Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Clinical Studies and Practice

Distinct regulation of hypothalamic and brown/beige adipose tissue activities in human obesity

Abstract

Background/Objectives:

The identification of brown/beige adipose tissue in adult humans has motivated the search for methods aimed at increasing its thermogenic activity as an approach to treat obesity. In rodents, the brown adipose tissue is under the control of sympathetic signals originating in the hypothalamus. However, the putative connection between the depots of brown/beige adipocytes and the hypothalamus in humans has never been explored. The objective of this study was to evaluate the response of the hypothalamus and brown/beige adipose tissue to cold stimulus in obese subjects undergoing body mass reduction following gastric bypass.

Subjects/Methods:

We evaluated twelve obese, non-diabetic subjects undergoing Roux-in-Y gastric bypass and 12 lean controls. Obese subjects were evaluated before and approximately 8 months after gastric bypass. Lean subjects were evaluated only at admission. Subjects were evaluated for hypothalamic activity in response to cold by functional magnetic resonance, whereas brown/beige adipose tissue activity was evaluated using a (F 18) fluorodeoxyglucose positron emisson tomography/computed tomography scan and real-time PCR measurement of signature genes.

Results:

Body mass reduction resulted in a significant increase in brown/beige adipose tissue activity in response to cold; however, no change in cold-induced hypothalamic activity was observed after body mass reduction. No correlation was found between brown/beige adipose tissue activation and hypothalamus activity in obese subjects or in lean controls.

Conclusions:

In humans, the increase in brown/beige adipose tissue activity related to body mass reduction occurs independently of changes in hypothalamic activity as determined by functional magnetic resonance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW . Central nervous system control of food intake and body weight. Nature 2006; 443: 289–295.

    Article  CAS  PubMed  Google Scholar 

  2. Zeltser LM, Seeley RJ, Tschop MH . Synaptic plasticity in neuronal circuits regulating energy balance. Nat Neurosci 2012; 15: 1336–1342.

    Article  CAS  PubMed  Google Scholar 

  3. Dietrich MO, Horvath TL . Hypothalamic control of energy balance: insights into the role of synaptic plasticity. Trends Neurosci 2013; 36: 65–73.

    Article  CAS  PubMed  Google Scholar 

  4. Velloso LA, Schwartz MW . Altered hypothalamic function in diet-induced obesity. Int J Obes (Lond) 2011; 35: 1455–1465.

    Article  CAS  Google Scholar 

  5. Thaler JP, Guyenet SJ, Dorfman MD, Wisse BE, Schwartz MW . Hypothalamic inflammation: marker or mechanism of obesity pathogenesis? Diabetes 2013; 62: 2629–2634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cai D . Neuroinflammation and neurodegeneration in overnutrition-induced diseases. Trends Endocrinol Metab 2013; 24: 40–47.

    Article  CAS  PubMed  Google Scholar 

  7. Cannon B, Nedergaard J . Metabolic consequences of the presence or absence of the thermogenic capacity of brown adipose tissue in mice (and probably in humans). Int J Obes 2010; 34: S7–S16.

    Article  CAS  Google Scholar 

  8. Romanatto T, Roman EA, Arruda AP, Denis RG, Solon C, Milanski M et al. Deletion of tumor necrosis factor-alpha receptor 1 (TNFR1) protects against diet-induced obesity by means of increased thermogenesis. J Biol Chem 2009; 284: 36213–36222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Arruda AP, Milanski M, Velloso LA . Hypothalamic inflammation and thermogenesis: the brown adipose tissue connection. J Bioenerg Biomembr 2011; 43: 53–58.

    Article  CAS  PubMed  Google Scholar 

  10. Hamann A, Flier JS, Lowell BB . Decreased brown fat markedly enhances susceptibility to diet-induced obesity, diabetes, and hyperlipidemia. Endocrinology 1996; 137: 21–29.

    Article  CAS  PubMed  Google Scholar 

  11. Kong D, Tong Q, Ye C, Koda S, Fuller PM, Krashes MJ et al. GABAergic RIP-Cre neurons in the arcuate nucleus selectively regulate energy expenditure. Cell (Lond) 2012; 151: 645–657.

    CAS  Google Scholar 

  12. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med 2009; 360: 1500–1508.

    Article  CAS  PubMed  Google Scholar 

  13. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med 2009; 360: 1509–1517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T et al. Functional brown adipose tissue in healthy adults. N Engl J Med 2009; 360: 1518–1525.

    Article  CAS  PubMed  Google Scholar 

  15. Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 2012; 150: 366–376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jespersen NZ, Larsen TJ, Peijs L, Daugaard S, Homoe P, Loft A et al. A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metab 2013; 17: 798–805.

    Article  CAS  PubMed  Google Scholar 

  17. Almind K, Manieri M, Sivitz WI, Cinti S, Kahn CR . Ectopic brown adipose tissue in muscle provides a mechanism for differences in risk of metabolic syndrome in mice. Proc Natl Acad Sci USA 2007; 104: 2366–2371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cypess AM, Kahn CR . Brown fat as a therapy for obesity and diabetes. Curr Opin Endocrinol Diabetes Obes 2010; 17: 143–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lidell ME, Enerback S . Brown adipose tissue—a new role in humans? Nat Rev Endocrinol 2010; 6: 319–325.

    Article  PubMed  Google Scholar 

  20. Nakamura K, Morrison SF . Central efferent pathways mediating skin cooling-evoked sympathetic thermogenesis in brown adipose tissue. Am J Physiol Regul Integr Comp Physiol 2007; 292: R127–R136.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Y, Kerman IA, Laque A, Nguyen P, Faouzi M, Louis GW et al. Leptin-receptor-expressing neurons in the dorsomedial hypothalamus and median preoptic area regulate sympathetic brown adipose tissue circuits. J Neurosci 2011; 31: 1873–1884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bartness TJ, Vaughan CH, Song CK . Sympathetic and sensory innervation of brown adipose tissue. Int J Obes (Lond) 2010; 34: S36–S42.

    Article  Google Scholar 

  23. Carey AL, Formosa MF, Van Every B, Bertovic D, Eikelis N, Lambert GW et al. Ephedrine activates brown adipose tissue in lean but not obese humans. Diabetologia 2013; 56: 147–155.

    Article  CAS  PubMed  Google Scholar 

  24. Vosselman MJ, van der Lans AA, Brans B, Wierts R, van Baak MA, Schrauwen P et al. Systemic beta-adrenergic stimulation of thermogenesis is not accompanied by brown adipose tissue activity in humans. Diabetes 2012; 61: 3106–3113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cypess AM, Chen YC, Sze C, Wang K, English J, Chan O et al. Cold but not sympathomimetics activates human brown adipose tissue in vivo. Proc Natl Acad Sci USA 2012; 109: 10001–10005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. American Diabetes Association. Standards of medical care in diabetes–2011. Diabetes Care 2011; 34: S11–S61.

    Article  PubMed Central  Google Scholar 

  27. Gastrointestinal surgery for severe obesity: National Institutes of Health Consensus Development Conference Statement Am J Clin Nutr 1992; 55: 615S–619S.

  28. de Carvalho CP, Marin DM, de Souza AL, Pareja JC, Chaim EA, de Barros Mazon S et al. GLP-1 and adiponectin: effect of weight loss after dietary restriction and gastric bypass in morbidly obese patients with normal and abnormal glucose metabolism. Obes Surg 2009; 19: 313–320.

    Article  PubMed  Google Scholar 

  29. Milanski M, Arruda AP, Coope A, Ignacio-Souza LM, Nunez CE, Roman EA et al. Inhibition of hypothalamic inflammation reverses diet-induced insulin resistance in the liver. Diabetes 2012; 61: 1455–1462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bell AW, Gardner JW, Manson W, Thompson GE . Acute cold exposure and the metabolism of blood glucose, lactate and pyruvate, and plasma amino acids in the hind leg of the fed and fasted young ox. Br J Nutr 1975; 33: 207–217.

    Article  CAS  PubMed  Google Scholar 

  31. Vallerand AL, Frim J, Kavanagh MF . Plasma glucose and insulin responses to oral and intravenous glucose in cold-exposed humans. J Appl Physiol 1988; 65: 2395–2399.

    Article  CAS  PubMed  Google Scholar 

  32. Gasparetti AL, de Souza CT, Pereira-da-Silva M, Oliveira RL, Saad MJ, Carneiro EM et al. Cold exposure induces tissue-specific modulation of the insulin-signalling pathway in Rattus norvegicus. J Physiol 2003; 552: 149–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ouellet V, Labbe SM, Blondin DP, Phoenix S, Guerin B, Haman F et al. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest 2012; 122: 545–552.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Harms M, Seale P . Brown and beige fat: development, function and therapeutic potential. Nat Med 2013; 19: 1252–1263.

    Article  CAS  PubMed  Google Scholar 

  35. Parysow O, Mollerach AM, Jager V, Racioppi S, San Roman J, Gerbaudo VH . Low-dose oral propranolol could reduce brown adipose tissue F-18 FDG uptake in patients undergoing PET scans. Clin Nucl Med 2007; 32: 351–357.

    Article  PubMed  Google Scholar 

  36. Soderlund V, Larsson SA, Jacobsson H . Reduction of FDG uptake in brown adipose tissue in clinical patients by a single dose of propranolol. Eur J Nucl Med Mol Imaging 2007; 34: 1018–1022.

    Article  PubMed  Google Scholar 

  37. De Araujo IE, Rolls ET . Representation in the human brain of food texture and oral fat. J Neurosci 2004; 24: 3086–3093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu Y, Gao JH, Liu HL, Fox PT . The temporal response of the brain after eating revealed by functional MRI. Nature 2000; 405: 1058–1062.

    Article  CAS  PubMed  Google Scholar 

  39. van de Sande-Lee S, Pereira FR, Cintra DE, Fernandes PT, Cardoso AR, Garlipp CR et al. Partial reversibility of hypothalamic dysfunction and changes in brain activity after body mass reduction in obese subjects. Diabetes 2011; 60: 1699–1704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest 2012; 122: 153–162.

    Article  CAS  PubMed  Google Scholar 

  41. McKitrick DJ . Expression of fos in the hypothalamus of rats exposed to warm and cold temperatures. Brain Res Bull 2000; 53: 307–315.

    Article  CAS  PubMed  Google Scholar 

  42. Vijgen GH, Bouvy ND, Teule GJ, Brans B, Hoeks J, Schrauwen P et al. Increase in brown adipose tissue activity after weight loss in morbidly obese subjects. J Clin Endocrinol Metab 2012; 97: E1229–E1233.

    Article  CAS  PubMed  Google Scholar 

  43. Lidell ME, Betz MJ, Enerback S . Two types of brown adipose tissue in humans. Adipocyte 2014; 3: 63–66.

    Article  CAS  PubMed  Google Scholar 

  44. Orava J, Nummenmaa L, Noponen T, Viljanen T, Parkkola R, Nuutila P et al. Brown adipose tissue function is accompanied by cerebral activation in lean but not in obese humans. J Cereb Blood Flow Metab 2014; 34: 1018–1023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E. Roman and G. Ferraz from the University of Campinas for technical assistance. Support for the study was provided by the Fundação de Amparo a Pesquisa do Estado de São Paulo, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and grants from the Trust in Science Initiative from Glaxo-Smithkline, UK. The Laboratories of Cell Signaling and Experimental Endocrinology belong to the Obesity and Comorbidities Research Center and the National Institute of Science and Technology–Diabetes and Obesity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L A Velloso.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rachid, B., van de Sande-Lee, S., Rodovalho, S. et al. Distinct regulation of hypothalamic and brown/beige adipose tissue activities in human obesity. Int J Obes 39, 1515–1522 (2015). https://doi.org/10.1038/ijo.2015.94

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2015.94

This article is cited by

Search

Quick links