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The individual and combined effects of obesity- and
ageing-induced systemic inflammation on human skeletal
muscle properties
RM Erskine1,2, DJ Tomlinson3, CI Morse3, K Winwood3, P Hampson4, JM Lord4 and GL Onambélé3

BACKGROUND/OBJECTIVES: The purpose of this study was to determine whether circulating pro-inflammatory cytokines, elevated
with increased fat mass and ageing, were associated with muscle properties in young and older people with variable adiposity.
SUBJECTS/METHODS: Seventy-five young (18–49 yrs) and 67 older (50–80 yrs) healthy, untrained men and women (BMI: 17–49 kg/
m2) performed isometric and isokinetic plantar flexor maximum voluntary contractions (MVCs). Volume (Vm), fascicle pennation
angle (FPA), and physiological cross-sectional area (PCSA) of the gastrocnemius medialis (GM) muscle were measured using
ultrasonography. Voluntary muscle activation (VA) was assessed using electrical stimulation. GM specific force was calculated as GM
fascicle force/PCSA. Percentage body fat (BF%), body fat mass (BFM), and lean mass (BLM) were assessed using dual-energy X-ray
absorptiometry. Serum concentration of 12 cytokines was measured using multiplex luminometry.
RESULTS: Despite greater Vm, FPA, and PCSA (Po0.05), young individuals with BF% ⩾ 40 exhibited 37% less GM specific force
compared to young BF%o40 (Po0.05). Older adults with BF% ⩾ 40 showed greater isokinetic MVC compared to older BF%o40
(P= 0.019) but this was reversed when normalised to body mass (Po0.001). IL-6 correlated inversely with VA in young (r=− 0.376;
P= 0.022) but not older adults (p40.05), while IL-8 correlated with VA in older but not young adults (r⩾ 0.378, P⩽ 0.027). TNF-alpha
correlated with MVC, lean mass, GM FPA and maximum force in older adults (r⩾ 0.458; P⩽ 0.048).
CONCLUSIONS: The age- and adiposity-dependent relationships found here provide evidence that circulating pro-inflammatory
cytokines may play different roles in muscle remodelling according to the age and adiposity of the individual.
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INTRODUCTION
Obesity, defined as a body mass index (BMI)⩾ 30, is a major global
public health concern, with over 500 million people worldwide
classified as overweight or obese.1 As well as being linked to
metabolic disorders,2–4 the maximum muscle strength produced
by obese individuals is significantly less than that generated by
non-obese people when normalised to body mass,5 limb lean
mass,6 or to the muscle physiological cross-sectional area (PCSA).7

This could lead to major functional limitations for daily living
activities, such as climbing/descending stairs, rising from a chair,
recovering from a trip, etc., which in turn could lead to
hospitalisation and reduced quality of life.
There are a number of reasons why muscle quality (defined

here as muscle specific force, i.e., the maximum force per unit
PCSA) might be lower in obese vs non-obese people. Fat
infiltration within the skeletal muscle reduces the contractile
component of the total muscle volume,8 thereby lowering the
intrinsic strength of the whole muscle.9 Furthermore, intramus-
cular lipid acts as a chemoattractant for macrophages,10 which
produce pro-inflammatory cytokines,11 such as tumour necrosis
factor-alpha (TNF-α)12 and interleukin-6 (IL-6).13 This chronic
immune response is characterised by elevated concentrations of
these pro-inflammatory cytokines in the blood resulting in chronic
low-grade systemic inflammation, which has been observed in
young12,14 and older15 obese people. To compound this problem,

both adipocytes16 and macrophages11 secrete pro-inflammatory
cytokines, and it has been suggested that fat accounts for
approximately 30% of serum IL-6 levels in humans.17 Thus, a
chronically inflamed environment is created within and around
the muscle containing substantial intramuscular fat. Crucially, as
well as acting as chemoattractants, these cytokines are directly
involved in the breakdown of muscle protein.18 This would
interfere with the accretion of contractile material caused by the
chronic low-intensity overloading of the muscle,19 thus reducing
muscle specific force. However, it is unclear to what extent chronic
inflammation is responsible for the reduction in muscle quality
and muscle function in obese individuals.
As well as the increase in obesity incidence, we are living for

longer. This is particularly relevant, as ageing is associated with a
decrease in muscle activation capacity,20 loss of muscle size,21 a
decrease in the fascicle pennation angle,22 i.e., the angle at which
the fascicles insert into the lower aponeurosis [the smaller the
muscle fibre CSA, the smaller the pennation angle23], and reduced
muscle strength, both at the whole muscle and fascicle levels.21

Collectively, these physiological changes in muscle properties with
age lead to senile sarcopaenia, which is thought to be a major
factor underlying the incidence of falls and reduced quality of life
in older people.24 Furthermore, ageing is associated with
increased intramuscular fat,25,26 which is likely a major cause of
chronically elevated levels of pro-inflammatory circulating
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cytokines27,28 and lower muscle specific force21 in older vs
younger adults. Furthermore, central inflammation, i.e., elevated
pro-inflammatory cytokines in the hippocampus and hypothala-
mus, leads to neuroinflammation,29 which might help explain the
lower neuromuscular activation and absolute strength commonly
observed in older vs younger individuals.6,20,21,30 Moreover, as a
high fat diet can elevate pro-inflammatory cytokine expression
and activate the pro-inflammatory transcription factor nuclear
factor-κB (NF-κB) in the hypothalamus,31 it is feasible that a higher
fat diet in both young and older obese individuals could have
reduced ability to activate their muscles compared to leaner
persons due to neuroinflammation.
Although both obesity and ageing can lead to chronic low

grade systemic inflammation, it is not known if systemic
inflammation in obese older adults signifies a cumulative negative
impact of both ageing and obesity on skeletal muscle properties.
Therefore, the aim of this study was to determine whether
circulating pro-inflammatory cytokines, elevated with increased
fat mass12,32,33 and ageing,27,28,34 could explain the different
effects of obesity on skeletal muscle size, architecture and
strength between young and older adults. We hypothesised that
pro-inflammatory cytokines would be associated with lower
muscle size and strength in both young obese and older
individuals. Further, we hypothesised that circulating pro-
inflammatory cytokine concentration would be inversely corre-
lated with neuromuscular activation and strength in older and
obese people.

SUBJECTS AND METHODS
Subjects
One hundred and forty-two healthy, untrained men and women gave their
written informed consent to participate in this study, which complied with
the Declaration of Helsinki35 and was approved by the local ethics
committee of Manchester Metropolitan University. Participants were

categorised according to total body fat percentage (normal: o40%; high:
⩾ 40% for females,7,36,37 and normal: o28%; high: ⩾ 28% for males36) and
age (young: 18–49 yrs; older: 50–80 yrs), and their physical characteristics
are shown in Table 1. Within the total cohort, there were 75 young (56
women, 22 men) and 67 older (48 women, 19 men) participants (Table 1).
Of the younger group, 35 women and 17 men were normal BF%, and 19
women and 4 men were high BF%. Of the older group, 19 women and 4
men were normal BF%, and 29 women and 15 men were high BF%.
Volunteers were screened for general health and habitual physical activity
via questionnaire prior to participation. Exclusion criteria included history
of lower limb muscle/tendon/joint disorders that affected mobility or the
ability to exert maximum plantar-/dorsiflexor force; any chronic inflam-
matory condition; immunosuppressant medication; pregnancy; history of
lower-limb resistance training in the six months prior to the start of the
study; participation in 42 hourly sessions of structured physical activity a
week; cognitive impediments.

Experimental design
Participants visited the laboratory on three separate occasions within
14 days. During the first session, participants provided a fasted 10 ml
venous blood sample, from which serum levels of 12 inflammatory
cytokines were quantified, and a sub-sample of participants were
instructed how to use a 3-day food and drink diary, which was used to
analyse habitual dietary fat intake. All 142 participants were subsequently
familiarised to the muscle function assessments, which consisted of
isometric and isokinetic plantar flexor (PF) and dorsiflexor (DF) maximum
voluntary contractions (MVCs), and ramp isometric PF contractions to
measure gastrocnemius medialis (GM) muscle architecture (fascicle length,
Lf, and pennation angle, θp). On the second visit, participants completed a
full body dual-energy X-ray absorptiometry (DXA) scan in the fasted state
to assess total body composition. GM muscle volume was then determined
from axial ultrasound scans and muscle length in 127 (men, n= 32; women,
n= 95) participants. On the third and final visit, participants repeated the
muscle function assessments, and the highest MVC scores from either the
familiarisation or third laboratory session were used for subsequent
analysis. The muscle function and morphology measurements were all
performed on the dominant limb. Joint torque, joint angle, electromyo-
graphic (EMG) activity and electrical stimulation signals were interfaced

Table 1. Body composition and gastrocnemius medialis (GM) muscle strength (n= 142), size and architecture (n= 127) of the study participants
according to age and body fat percentage (BF%)

Variable Young (n=75) Older (n= 67)

Normal BF% (n=52) High BF% (n=23) Normal BF% (n=23) High BF% (n= 44)

Age (yrs) 24.04± 8.42 28.04± 9.69 65.52± 7.98a 66.02± 7.29a

Height (m) 1.70± 0.10 1.68± 0.08 1.63± 0.09a 1.65± 0.06a

Body mass (kg) 65.56± 13.50 94.93± 14.13b,c 62.23± 14.13a 79.65± 14.64a,b

BMI (m/kg2) 22.75± 3.87 33.81± 4.86b,c 23.16± 3.43a 29.23± 5.33a,b

Body fat (%) 27.59± 6.92c 43.30± 6.56b 32.31± 9.93 40.60± 7.04b

Body fat mass (kg) 17.70± 6.42 40.13± 8.85b,c 19.59± 5.72a 31.64± 9.70a,b

Body lean mass (kg) 43.62± 9.53 49.60± 8.26b 38.89± 9.67a 43.26± 8.14a,b

iMVC PF torque (N·m) 173.64± 44.17 200.75± 42.92b 133.37± 36.60a 145.20± 34.41a,b

ikMVC PF torque (N·m) 92.34± 25.18 102.00± 21.10 60.51± 20.83a 63.27± 20.85a

VA (%) 95.29± 5.51 88.02± 11.04b 86.58± 14.15a 84.28± 12.05a,b

Ft (N) 5245± 1357 5949± 1631b 4026± 1079a 4400± 1055a,b

GM Ff (N) 1221± 334 1471± 427b 930± 274a 1042± 273a,b

GM Vm (cm3) 214.59± 61.61 310.75± 59.37b,c 203.66± 43.24a 217.11± 49.19a,b

GM θp (°) 30.58± 5.09 35.10± 3.95b 27.71± 4.73a 30.36± 4.60a,b

GM Lf (cm) 3.65± 0.58 3.73± 0.54 3.94± 0.78 3.86± 0.60
GM PCSA (cm2) 60.20± 16.52 85.86± 18.00b,c 52.50± 13.23a 57.14± 13.93a,b

iMVC/BM (N·m/kg) 2.59± 0.58 1.99± 0.36b 2.10± 0.41a 1.71± 0.34a,b

ikMVC/BM (N·m/kg) 1.43± 0.28 1.09± 0.25b 0.97± 0.25a 0.80± 0.25a,b

iMVC/Vm (N·m/cm3) 0.81± 0.18c 0.65± 0.14b 0.66± 0.14 0.68± 0.15b

ikMVC/Vm (N·m/cm3) 0.43± 0.12c 0.34± 0.09b 0.30± 0.10a 0.30± 0.08a,b

GM specific force (N/cm2) 21.07± 5.85 17.59± 5.28 18.35± 5.33 18.80± 4.72

Abbreviations: BM, body mass; BMI, body mass index; Ft, maximum Achilles tendon force; GM Ff, gastrocnemius medialis fascicle force; ikMVC, isokinetic
maximum voluntary contraction; iMVC, isometric maximum voluntary contraction; Lf, muscle fascicle length; PCSA, physiological cross-sectional area; VA,
voluntary muscle activation; Vm, muscle volume; θp, muscle fascicle pennation angle. Values are mean± s.d. aSignificant effect of age (Po0.05). bSignificant
effect of BF% (Po0.05). cSignificant age × BF% interaction (Po0.05).
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with an analogue-to-digital converter (Biopac Systems Inc, Santa Barbara,
USA), sampled at 2,000 Hz and displayed on the screen of an iMac
computer (Apple, Cupertino, USA) using AcqKnowledge software (Biopac
Systems).

Body composition
Participants a whole body DXA scan (Discovery W, Hologic Inc., Bedford,
USA) between 08:00 and 09:00 after a 12 h fast. Total body fat mass, lean
mass, and body fat percentage (BF%), were calculated using Hologic APEX
software (version 3.3).

Dietary fat intake
Habitual dietary fat profiles of a subsample of 61 subjects were assessed
using a three-day food diary recorded over two weekdays (Thursday
and Friday) and one weekend day (Saturday). Subjects recorded their
eating and drinking habits in as much detail as possible, e.g., time of meal,
weight of food/ingredients in grams and volume of drink in mL,
commercial brand names of food/ingredients and drink, any leftovers
and cooking preparation methods. Dietary analysis was conducted
using Nutritics software (version 1.8, Nutritics Ltd., Co. Dublin, Ireland).
From the food analysis, dietary fat (absolute values and normalised to body
mass) for each subject was calculated as an average over the three-day
period.

Neuromuscular measurements
PF and DF MVCs. Participants sat on the chair of an isokinetic
dynamometer (Cybex Norm, Cybex International, New York, USA) with a
hip angle of 85° (180° corresponding to the supine position) and were
firmly strapped at the hip, distal thigh and chest with inextensible straps to
minimise extraneous movement. The dominant leg was fully extended and
the foot was securely fastened to the dynamometer footplate with the
lateral malleolus aligned with the axis of rotation. Participants performed
2–3 isometric PF and DF MVCs (iMVCs) for 2–3 s (alternating between PF
and DF every 60 s) at each of the following ankle joint positions: − 5° (DF),
0° (neutral position, foot 90° to tibia) and 10° (PF). DF iMVCs were
performed to obtain maximum DF EMG, in order to calculate antagonist
co-activation during PF iMVC (see below). Participants also performed
three consecutive isokinetic PF MVCs (ikMVCs) at 60° s− 1 from − 5° to 10°.

Antagonist muscle co-activation. After appropriate skin preparation, two
bipolar Ag-AgCl surface EMG electrodes (Neuroline, Medicotest, Rugmar-
ken, Denmark) were placed 20 mm apart along the sagittal axis over the
proximal third of the tibialis anterior (TA) muscle belly (SENIAM), with a
reference electrode positioned over the lateral tibial condyle. The EMG
signal was pre-amplified (×2,000) and filtered using high- and low-pass
filters set at 10 and 500 Hz, respectively (plus notch filter at 50 Hz). The root
mean square (RMS) of the EMG signal was calculated over 1 s around the
peak torque during each PF and DF MVC at all three joint angles. Thus,
antagonist torque output during PF iMVC was calculated by dividing TA
EMG RMS during PF iMVC by TA EMG RMS during DF iMVC, and multiplying
DF iMVC torque by this ratio. The sum of the antagonist torque and PF
iMVC torque was used to calculate maximum Achilles tendon force and
GM muscle specific force (see below).

Voluntary muscle activation. The level of voluntary muscle activation was
measured using the interpolated twitch technique (ITT) during the PF
iMVCs with the joint set at 0°. Electrical muscle stimulation was
administered percutaneously to the PF muscle group via two 5× 10 cm
self-adhesive electrodes (American Imex, Irvine, USA) placed distal to the
popliteal crease (cathode) and the myotendinous junction of the soleus
(anode). A supramaximal doublet (two twitch stimuli of 0.2 ms pulse width,
administered at 100 Hz) was manually applied at rest (control doublet) 3 s
before iMVC, and once during iMVC. The level of voluntary muscle
activation was given by:

100 ´ 1–t=Tð Þ

where t is the force of the superimposed doublet and T is the force of the
control doublet. This percentage was used to calculate the maximum
isometric torque able to be produced by the PF group (PF max torque) at

each joint angle, as shown below:

PF max torque ¼ PF iMVC corrected for co - activationð Þ= 1–t=Tð Þ

Achilles tendon moment arm. The tendon excursion method using
B-mode ultrasonography (AU5 Harmonic, Esaote Biomedica, Genoa, Italy),
as described previously,38,39 was used to determine the Achilles tendon
moment arm. Participants were secured to the dynamometer chair and
foot-plate (ankle set at 0°), as described above. A 2 mm wide, 2 cm long
strip of surgical tape (3M, Neuss, Germany) was attached to the skin,
transversely over the GM myotendinous junction (MTJ). The 4 cm wide,
7.5 MHz linear array ultrasound probe was then positioned sagitally over
the tape to record the passive movement of the GM MTJ while the ankle
was rotated between the angles of − 5° and 10° at a constant velocity of
1° s− 1. The ultrasound scan (including three continuous PF and DF
rotations) was synchronised with the joint angle signal via a square wave
signal generator. The displacement of the MTJ between 10° and − 5° was
measured with image analysis software (ImageJ, National Institutes of
Health, Bethesda, USA) and the Achilles tendon moment arm at 0° was
calculated as the MTJ displacement divided by change in the joint angle
during a complete rotation (15°).

Achilles tendon force (Ft). Ft was calculated by dividing PF max torque by
the Achilles tendon moment arm.

Muscle volume. GM muscle volume (Vm) was measured with B-mode
ultrasonography (AU5 Harmonic), using previously described methods
validated in the vastus lateralis muscle.40 Participants lay relaxed in
the prone position with the ankle angle set to 0°. The proximal end (0%)
and 25, 50, 75 and 100% (distal end) of the GM muscle were located and
marked on the skin. At 25, 50 and 75% muscle length, the lateral
and medial boundaries were located and marked on the skin. The
ultrasound probe was subsequently orientated in the axial plane, aligned
perpendicular to the GM muscle, and moved along each pre-marked axial
line at 25, 50 and 75% muscle length. Individual frames were exported and
used to re-construct the anatomical cross-sectional areas (ACSAs) of the
GM at 25, 50 and 75% muscle length using image-editing software
(Photoshop, Adobe Systems Europe Ltd, Maidenhead, UK). Each of the
three ACSAs was then measured using ImageJ. GM muscle volume (Vm)
was then calculated by treating the muscle as a series of truncated cones.40

Each of the four truncated cones was calculated using the following
equation, where d is the distance between two ACSAs (a and b):

Vm ¼ 1
3
UdU aþ

ffiffiffiffiffiffiffiffiffiffiffi
aUbð Þ

p
þ b

h i

The sum of the four cones provided the total GM Vm.

GM muscle architecture and PCSA. With the ankle joint set at 0°, the
ultrasound probe was placed sagitally over the centre of the GM muscle, in
line with the direction of the fascicles. The participant performed a ramped
PF iMVC, gradually increasing torque over the course of 6 s. The frame
depicting the GM muscle architecture at peak PF iMVC was exported and
fascicle pennation angle (θp, the angle at which the fascicles insert into the
lower aponeurosis) and length (Lf) were measured using ImageJ. The mean
of the three θp and Lf measurements were subsequently used to calculate
GM muscle fascicle force (GM Ff) and GM physiological cross-sectional area
(PCSA), respectively (see below).

GM muscle fascicle force (Ff). Based on the relative proportion of GM
muscle volume to total PF muscle volume,41 the contribution of GM
muscle to Ft was assumed to be 20.3%. Therefore, GM Ff was calculated by
dividing Ft by the cosine of GM θp, as shown below:

GMFf ¼ Ft � 0:203ð Þ= cos yp

GM muscle PCSA and specific force. GM PCSA at iMVC was calculated as
GM Vm/Lf. Subsequently, dividing GM Ff by GM PCSA provided GM muscle
specific force.

Serum inflammatory cytokine concentration
Participants provided a 10 ml fasted blood sample between 08:00 and
09:00, having performed no strenuous exercise for 48 h. Blood was
collected in to an anticoagulant free vacutainer (BD Vacutainer Systems,
Plymouth, UK) and serum was prepared and stored in 2 ml aliquots at
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− 20 °C until subsequent analysis. Seventy-eight serum samples were
randomly selected for cytokine analysis from a list of participant numbers
with BMI and age as a guide for selection (the investigator was blinded to
all other participant information). Consequently, 39 young and 39 older
(n=48 BF%o40; n= 31 BF%⩾ 40) participants were selected for analysis.
Serum concentrations of eight inflammatory cytokines (pro-inflammatory:
IL-1β, IL-6, TNF-α, G-CSF; anti-inflammatory: IL-10, TGF-β1, TGF-β2, TGF-β3)
and four chemokines (IL-8, MCP-1, MIP-1α, MIP-1β) were measured using
multiplex luminometry. A 3-plex panel was used to measure TGF-β1, β2
and β3 concentrations (R&D Systems Europe Ltd, Abingdon, UK) and a Bio-
Plex Pro Human Inflammation Panel Assay (Bio-Rad laboratories Ltd.,
Hemel Hempstead, UK) was used to measure the remaining nine cytokines,
following the manufacturer’s instructions. Samples were analysed using a
Bio-Plex 200 system (Bio-Rad laboratories Ltd., Hemel Hempstead, UK).

Statistical analyses
IBM SPSS statistics (version 23, SPSS Inc., Chicago, IL) was used for all
analyses. Two-way ANOVAs with Scheffe post hoc tests were used to
determine the main effects of age, adiposity, and interaction for all of the
study parameters. A Freidman’s ANOVA was used to compare between
days differences in dietary fat content. Bivariate Pearson correlations were
used to ascertain relationships between the serum concentration of
individual inflammatory cytokines, and fat/muscle characteristics. Partial
correlations (controlling for total body fat mass) were performed to
determine the relationships between inflammatory cytokine concentration
and muscle variables independently of fat mass. Partial correlations
(controlling for age) were performed to determine the relationships
between inflammatory cytokine concentration and muscle variables
independently of age. Statistical significance was accepted when
P⩽ 0.05. Data are presented as means± s.d. unless otherwise stated.

RESULTS
Anthropometry, body composition
The younger individuals were taller (Po0.05), had a greater body
mass (Po0.05) and greater lean mass (Po0.05) than the older
participants (Table 1). There was no effect of adiposity on total body
lean mass (P40.05), although there was a tendency for the young
high BF% group to have greater lean mass than the older high BF%
group (ANOVA, age×adiposity, P=0.055). Young high BF% also
presented with higher body mass, BMI and fat mass than the other
three groups (Po0.05; Table 1). As expected, adiposity was positively
associated with body mass, BMI and BF% (all, Po0.05) (Table 1).

Maximum strength
PF isometric and isokinetic MVC ankle joint torque. Regarding
absolute iMVC, there was a main effect of age: young individuals
produced higher PF iMVC compared to older persons (Po0.001;
Table 1). There was also a main effect of adiposity, with high adipose
persons being stronger than those of normal adiposity (P=0.007).
However, there was no age×adiposity interaction (P=0.289; Table 1).
Regarding absolute PF ikMVC, there was a main effect of age: young
individuals produced higher ikMVC compared to older persons
(Po0.001). There was no main effect of adiposity (P=0.128; Table 1)
and no age×adiposity interaction (P=0.396; Table 1).

Maximum Achilles tendon force (Ft). There was a main effect of
age, i.e., young individuals produced greater Ft compared to older
persons (Po0.001; Table 1), and a main effect of adiposity, with
high adipose persons producing greater force than normal
adipose individuals (P= 0.020), but there was no age × adiposity
interaction (P= 0.472; Table 1).

Maximum GM fascicle force (Ff). There was a main effect of age,
i.e., younger individuals produced greater Ff than older persons
(Po0.001; Table 1), and there was a main effect of adiposity
(P= 0.002), with high adipose persons producing more force than
normal adipose individuals. However, there was no age × adiposity
interaction (P= 0.237; Table 1).

Maximum strength normalised to muscle size. After normalising
iMVC and ikMVC to GM Vm, there were main effects for age on
iMVC/Vm, i.e., older persons had lower iMVC/Vm and ikMVC/Vm
than young individuals (Po0.05; Table 1), and there were main
effects for adiposity (Po0.05; Table 1), with normal demonstrating
greater muscle quality than high adipose persons. There were also
age× adiposity interactions (Po0.05), i.e., young individuals with
normal BF% had greater muscle quality compared to all other
groups (Po0.05; Table 1). Regarding GM muscle specific force,
there were no main effects of age or adiposity, or any interaction
between age and adiposity (P40.05; Table 1).

Voluntary muscle activation capacity. There were significant main
effects for both age (P= 0.001; Table 1) and adiposity (P= 0.011;
Table 1), demonstrating that young individuals had higher muscle
activation capacity than older persons, and that persons with high
BF% (regardless of age) had lower activation capacity than
persons with normal BF%. There was no age × adiposity interac-
tion (P= 0.185; Table 1).

Muscle morphology
GM muscle volume and PCSA. There were main effects for age on
GM Vm and PCSA: young persons had larger Vm and PCSA than older
individuals (Po0.001; Table 1); and main effects for adiposity:
persons with high BF% had larger Vm and PCSA than persons with
normal BF% (Po0.001; Table 1). There were also age×adiposity
interactions: young persons with high BF% had larger muscle
volume and PCSA than all other groups (Po0.001; Table 1).

GM muscle architecture. There were main effects for both age
(Po0.05; Table 1) and adiposity (Po0.05; Table 1), i.e., young
persons had larger GM θp than older individuals, while persons with
high BF% had larger θp than persons with normal BF% (Po0.05;
Table 1). However, there was no age×adiposity interaction with GM
θp (P40.05). Further, there were no effects of age (P40.05; Table 1)
or adiposity (P40.05; Table 1), and there was no age×adiposity
interaction (P40.05; Table 1) with GM fascicle length.

Serum inflammatory cytokine concentration
Associations with age and/or adiposity. Serum IL-6 concentration
showed a significant main effect for age (P= 0.004), with older
participants having higher serum concentrations than young
individuals (Table 2). There was no main effect of adiposity, and no
interaction between age and adiposity (P40.05). There was also
an age × adiposity interaction (P= 0.016) regarding serum MCP-1,
with older individuals of high adiposity having higher levels than
older normal adipose persons. Finally, there was a main effect of
adiposity concerning TGF-β2 (P= 0.008), with high adipose
persons having a greater serum concentration of this cytokine
than those of normal adiposity (Table 2).

Correlations with muscle and fat phenotypes in young and older
persons combined. The positive and inverse relationships
between serum IL-6, IL-1β, MCP-1, MIP-1α and MIP-1β concentra-
tions and adiposity and muscle properties in young and older
individuals combined are shown in Table 3.

Correlations with muscle and fat phenotypes in young persons
only. The inverse correlation between serum IL-6 concentration
and voluntary activation and, after controlling for BF%, the partial
correlation between serum IL-6 and voluntary activation are
shown in Table 4. Likewise, the inverse correlations between
serum IL-1β and BMI, iMVC, ikMVC, fat mass, lean mass, GM PCSA,
GM θp, (r⩾− 0.325; P⩽ 0.049), and between serum MIP-1α and BF
% (r=− 0.343; P= 0.035) and fat mass (r=− 0.323; P= 0.048) are
displayed in Table 4. The positive correlations between serum
MIP-1β and iMVC, GM Vm, GM Lf, Ft, GM PCSA, (r⩾ 0.339; P⩽ 0.040)
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and inverse correlation with ikMVC/Vm (r=− 0.402; P= 0.028) are
also shown in Table 4.

Correlations with muscle and fat phenotypes in older persons
only. Serum MCP1 correlated positively with BMI, BF% and fat
mass (r⩾0.378; P⩽0.028; Table 4). Serum TNF-α correlated positively
with iMVC, ikMVC, lean mass, GM θp, Ft, GM Ff, (r⩾0.458; P⩽0.048;
Table 4). After controlling for total body fat mass, TNF-α correlated
with iMVC, lean mass, GM θp, GM Ff, (r⩾0.510; P⩽0.044; Table 4).
Serum IL-8 correlated positively with voluntary muscle activation
(r=0.382; P=0.016; Table 4), and controlling for fat mass
strengthened this correlation (r=0.414; P=0.010; Table 4).

Correlations with muscle and fat phenotypes in persons of normal
and high adiposity. The positive and inverse relationships
between serum IL-6, IL-1β, IL-8, TNF-α, MCP-1, MIP-1β, and
G-CSF concentrations and adiposity and muscle properties in
persons of normal and high adiposity are shown in Table 5. Most
notably, IL-6 correlated inversely with on muscle quality in both
normal and high adipose individuals (r⩾− 0.367; P⩽ 0.042;
Table 5), MIP-1β correlated with numerous measures of maximum
muscle force and size in normal adipose persons (r⩾ 0.332;
P⩽ 0.039; Table 5), and IL-8 correlated inversely with measures of
muscle strength and quality in high adipose individuals
(r⩾− 0.364; P⩽ 0.044; Table 5), but positively with muscle quality
in persons of normal adiposity (r= 0.604; P= 0.038; Table 5).

Habitual dietary fat intake
A Friedman’s ANOVA revealed no between days difference
(P= 0.448) between daily fat intake over the three-day dietary
analysis period. For daily absolute fat intake, there was a main
effect for age with young individuals consuming more fat than
older persons (P= 0.041; Table 6). There was no main effect for
adiposity (P= 0.088; Table 6) but there was an age× adiposity
interaction, with young normal consuming more fat than all other
groups (Po0.05) but otherwise no other differences (P40.05). For
daily fat intake normalised to body mass, there was no main effect
for age (P40.05) but there was a main effect for adiposity
(Po0.001; Table 6), with normal consuming more fat than high.
There was also an age × adiposity interaction (P= 0.021; Table 6):
young normal and old normal consumed per fat than both young
high and old high. Concerning the daily amount of fat consumed
as a percentage of total energy intake, there was no main effect of

age (P= 0.869) but there was a main effect for adiposity (P= 0.043)
and an age × adiposity interaction (P= 0.025; Table 6), with normal
young consuming a greater percentage of fat compared to high
young (P= 0.014). Finally, regarding the daily amount of fat
consumed as a percentage of total macronutrient intake, there
was no main effect of age (P= 0.696) or adiposity (P= 0.070), and
no age × adiposity interaction (P= 0.161; Table 6).

Correlations between habitual dietary fat content and cytokines. In
young persons only, serum IL-1β (r=0.976; P=0.010) and IL-8
(r=0.879; P=0.021) correlated with absolute (g/day) fat intake. In
older persons only, TGF-β3 correlated with fat intake, both in absolute
terms (r=0.567; P=0.022) and normalised to body mass (r=0.509;
P=0.044). In young and older individuals combined, TGF-β3 correlated
positively with daily fat intake, both in absolute terms (r=0.561;
P=0.015) and normalised to body mass (r=0.512; P=0.030).

DISCUSSION
We aimed to determine whether circulating inflammatory
cytokine levels could explain the different effects of obesity on
skeletal muscle size, architecture and strength previously reported
in young vs older adults. Our data suggest that, in young adults,
serum IL-6 has a negative impact on neuromuscular activation,
while IL-1β has a negative, and MIP-1β a positive, influence on
muscle size, structure and strength (Table 4). In older adults,
elevated IL-8 was positively associated with greater neuromus-
cular activation, while unexpectedly, TNF-α correlated positively
with muscle mass, architecture and maximum strength (Table 4).
In persons of normal adiposity, MIP-1β appears to play a very
positive role in muscle size and strength, while IL-8 has a largely
negative relationship with muscle quality (maximum strength
normalised to either muscle size or body mass) in high adipose
individuals (Table 5).
In line with previous research, we have shown that serum IL-6

concentration was higher in older vs young adults.27,28 Further-
more, IL-6 correlated with BMI, total body fat mass and BF% in
young and older individuals combined, which is in line with
previous work.32 Moreover, the inverse relationship between IL-6
and voluntary muscle activation was particularly interesting given
the positive relationships between IL-6 and adiposity reported
here (Table 3) and elsewhere,12,14,15 and between IL-6 and
ageing.27,28 This inverse relationship (even after controlling for
BF%) strongly suggests that IL-6 has a negative effect on the

Table 2. The serum concentration of pro-inflammatory cytokines in 12–78 study participants (the number of participants varies according to the
ability to measure certain cytokines in the serum)

Cytokine
(pg/mL)

Young (n= 39) Older (n= 39)

Normal BF% (n= 28) High BF% (n= 11) Normal BF% (n= 11) High BF% (n= 28)

IL-1β 1.03± 0.17 0.69± 0.17 0.70± 0.18 0.72± 0.12
IL-6 0.93± 0.16 1.28± 0.19 1.78± 0.26a 2.09± 0.22a

IL-8 9.53± 0.93 8.59± 1.43 8.35± 1.00 11.80± 1.07
IL-10 3.51± 0.64 2.95± 0.59 2.29± 0.29 4.20± 0.86
TNF-α 3.90± 0.78 3.12± 1.21 3.69± 1.32 4.84± 1.01
MCP-1 208± 44 114± 29 85± 22 329± 73b

MIP-1α 3.81± 0.65 2.03± 0.37 2.45± 0.59 1.94± 0.23
MIP-1β 101± 23 101± 29 68± 12 126± 31
G-CSF 28.50± 5.70 13.41± 4.78 21.69± 15.45 45.12± 12.34
TGF-β1 32,261± 7539 29,193± 9,041 12,625± 2,003 38,862± 6,596
TGF-β2 341± 33 413± 92c 200± 21 407± 43c

TGF-β3 273± 84 184± 63 122± 37 334± 69
IL-10: IL-6 3.55± 0.79 5.17± 1.32 1.61± 0.31 3.76± 1.01

Abbreviations: G-CSF, granulocyte-colony stimulating factor; IL-1β, interleukin-1β; MCP-1, monocyte chemoattractant protein-1; MIP-1α, macrophage
inflammatory protein-1α; MIP-1β, macrophage inflammatory protein-1β; TGF-β1, transforming growth factor-β1; TNF-α, tumour necrosis factor α. Values are
mean± s.e. aSignificant effect of age (Po0.05). bSignificant age × BF% interaction (Po0.05). cSignificant effect of BF% (Po0.05).
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ability to voluntarily activate skeletal muscle. This may well be
influenced by central inflammation, i.e., elevated levels of IL-6 and
other pro-inflammatory cytokines in the hippocampus and
hypothalamus (induced by a high fat diet31), which lead to
neuroinflammation.29 This potentially reduces an individual’s
ability to activate their muscles voluntarily, thus impairing muscle
size and function. Not only might this help explain the significantly
lower muscle activation and absolute strength values in older
vs younger individuals reported here and elsewhere,6,20,21,30 but it
might also explain the lower muscle activation capacity we
found here in young and older persons with high vs normal
BF%. Although we did not find a relationship between IL-6 and
habitual dietary fat intake, we did observe positive relations
between fat intake and other pro-inflammatory cytokines (IL-1β
and IL-8).
IL-8 is a chemokine that acts as a neutrophil chemotactic

factor42 and is therefore pro-inflammatory. It has previously been
associated with obesity,43 which coincides with our finding of
higher (though non-significant) serum IL-8 levels in older persons
with high BF% compared to older lean and younger adults.
Surprisingly, we found that serum IL-8 correlated positively with
voluntary muscle activation in older adults. As IL-8 is known to
induce angiogenesis,42 enhance endothelial cell proliferation and
have an anti-apoptotic effect,44 it is possible that this chemokine
provides a protective, or rescuing, effect against neuroinflamma-
tion in older adults.
Both TNF-α mRNA content and TNF-α production are elevated

in adipose tissue of obese individuals,12 while circulating TNF-α
concentration also rises with obesity.45 We found a non-significant
trend for serum TNF-α to correlate inversely with iMVC, and a
significant inverse correlation between serum IL-1β and muscle
size and strength and adiposity in young adults. In contrast, TNF-α
correlated positively with iMVC, ikMVC, lean mass, GM θp,
maximum tendon force and GM fascicle force in older adults,
thus suggesting age-dependent effects of TNF-α on skeletal
muscle characteristics. After controlling for fat mass, TNF-α
remained positively correlated with older muscle size and
strength. This indicates the effect of TNF-α was not due to fat
mass per se, which is supported by TNF-α being produced
almost exclusively by macrophages within adipose tissue, as
opposed to the adipocytes themselves.11 Skeletal muscle also
produces TNF-α46 and, although it has catabolic properties (thus
possibly explaining the inverse correlation with iMVC in young
adults), it has been shown to stimulate protein synthesis47 and

positively influence maximum strength48 during the various
phases of muscle remodelling. Furthermore, TNF-α induces IL-6
production in myoblasts49 and IL-6, in combination with TNF-α,
stimulates myoblast growth.50 Therefore, it is feasible that the
muscles of those older individuals with elevated serum TNF-α
produced more IL-6, thus having a beneficial rather than
deleterious effect on muscle size and strength.
In contrast to our TNF-α results, serum MIP-1β, correlated

positively with muscle size, architecture and absolute strength in
young adults, and with numerous measures of muscle size,
structure and strength in persons of normal adiposity. MIP-1β is a
chemoattractant for monocytes51 and interacts with MIP-1α,52

which correlated inversely with adiposity in our young partici-
pants. Thus, it appears that these chemokines have a positive
effect on skeletal muscle properties in young but not in older
muscle, and may therefore explain the previously reported lower
muscle quality in older vs young adults.21

Our study has highlighted novel relationships between
numerous circulating cytokines and precise measures of
neuromuscular properties in young and older individuals of
varied adiposity. These relationships indicate potential mechan-
isms that may explain the lower muscle quality in obese vs
normal weight individuals,7 and in older vs younger persons,21

seen here and elsewhere. However, we acknowledge certain
limitations with our study; as cognitive function was not a focus
of this study (although our selection criteria excluded cogni-
tively challenged volunteers), it is not possible to make a direct
comparison with those previous studies that associated high
levels of IL-6 with cognitive decline29). Furthermore, contrary to
our hypothesis based on previous work,31 our data did not
exhibit any association between habitual dietary fat intake and
circulating IL-6 (although we did observe positive correlations
between fat intake and IL-β1 and IL-8 in young persons).
Nevertheless, our reported inverse relationship between IL-6
and voluntary muscle activation in young individuals is as
expected in a physiological system linking high IL-6 with poor
neuronal integration. Future human studies should consider
these parameters (cognition, IL-6 endocrine profile, and diet)
longitudinally. We would also recommend that studies employ-
ing an animal model may wish to build on previous work,31 by
characterising neurodegeneration and muscle size and strength
in young vs old animals fed with a high vs low fat diet. In older
persons, we found that IL-8 correlated positively with voluntary
activation but, to our knowledge, there is no evidence linking

Table 3. Correlations between inflammatory cytokines and measures of adiposity and muscle characteristics (with and without controlling for FM) in
young and older persons combined

Variable Cytokine

IL-6 IL-6(FM) IL-1β MCP1 MIP-1α MIP-1β

BMI (kgm-2) r= 0.326; P= 0.008 r=−0.318; P= 0.005 r= 0.251; P= 0.047 r=−0.209; P=0.074
BF% r= 0.357; P= 0.003 r=−0.332; P= 0.003 r= 0.297; P= 0.018 r=−0.378; P=0.001
FM (kg) r= 0.380; P= 0.002 r=−0.335; P= 0.003 r= 0.341; P= 0.006 r=−0.306; P=0.008
VA (%) r=−0.370; P=0.002 r=− 0.311; P=0.022 r= 0.234; P= 0.046
ikMVC (N·m) r=−0.279; P=0.024 r=− 0.317; P=0.020
ikMVC/Vm (N·m cm-3) r=−0.355; P=0.008 r=− 0.260; P=0.057 r= 0.258; P= 0.038 r= 0.238; P= 0.068
ikMVC/BM (N·mkg-1) r=− 0.470; Po0.001 r=− 0.344; P=0.011 r= 0.267; P= 0.022
iMVC/BM (N·mkg-1) r=− 0.455; Po0.001 r=− 0.307; P=0.024 r= 0.271; P= 0.018 r= 0.258; P= 0.027
iMVC/Vm (N·m cm-3) r=−0.257; P=0.058)
GM Vm (cm3) r= 0.267; P= 0.032
GM PCSA (cm2) r= 0.216; P= 0.084

Abbreviations: BF, body fat; BM, body mass; BMI, body mass index; FM, fat mass; GM Vm, gastrocnemius medialis muscle volume; ikMVC, isokinetic maximum
voluntary contraction; IL, interleukun; iMVC, isometric maximum voluntary contraction; PCSA, physiological cross-sectional area; VA, voluntary muscle
activation. Inverse correlations are indicated in bold.
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IL-8 with neurogenesis or repair following damage due to
ageing. Future studies may wish to investigate this potential
protective mechanism against neurodegeneration in older
persons by measuring the effect of high vs low doses of
IL-8 on damaged neurons in vitro and on neurological pro-
perties in an animal model in vivo. Finally, our somewhat
surprising relationships between TNF-α and muscle size and
strength in older persons only may be explained by TNF-α acting
in a dose-response manner to reduce the rate of sarcopenia.
Indeed in cell culture models, a concentration of this cytokine
(as well as dependent on the order in which various cyto-
kines are introduced in the culture dish), the effects of
TNF-α can either induce hypertrophy or alternatively, muscle
breakdown.50,53

To conclude, our data suggest that obesity has a greater
anabolic effect on young compared to older human muscle,
but that it attenuates muscle quality more in young compared to
older adults. The inverse relationship between serum IL-6 and
voluntary muscle activation in young adults, and the chronically
elevated levels of IL-6 and lower voluntary muscle activation
levels in older adults, suggest that IL-6-induced neuroinflamma-
tion plays a role in reducing voluntary muscle strength.
Interestingly, the unexpected positive relationship between
IL-8 and voluntary muscle activation in older adults suggests
this chemokine may be differentially impacting neuroinflamma-
tion and hence neuromuscular activation. The positive relation-
ship between TNF-α and muscle mass and strength in older adults
in the current cohort, whilst potentially supporting previous
reports of TNF-α having a positive effect on skeletal muscle
properties, is yet to be fully understood given the weight
of the previous published evidence pertaining to the contrary
(i.e., a deleterious muscle protein synthesis and/or stimulatory
impact on the rate of protein degradation). Collectively, these age-
and adiposity-dependent relationships provide evidence that
circulating pro-inflammatory cytokines play different roles in
neuromuscular remodelling according to the age and adiposity of
the individual.
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