Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

High fat induces acute and chronic inflammation in the hypothalamus: effect of high-fat diet, palmitate and TNF-α on appetite-regulating NPY neurons

Abstract

Background:

Consumption of dietary fat is one of the key factors leading to obesity. High-fat diet (HFD)-induced obesity is characterized by induction of inflammation in the hypothalamus; however, the temporal regulation of proinflammatory markers and their impact on hypothalamic appetite-regulating neuropeptide Y/agouti-related peptide (NPY/AgRP) neurons remains undefined.

Methods:

Mice were injected with an acute lipid infusion for 24 h or fed a HFD over 8–20 weeks. Characterized mouse NPY/AgRP hypothalamic cell lines were used for in vitro experimentation. Immunohistochemistry in brain slices or quantitative real-time PCR in cell lines, was performed to determine changes in the expression of key inflammatory markers and neuropeptides.

Results:

Hypothalamic inflammation, indicated by tumor necrosis factor (TNF)-α expression and astrocytosis in the arcuate nucleus, was evident following acute lipid infusion. HFD for 8 weeks suppressed TNF-α, while significantly increasing heat-shock protein 70 and ciliary neurotrophic factor, both neuroprotective components. HFD for 20 weeks induced TNF-α expression in NPY/AgRP neurons, suggesting a detrimental temporal regulatory mechanism. Using NPY/AgRP hypothalamic cell lines, we found that palmitate provoked a mixed inflammatory response on a panel of inflammatory and endoplasmic reticulum (ER) stress genes, whereas TNF-α significantly upregulated IκBα, nuclear factor (NF)-κB and interleukin-6 mRNA levels. Palmitate and TNF-α exposure predominantly induced NPY mRNA levels. Utilizing an I kappa B kinase β (IKKβ) inhibitor, we demonstrated that these effects potentially occur via the inflammatory IKKβ/NF-κB pathway.

Conclusions:

These findings indicate that acute lipid and chronic HFD feeding in vivo, as well as acute palmitate and TNF-α exposure in vitro, induce markers of inflammation or ER stress in the hypothalamic appetite-stimulating NPY/AgRP neurons over time, which may contribute to a dramatic alteration in NPY/AgRP content or expression. Acute and chronic HFD feeding in vivo temporally regulates arcuate TNF-α expression with reactive astrocytosis, which suggests a time-dependent neurotrophic or neurotoxic role of lipids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Flier JS . Obesity wars: molecular progress confronts an expanding epidemic. Cell 2004; 116: 337–350.

    Article  CAS  PubMed  Google Scholar 

  2. Niswender KD, Morton GJ, Stearns WH, Rhodes CJ, Myers Jr MG, Schwartz MW . Intracellular signalling. Key enzyme in leptin-induced anorexia. Nature 2001; 413: 794–795.

    Article  CAS  PubMed  Google Scholar 

  3. Milanski M, Degasperi G, Coope A, Morari J, Denis R, Cintra DE et al. Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. J Neurosci 2009; 29: 359–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. De Souza CT, Araujo EP, Bordin S, Ashimine R, Zollner RL, Boschero AC et al. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology 2005; 146: 4192–4199.

    Article  CAS  PubMed  Google Scholar 

  5. Howard JK, Cave BJ, Oksanen LJ, Tzameli I, Bjorbaek C, Flier JS . Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of Socs3. Nat Med 2004; 10: 734–738.

    Article  CAS  PubMed  Google Scholar 

  6. Lemus MB, Bayliss JA, Lockie SH, Santos VV, Reichenbach A, Stark R et al. A stereological analysis of NPY, POMC, Orexin, GFAP astrocyte, and Iba1 microglia cell number and volume in diet-induced obese male mice. Endocrinology 2015; 156: 1701–1713.

    Article  CAS  PubMed  Google Scholar 

  7. Wang H, Storlien LH, Huang XF . Effects of dietary fat types on body fatness, leptin, and ARC leptin receptor, NPY, and AgRP mRNA expression. Am J Physiol Endocrinol Metab 2002; 282: E1352–E1359.

    Article  CAS  PubMed  Google Scholar 

  8. Alkemade A, Yi CX, Pei L, Harakalova M, Swaab DF, la Fleur SE et al. AgRP and NPY expression in the human hypothalamic infundibular nucleus correlate with body mass index, whereas changes in alphaMSH are related to type 2 diabetes. J Clin Endocrinol Metab 2012; 97: E925–E933.

    Article  CAS  PubMed  Google Scholar 

  9. Akira S, Takeda K . Toll-like receptor signalling. Nat Rev Immunol 2004; 4: 499–511.

    Article  CAS  PubMed  Google Scholar 

  10. Hayden MS, Ghosh S . Shared principles in NF-kappaB signaling. Cell 2008; 132: 344–362.

    Article  CAS  PubMed  Google Scholar 

  11. Miyazaki Y, Pipek R, Mandarino LJ, DeFronzo RA . Tumor necrosis factor alpha and insulin resistance in obese type 2 diabetic patients. Int J Obes Relat Metab Disord 2003; 27: 88–94.

    Article  CAS  PubMed  Google Scholar 

  12. Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest 2012; 122: 153–162.

    CAS  PubMed  Google Scholar 

  13. Amaral ME, Barbuio R, Milanski M, Romanatto T, Barbosa HC, Nadruz W et al. Tumor necrosis factor-alpha activates signal transduction in hypothalamus and modulates the expression of pro-inflammatory proteins and orexigenic/anorexigenic neurotransmitters. J Neurochem 2006; 98: 203–212.

    Article  CAS  PubMed  Google Scholar 

  14. Cansell C, Castel J, Denis RG, Rouch C, Delbes AS, Martinez S et al. Dietary triglycerides act on mesolimbic structures to regulate the rewarding and motivational aspects of feeding. Mol Psychiatry 2014; 19: 1095–1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dalvi PS, Nazarians-Armavil A, Purser MJ, Belsham DD . Glucagon-like peptide-1 receptor agonist, exendin-4, regulates feeding-associated neuropeptides in hypothalamic neurons in vivo and in vitro. Endocrinology 2012; 153: 2208–2222.

    Article  CAS  PubMed  Google Scholar 

  16. Belsham DD, Cai F, Cui H, Smukler SR, Salapatek AM, Shkreta L . Generation of a phenotypic array of hypothalamic neuronal cell models to study complex neuroendocrine disorders. Endocrinology 2004; 145: 393–400.

    Article  CAS  PubMed  Google Scholar 

  17. Belsham DD, Fick LJ, Dalvi PS, Centeno ML, Chalmers JA, Lee PK et al. Ciliary neurotrophic factor recruitment of glucagon-like peptide-1 mediates neurogenesis, allowing immortalization of adult murine hypothalamic neurons. FASEB J 2009; 23: 4256–4265.

    Article  CAS  PubMed  Google Scholar 

  18. Dhillon SS, McFadden SA, Chalmers JA, Centeno ML, Kim GL, Belsham DD . Cellular leptin resistance impairs the leptin-mediated suppression of neuropeptide Y secretion in hypothalamic neurons. Endocrinology 2011; 152: 4138–4147.

    Article  CAS  PubMed  Google Scholar 

  19. Hamilton JA, Johnson RA, Corkey B, Kamp F . Fatty acid transport: the diffusion mechanism in model and biological membranes. J Mol Neurosci 2001; 16: 99–108 discussion 151–157.

    Article  CAS  PubMed  Google Scholar 

  20. Sofroniew MV . Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 2009; 32: 638–647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ransohoff RM, Perry VH . Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 2009; 27: 119–145.

    Article  CAS  PubMed  Google Scholar 

  22. Sofroniew MV, Vinters HV . Astrocytes: biology and pathology. Acta Neuropathol 2010; 119: 7–35.

    Article  PubMed  Google Scholar 

  23. Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D . Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell 2008; 135: 61–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cheng B, Christakos S, Mattson MP . Tumor necrosis factors protect neurons against metabolic-excitotoxic insults and promote maintenance of calcium homeostasis. Neuron 1994; 12: 139–153.

    Article  CAS  PubMed  Google Scholar 

  25. Marchetti L, Klein M, Schlett K, Pfizenmaier K, Eisel UL . Tumor necrosis factor (TNF)-mediated neuroprotection against glutamate-induced excitotoxicity is enhanced by N-methyl-D-aspartate receptor activation. Essential role of a TNF receptor 2-mediated phosphatidylinositol 3-kinase-dependent NF-kappa B pathway. J Biol Chem 2004; 279: 32869–32881.

    Article  CAS  PubMed  Google Scholar 

  26. Bruce AJ, Boling W, Kindy MS, Peschon J, Kraemer PJ, Carpenter MK et al. Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nat Med 1996; 2: 788–794.

    Article  CAS  PubMed  Google Scholar 

  27. Turturici G, Sconzo G, Geraci F . Hsp70 and its molecular role in nervous system diseases. Biochem Res Int 2011; 2011: 618127.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kokoeva MV, Yin H, Flier JS . Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science 2005; 310: 679–683.

    Article  CAS  PubMed  Google Scholar 

  29. Gropp E, Shanabrough M, Borok E, Xu AW, Janoschek R, Buch T et al. Agouti-related peptide-expressing neurons are mandatory for feeding. Nat Neurosci 2005; 8: 1289–1291.

    Article  CAS  PubMed  Google Scholar 

  30. Picardi PK, Caricilli AM, de Abreu LL, Carvalheira JB, Velloso LA, Saad MJ . Modulation of hypothalamic PTP1B in the TNF-alpha-induced insulin and leptin resistance. FEBS Lett 2010; 584: 3179–3184.

    Article  CAS  PubMed  Google Scholar 

  31. Holland WL, Bikman BT, Wang LP, Yuguang G, Sargent KM, Bulchand S et al. Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J Clin Invest 2011; 121: 1858–1870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Benoit SC, Kemp CJ, Elias CF, Abplanalp W, Herman JP, Migrenne S et al. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents. J Clin Invest 2009; 119: 2577–2589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dougherty RM, Fong AK, Iacono JM . Nutrient content of the diet when the fat is reduced. Am J Clin Nutr 1988; 48: 970–979.

    Article  CAS  PubMed  Google Scholar 

  34. Gao Y, Han C, Huang H, Xin Y, Xu Y, Luo L et al. Heat shock protein 70 together with its co-chaperone CHIP inhibits TNF-alpha induced apoptosis by promoting proteasomal degradation of apoptosis signal-regulating kinase1. Apoptosis 2010; 15: 822–833.

    Article  CAS  PubMed  Google Scholar 

  35. Sharp FR, Massa SM, Swanson RA . Heat-shock protein protection. Trends Neurosci 1999; 22: 97–99.

    Article  CAS  PubMed  Google Scholar 

  36. Sendtner M, Carroll P, Holtmann B, Hughes RA, Thoenen H . Ciliary neurotrophic factor. J Neurobiol 1994; 25: 1436–1453.

    Article  CAS  PubMed  Google Scholar 

  37. Sleeman MW, Anderson KD, Lambert PD, Yancopoulos GD, Wiegand SJ . The ciliary neurotrophic factor and its receptor, CNTFR alpha. Pharm Acta Helv 2000; 74: 265–272.

    Article  CAS  PubMed  Google Scholar 

  38. Severi I, Perugini J, Mondini E, Smorlesi A, Frontini A, Cinti S et al. Opposite effects of a high-fat diet and calorie restriction on ciliary neurotrophic factor signaling in the mouse hypothalamus. Front Neurosci 2013; 7: 263.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gloaguen I, Costa P, Demartis A, Lazzaro D, Di Marco A, Graziani R et al. Ciliary neurotrophic factor corrects obesity and diabetes associated with leptin deficiency and resistance. Proc Natl Acad Sci USA 1997; 94: 6456–6461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lambert PD, Anderson KD, Sleeman MW, Wong V, Tan J, Hijarunguru A et al. Ciliary neurotrophic factor activates leptin-like pathways and reduces body fat, without cachexia or rebound weight gain, even in leptin-resistant obesity. Proc Natl Acad Sci USA 2001; 98: 4652–4657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bluher S, Moschos S, Bullen Jr J, Kokkotou E, Maratos-Flier E, Wiegand SJ et al. Ciliary neurotrophic factorAx15 alters energy homeostasis, decreases body weight, and improves metabolic control in diet-induced obese and UCP1-DTA mice. Diabetes 2004; 53: 2787–2796.

    Article  PubMed  Google Scholar 

  42. Chandrasekharan B, Jeppsson S, Pienkowski S, Belsham DD, Sitaraman SV, Merlin D et al. Tumor necrosis factor (TNF)-neuropeptide Y (NPY) crosstalk regulates inflammation, epithelial barrier functions and colonic motility. Inflamm Bowel Dis 2013; 19: 2535–2546.

    Article  PubMed  Google Scholar 

  43. Won JC, Jang PG, Namkoong C, Koh EH, Kim SK, Park JY et al. Central administration of an endoplasmic reticulum stress inducer inhibits the anorexigenic effects of leptin and insulin. Obesity (Silver Spring) 2009; 17: 1861–1865.

    Article  CAS  Google Scholar 

  44. Mayer CM, Belsham DD . Palmitate attenuates insulin signaling and induces endoplasmic reticulum stress and apoptosis in hypothalamic neurons: rescue of resistance and apoptosis through adenosine 5' monophosphate-activated protein kinase activation. Endocrinology 2010; 151: 576–585.

    Article  CAS  PubMed  Google Scholar 

  45. Moraes JC, Coope A, Morari J, Cintra DE, Roman EA, Pauli JR et al. High-fat diet induces apoptosis of hypothalamic neurons. PLoS One 2009; 4: e5045.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Canadian Institutes for Health Research (CIHR) (DDB, MBW), Canadian Diabetes Association (DDB, MBW) and Canada Research Chairs Program (DDB) for funding this study. Scholarship support through the Banting and Best Diabetes Research Centre (to PSD, LW), CIHR Fellowship (to LW), NSERC Studentships (to PSD and DQT), and an Ontario Graduate Scholarship (to PSD and DQT) is much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D D Belsham.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalvi, P., Chalmers, J., Luo, V. et al. High fat induces acute and chronic inflammation in the hypothalamus: effect of high-fat diet, palmitate and TNF-α on appetite-regulating NPY neurons. Int J Obes 41, 149–158 (2017). https://doi.org/10.1038/ijo.2016.183

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2016.183

This article is cited by

Search

Quick links