028.

    Article  PubMed  Google Scholar 

  16. Matthews D, Hosker J, Rudenski A, Naylor B, Treacher D, Turner R . Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412–419.

    Article  CAS  PubMed  Google Scholar 

  17. Xu H, Hertzel AV, Steen KA, Wang Q, Suttles J, Bernlohr DA . Uncoupling lipid metabolism from inflammation through FABP-dependent expression of UCP2. Mol Cell Biol 2015; 35: 1055–1065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang T, Zang Y, Ling W, Corkey BE, Guo W . Metabolic partitioning of endogenous fatty acid in adipocytes. Obes Res 2003; 11: 880–887.

    Article  CAS  PubMed  Google Scholar 

  19. Ward M, Prachand V . Surgical treatment of obesity. Gastrointest Endosc 2009; 70: 985–990.

    Article  PubMed  Google Scholar 

  20. Cock T-A, Houten SM, Auwerx J . Peroxisome proliferator-activated receptor-gamma: too much of a good thing causes harm. EMBO Rep 2004; 5: 142–147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miles PDG, Barak Y, He W, Evans RM, Olefsky JM . Improved insulin-sensitivity in mice heterozygous for PPAR-gamma deficiency. J Clin Invest 2000; 105: 287–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yehuda-shnaidman E, Buehrer B, Pi J, Kumar N, Collins S . Acute stimulation of white adipocyte respiration by PKA-induced lipolysis. Diabetes 2010; 59: 2474–2483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Camastra S, Gastaldelli A, Mari A, Bonuccelli S . Early and longer term effects of gastric bypass surgery on tissue-specific insulin sensitivity and beta cell function in morbidly obese patients with and without type 2 diabetes. Diabetologia 2011; 54: 2093–2102.

    Article  CAS  PubMed  Google Scholar 

  24. Hotamisligil GS, Bernlohr DA . Metabolic functions of FABPs—mechanisms and therapeutic implications. Nat Rev Endocrinol 2015; 11: 592–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Scheja L, Makowski L, Uysal KT, Wiesbrock SM, Shimshek DR, Meyers DS et al. Altered insulin secretion associated with reduced lipolytic efficiency in aP2(-/-) mice. Diabetes 1999; 48: 1987–1994.

    Article  CAS  PubMed  Google Scholar 

  26. Cao H, Sekiya M, Ertunc ME, Burak MF, Mayers JR, White A et al. Adipocyte lipid chaperone aP2 Is a secreted adipokine regulating hepatic glucose production. Cell Metab 2013; 17: 768–778.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Armstrong EH, Goswami D, Griffin PR, Noy N, Ortlund EA . Structural basis for ligand regulation of the fatty acid-binding protein 5, peroxisome proliferator-activated receptor β/δ (FABP5-PPARβ/δ) signaling pathway. J Biol Chem 2014; 289: 14941–14954.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Toral M, Romero M, Jiménez R, Robles-vera I, Tamargo J, Carmen M et al. Role of UCP2 in the protective effects of PPAR beta/delta activation on lipopolysaccharide-induced endothelial dysfunction. Biochem Pharmacol 2016; 110–111: 25–36.

    Article  PubMed  Google Scholar 

  29. Krauss S, Zhang CY, Lowell BB . The mitochondrial uncoupling-protein homologues. Nat Rev Mol Cell Biol 2005; 6: 248–261.

    Article  CAS  PubMed  Google Scholar 

  30. Koutsari C, Ali AH, Mundi MS, Jensen MD . Storage of circulating free fatty acid in adipose tissue of postabsorptive humans: quantitative measures and implications for body fat distribution. Diabetes 2011; 60: 2032–2040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Merlotti C, Ceriani V, Morabito A, Pontiroli AE . Subcutaneous fat loss is greater than visceral fat loss with diet and exercise, weight-loss promoting drugs, and bariatric surgery. A critical review and meta-analysis. Int J Obes 2017; 41: 1–11.

    Article  Google Scholar 

  32. Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC, Nemesh J et al. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 2000; 26: 76–80.

    Article  CAS  PubMed  Google Scholar 

  33. Memisoglu A, Hu FB, Hankinson SE, Manson JE, De Vivo I, Willett WC et al. Interaction between a peroxisome proliferator-activated receptor gamma gene polymorphism and dietary fat intake in relation to body mass. Hum Mol Genet 2003; 12: 2923–2929.

    Article  CAS  PubMed  Google Scholar 

  34. Fonseca V . Effect of thiazolidinediones on body weight in patients with diabetes mellitus. Am J Med 2003; 115: 42–48.

    Article  Google Scholar 

  35. Jaworski K, Ahmadian M, Duncan RE, Sarkadi-nagy E, Varady A, Hellerstein MK et al. AdPLA ablation increases lipolysis and prevents obesity induced by high fat feeding or leptin deficiency. Nat Med 2009; 15: 159–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tansey JT, Sztalryd C, Roush DL, Zee JV, Gavrilova O, Reitman ML et al. Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity. Proc Natl Acad Sci USA 2001; 98: 6494–6499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Saha PK, Kojima H, Martinez-botas J, Sunehag AL, Chan L . Metabolic adaptations in the absence of perilipin: increased beta-oxidation and decreased hepatic glucose production associated with peripheral insulin resistance but normal glucose tolerance in perilipin-null mice. J Biol Chem 2004; 279: 35150–35158.

    Article  CAS  PubMed  Google Scholar 

  38. Riserus U, Sprecher D, Johnson T, Olson E, Hirschberg S, Liu A et al. Activation of peroxisome proliferator-activated receptor (PPAR)delta promotes reversal of multiple metabolic abnormalities, reduces oxidative stress, and increases fatty acid oxidation in moderately obese men 1142. Diabetes 2008; 57: 332–339.

    Article  CAS  PubMed  Google Scholar 

  39. Hotamisligil GS, Johnson RS, Distel RJ, Ellis R, Papaioannou E, Spiegelman BM . Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein. Science (80-) 1996; 274: 1377–1379.

    Article  CAS  Google Scholar 

  40. Kaess BM, Enserro DM, McManus DD, Xanthakis V, Chen MH, Sullivan LM et al. Cardiometabolic correlates and heritability of fetuin-A, retinol-binding protein 4, and fatty-acid binding protein 4 in the framingham heart study. J Clin Endocrinol Metab 2012; 97: E1943–E1947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cao H, Gerhold K, Mayers JR, Wiest MM, Steve M, Hotamisligil GS . Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 2009; 134: 933–944.

    Article  Google Scholar 

  42. Tuncman G, Erbay E, Hom X, De Vivo I, Campos H, Rimm EB et al. A genetic variant at the fatty acid-binding protein aP2 locus reduces the risk for hypertriglyceridemia, type 2 diabetes, and cardiovascular disease. Proc Natl Acad Sci USA 2006; 103: 6970–6975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gan L, Liu Z, Cao W, Zhang Z, Sun C . FABP4 reversed the regulation of leptin on mitochondrial fatty acid oxidation in mice adipocytes. Nat Publ Gr 2015; 5: 1–12.

    Google Scholar 

  44. Zorov DB, Juhaszova M, Sollott SJ . Mitochondrial reactive oxygen species (ros) and ros-induced ros release. Physiol Rev 2014; 94: 909–950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu H, Hertzel AV, Steen KA, Bernlohr DA . Loss of fatty acid binding protein 4/aP2 reduces macrophage inflammation through activation of SIRT3. Mol Endocrinol 2016; 30: 325–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Steen KA, Xu H, Bernlohr DA . FABP4/aP2 regulates macrophage redox signaling and inflammasome activation via control of UCP2. Mol Cell Biol 2016; 37: e00282–16.

    Google Scholar 

  47. Yu X, Wieczorek S, Franke A, Yin H, Pierer M, Sina C et al. Association of UCP2–866 G/A polymorphism with chronic inflammatory diseases. Genes Immun 2009; 10: 601–605.

    Article  CAS  PubMed  Google Scholar 

  48. Esterbauer H, Schneitler C, Oberkofler H, Ebenbichler C, Paulweber B, Sandhofer F et al. A common polymorphism in the promoter of UCP2 is associated with decreased risk of obesity in middle-aged humans. Nat Genet 2001; 28: 178–183.

    Article  CAS  PubMed  Google Scholar 

  49. Vogler S, Goedde R, Miterski B, Gold R, Kroner A, Koczan D et al. Association of a common polymorphism in the promoter of UCP2 with susceptibility to multiple sclerosis. J Mol Med 2005; 83: 806–811.

    Article  CAS  PubMed  Google Scholar 

  50. de Oliveira B, de Souza Pinhel M, Nicoletti C, de Oliveira C, Quinhoneiro D, Noronha N et al. UCP2 and PLIN1 expression affects the resting metabolic rate and weight loss on obese patients. Obes Surg 2017; 27: 343–348.

    Article  PubMed  Google Scholar 

  51. Simón I, Escoté X, Vilarrasa N, Gómez J, Fernández-Real JM, Megía A et al. Adipocyte fatty acid-binding protein as a determinant of insulin sensitivity in morbid-obese women. Obesity (Silver Spring) 2009; 17: 1124–1128.

    Google Scholar 

  52. Terra X, Quintero Y, Auguet T, Porras JA, Hernandez M, Sabench F et al. FABP 4 is associated with inflammatory markers and metabolic syndrome in morbidly obese women. Eur J Endocrinol 2011; 164: 539–547.

    Article  CAS  PubMed  Google Scholar 

  53. Engl J, Ciardi C, Tatarczyk T, Kaser S, Laimer M, Laimer E et al. A-FABP—a biomarker associated with the metabolic syndrome and/or an indicator of weight change? Obesity (Silver Spring) 2008; 16: 1838–1842.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the Bernlohr laboratory, the University of Minnesota Department of Surgery Division of Gastrointestinal and Bariatric Surgery, the University of Minnesota Bionet Department, and the CentraCare Bariatric Center (St. Cloud, MN, USA) for their assistance during the preparation of this manuscript. This study was done using computing resources at the University of Minnesota Supercomputing Institute. This work was supported by the American Diabetes Association (ADA 7-11-ST-01), NIH DK053189 to DAB and the Minnesota Obesity Center (NIH P30DK050456).

Author contributions

CJ, HX, AVH, SI and DAB performed all experiments and data interpretation, and conceived the study design. GL, DBL and SI performed all surgeries and participated in all facets of serum and tissue collection. KE conceived dietary plan and ensured subject compliance. NK, FJS, SSK, HX and CJ collected and stored all specimens. NK, FJS, SSK and CJ performed all qRT–PCR analysis. AVH and HX performed adipose tissue fractionation, western blot, fatty acid oxidation, fatty acid and glycerol measurements. KAS measured cysteine oxidation in SAT. RF and HX measured sera FABP4. CJ, HX, AVH, SSK, SI and DAB wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S Ikramuddin or D A Bernlohr.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahansouz, C., Xu, H., Hertzel, A. et al. Partitioning of adipose lipid metabolism by altered expression and function of PPAR isoforms after bariatric surgery. Int J Obes 42, 139–146 (2018). https://doi.org/10.1038/ijo.2017.197

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2017.197

This article is cited by

Search

Quick links