Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Determination of the half-life of circulating leptin in the mouse

Abstract

Background:

The adipokine hormone, leptin, is a major component of body weight homeostasis. Numerous studies have been performed administering recombinant mouse leptin as an experimental reagent; however, the half-life of circulating leptin following exogenous administration of recombinant mouse leptin has not been carefully evaluated.

Methods:

Exogenous leptin was administered (3 mg leptin per kg body weight) to 10-week-old fasted non-obese male mice and plasma was serially collected at seven time points; plasma leptin concentration was measured by enzyme-linked immunosorbent assay at each time point to estimate the circulating half-life of mouse leptin.

Results:

Under the physiological circumstances tested, the half-life of mouse leptin was 40.2 (±2.2) min. Circulating leptin concentrations up to 1 h following exogenous leptin administration were 170-fold higher than endogenous levels at fasting.

Conclusions:

The half-life of mouse leptin was determined to be 40.2 min. These results should be useful in planning and interpreting experiments employing exogenous leptin. The unphysiological elevations in circulating leptin resulting from widely used dosing regimens for exogenous leptin are likely to confound inferences regarding some aspects of the hormone’s clinical biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Myers MG, Leibel RL. In: De Groot LJ, Beck-Peccoz P, Chrousos G et al. (Eds). Lessons from Rodent Models of Obesity. MDText.com, Endotext: South Dartmouth, 2015.

  2. Rosenbaum M, Leibel RL . 20 years of leptin: role of leptin in energy homeostasis in humans. J Endocrinol 2014; 223: T83–T96.

    Article  CAS  Google Scholar 

  3. Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 1997; 387: 903–908.

    Article  CAS  Google Scholar 

  4. Clement K, Vaisse C, Lahlou N, Cabrolk S, Pelloux V, Cassuto D et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 1998; 392: 398–401.

    Article  CAS  Google Scholar 

  5. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM . Positional cloning of the mouse obese gene and its human homolog. Nature 1994; 372: 425–432.

    Article  CAS  Google Scholar 

  6. Chua SC, Chung WK, Wu-Peng XS, Zhang Y, Liu S-M, Tartaglia L et al. Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (Leptin) receptor. Science 1996; 271: 994–996.

    Article  CAS  Google Scholar 

  7. Maskari MYA, Alnaqdy AA . Correlation between serum leptin levels, body mass index and obesity in Omanis. Sultan Qaboos Univ Med J 2006; 6: 27–31.

    PubMed  PubMed Central  Google Scholar 

  8. Lönnqvist F, Nordfors L, Jansson Mr, Thörne A, Schalling M, Arner P . Leptin secretion from adipose tissue in women relationship to plasma levels and gene expression. J Clin Invest 1997; 99: 2398–2404.

    Article  Google Scholar 

  9. Ravussin Y, LeDuc CA, Watanabe K, Leibel RL . Effects of ambient temperature on adaptive thermogenesis during maintenance of reduced body weight in mice. Am J Physiol Regul Integr Comp Physiol 2012; 303: R438–R448.

    Article  CAS  Google Scholar 

  10. Ahima' RS, Flier JS . Adipose tissue as an endocrine organ. Trends Endocrinol Metab 2000; 11: 327–332.

    Article  CAS  Google Scholar 

  11. Lee MJ, Fried SK . Integration of hormonal and nutrient signals that regulate leptin synthesis and secretion. Am J Physiol Endocrinol Metab 2009; 296: E1230–E1238.

    Article  CAS  Google Scholar 

  12. Lee M-J, Yang R-Z, Gong D-W, Fried SK . Feeding and insulin increase leptin translation. J Biol Chem 2007; 282: 77–80.

    Google Scholar 

  13. Cammisotto PG, Bukowiecki LJ, Deshaies Y, Bendayan M . Leptin biosynthetic pathway in white adipocytes. Biochem Cell Biol 2006; 84: 207–214.

    Article  CAS  Google Scholar 

  14. Ahima RS, Flier JS . Adipose tissue as an endocrine organ. Trends Endocrinol Metab 2000; 11: 327–332.

    Article  CAS  Google Scholar 

  15. Fruhbeck G . Intracellular signalling pathways activated by leptin. Biochem J 2006; 393 ((Pt 1)): 7–20.

    Article  CAS  Google Scholar 

  16. Vaisse C, Halaas J, Horvath C, Darnell J, Stoffel M, Friedman J . Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nat Genet 1996; 14: 95–97.

    Article  CAS  Google Scholar 

  17. Schwartz MW, Seeley RJ, Woods SC, Weigle DS, Campfield LA, Burn P et al. Leptin increases hypothalamic pro-opiomelanocortin mRNA expression in the rostral arcuate nucleus. Diabetes 1997; 46: 2119–2123.

    Article  CAS  Google Scholar 

  18. Hill R, Margetic S, Pegg G, Gazzola C . Leptin: its pharmacokinetics and tissue distribution. Int J Obes 1998; 22: 765–770.

    Article  CAS  Google Scholar 

  19. Klein S, Coppack SW, Mohamed-Ali V, Landt M . Adipose tissue leptin production and plasma leptin kinetics in humans. Diabetes 1996; 45: 984–987.

    Article  CAS  Google Scholar 

  20. Ahima RS, Prabakaran D, Mantzoros CS, Qu D, Lowell BB, Maratos-Flier E et al. Role of leptin in the neuroendocrine response to fasting. Nature 1996; 382: 250–252.

    Article  CAS  Google Scholar 

  21. Brabant G, Nave H, Mayr B, Behrend M, Harmelen VV, Arber P . Secretion of free and protein-bound leptin from subcutaneous adipose tissue of lean and obese women. J Clin Endocrinol Metab 2002; 87: 3966–3970.

    Article  CAS  Google Scholar 

  22. Lammert A, Kiess W, Bottner A, Glasow A, Kratzsch J . Soluble leptin receptor represents the main leptin binding activity in human blood. Biochem Biophys Res Commun 2001; 283: 982–988.

    Article  CAS  Google Scholar 

  23. Chen K, Li F, Li J, Cai H, Strom S, Bisello A et al. Induction of leptin resistance through direct interaction of C-reactive protein with leptin. Nat Med 2006; 12: 425–432.

    Article  CAS  Google Scholar 

  24. Bornstein S, Abu-Asab M, Glasow A, Päth G, Hauner H, Tsokos M et al. Immunohistochemical and ultrastructural localization of leptin and leptin receptor in human white adipose tissue and differentiating human adipose cells in primary culture. Diabetes 2000; 49: 532–538.

    Article  CAS  Google Scholar 

  25. Cohen P, Yang G, Yu X, Soukas AA, Wolfish CS, Friedman JM et al. Induction of leptin receptor expression in the liver by leptin and food deprivation. J Biol Chem. 2005; 280: 10034–10039.

    Article  CAS  Google Scholar 

  26. Chua SC, Koutras IK, Han L, Liu S-M, Kay J, Young SJ et al. Fine structure of the murine leptin receptor gene: splice site suppression is required to form two alternatively spliced transcripts. Genomics 1997; 45: 264–270.

    Article  CAS  Google Scholar 

  27. Maamra M, Bidlingmaier M, Postel-Vinay M, Wu Z, Strasburger C, Ross R . Generation of human soluble leptin receptor by proteolytic cleavage of membrane-anchored receptors. Endocrinology 2001; 142: 4389–4393.

    Article  CAS  Google Scholar 

  28. Huang L, Wang Z, Li C . Modulation of circulating leptin levels by its soluble receptor. J Biol Chem 2001; 276: 6343–6349.

    Article  CAS  Google Scholar 

  29. Yang G, Ge H, Boucher A, Yu X, Li C . Modulation of direct leptin signaling by soluble leptin receptor. Mol Endocrinol 2004; 18: 1354–1362.

    Article  CAS  Google Scholar 

  30. Mistrík P, Moreau F, Allen J . BiaCore analysis of leptin-leptin receptor interaction: evidence for 1:1 stoichiometry. Anal Biochem 2004; 327: 271–277.

    Article  Google Scholar 

  31. Bates SH, Stearns WH, Dundon TA, Schubert M, Tso AWK, Wang Y et al. STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature 2003; 421: 856–859.

    Article  CAS  Google Scholar 

  32. Ravussin Y, LeDuc CA, Watanabe K, Mueller BR, Skowronski A, Rosenbaum M et al. Effects of chronic leptin infusion on subsequent body weight and composition in mice: can body weight set point be reset? Mol Metab 2014; 3: 432–440.

    Article  CAS  Google Scholar 

  33. Qiu J, Ogus S, Lu R, Chehab F . Transgenic mice overexpressing leptin accumulate adipose mass at an older, but not younger, age. Endocrinology 2001; 142: 342–358.

    Google Scholar 

  34. Balland E, Dam J, Langlet F, Caron E, Steculorum S, Messina A et al. Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metab 2014; 19: 293–301.

    Article  CAS  Google Scholar 

  35. Rodríguez E, Blázquez J, Guerra M . The design of barriers in the hypothalamus allows the median eminence and the arcuate nucleus to enjoy private milieus: the former opens to the portal blood and the latter to the cerebrospinal fluid. Peptides 2010; 4: 757.

    Article  Google Scholar 

  36. Roujeau C, Jockers R, Dam J . New pharmacological perspectives for the leptin receptor in the treatment of obesity. Front Endocrinol 2014; 5: 167.

    Article  Google Scholar 

  37. Uotani S, Bjørbæk C, Tornøe J, Flier JS . Functional properties of leptin receptor isoforms internalization and degradation of leptin and ligand-induced receptor downregulation. Diabetes 1999; 48: 279–286.

    Article  CAS  Google Scholar 

  38. Stratigopoulos G, LeDuc CA, Cremona ML, Chung WK, Leibel RL . Cut-like Homeobox 1 (CUX1) regulates expression of the fat mass and obesity-associated and Retinitis Pigmentosa GTPase Regulator-interacting Protein-1-like (RPGRIP1L) genes and coordinates leptin receptor signaling. J Biol Chem 12010; 286: 2155–2170.

    Article  Google Scholar 

  39. Gan L, Guo K, Cremona M, McGraw T, Leibel R, Zhang Y . TNF-α up-regulates protein level and cell surface expression of the leptin receptor by stimulating its export via a PKC-dependent mechanism. Endocrinology 2012; 153: 5821–5833.

    Article  CAS  Google Scholar 

  40. Seo S, Guo D-F, Bugge K, Morgan DA, Rahmouni K, Sheffield VC . Requirement of Bardet-Biedl syndrome proteins for leptin receptor signaling. Hum Mol Genet 2009; 18: 1323–1331.

    Article  CAS  Google Scholar 

  41. Byun K, Gil SY, Namkoong C, Youn BS, Huang S, Shin MS et al. Clusterin/ApoJ enhances central leptin signaling through Lrp2‐mediated endocytosis. EMBO Rep 2014; 15: 801–808.

    Article  CAS  Google Scholar 

  42. Björnholm M, Münzberg H, Leshan R, Villanueva E, Bates S, Louis G et al. Mice lacking inhibitory leptin receptor signals are lean with normal endocrine function. J Clin Invest 2007; 117: 1354–1360.

    Article  Google Scholar 

  43. Enriori PJ, Sinnayah P, Simonds SE, Rudaz CG, Cowley MA . Leptin action in the dorsomedial hypothalamus increases sympathetic tone to brown adipose tissue in spite of systemic leptin resistance. Neurobiol Dis 2011; 31: 12189–12197.

    CAS  Google Scholar 

  44. Ernst MB, Wunderlich CM, Hess S, Paehler M, Mesaros A, Koralov SB et al. Enhanced Stat3 activation in POMC neurons provokes negative feedback inhibition of leptin and insulin signaling in obesity. Neurobiol Dis 2009; 29: 11582–11593.

    CAS  Google Scholar 

  45. Stratigopoulos G, Carli JFM, O’Day DR, Wang L, LeDuc CA, Lanzano P et al. Hypomorphism for RPGRIP1L, a ciliary gene vicinal to the FTO locus, causes increased adiposity in mice. Cell Metab 2014; 19: 767–779.

    Article  CAS  Google Scholar 

  46. Ravussin Y, Gutman R, Diano S, Shanabrough M, Borok E, Sarman B et al. Effects of chronic weight perturbation on energy homeostasis and brain structure in mice. Am J Physiol Regul Integr Comp Physiol 2011; 300: R1352–R1362.

    Article  CAS  Google Scholar 

  47. Rosenbaum M, Goldsmith R, Bloomfield D, Magnano A, Weimer L, Heymsfield S et al. Low-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight. J Clin Invest 2005; 115: 3579–3586.

    Article  CAS  Google Scholar 

  48. Galgani J, Greenway F, Caglayan S, Wong M, Licinio J, Ravussin E . Leptin replacement prevents weight loss-induced metabolic adaptation in congenital leptin-deficient patients. J Clin Endocrinol Metab 2010; 95: 851–855.

    Article  CAS  Google Scholar 

  49. Hambly C, Duncan J, Archer Z, Moar K, Mercer J, Speakman J . Repletion of TNFα or leptin in calorically restricted mice suppresses post-restriction hyperphagia. Dis Models Mech 2012; 5: 83–94.

    Article  CAS  Google Scholar 

  50. Knight Z, Hannan K, Greenberg M, Friedman J . Hyperleptinemia is required for the development of leptin resistance. PLoS One 2010; 5: e11376.

    Article  Google Scholar 

  51. Montez J, Soukas A, Asilmaz E, Fayzikhodjaeva G, Fantuzzi G, Friedman J . Acute leptin deficiency, leptin resistance, and the physiologic response to leptin withdrawal. Proc Natl Acad Sci 2005; 102: 2537–2542.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Yiying Zhang, Jayne Martin Carli and Yann Ravussin for helpful discussions and Benjamin J Burnett for assistance in half-life modeling. We thank the Foundation for Prader-Willi Research, the Russell Berrie Foundation and RO1 DK52431 for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R L Leibel.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burnett, L., Skowronski, A., Rausch, R. et al. Determination of the half-life of circulating leptin in the mouse. Int J Obes 41, 355–359 (2017). https://doi.org/10.1038/ijo.2016.238

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2016.238

This article is cited by

Search

Quick links