Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetics and Epigenetics

16p11.2 Locus modulates response to satiety before the onset of obesity




The 600 kb BP4-BP5 copy number variants (CNVs) at the 16p11.2 locus have been associated with a range of neurodevelopmental conditions including autism spectrum disorders and schizophrenia. The number of genomic copies in this region is inversely correlated with body mass index (BMI): the deletion is associated with a highly penetrant form of obesity (present in 50% of carriers by the age of 7 years and in 70% of adults), and the duplication with being underweight. Mechanisms underlying this energy imbalance remain unknown.


This study aims to investigate eating behavior, cognitive traits and their relationships with BMI in carriers of 16p11.2 CNVs.


We assessed individuals carrying a 16p11.2 deletion or duplication and their intrafamilial controls using food-related behavior questionnaires and cognitive measures. We also compared these carriers with cohorts of individuals presenting with obesity, binge eating disorder or bulimia.


Response to satiety is gene dosage-dependent in pediatric CNV carriers. Altered satiety response is present in young deletion carriers before the onset of obesity. It remains altered in adolescent carriers and correlates with obesity. Adult deletion carriers exhibit eating behavior similar to that seen in a cohort of obesity without eating disorders such as bulimia or binge eating. None of the cognitive measures are associated with eating behavior or BMI.


These findings suggest that abnormal satiety response is a strong contributor to the energy imbalance in 16p11.2 CNV carriers, and, akin to other genetic forms of obesity, altered satiety responsiveness in children precedes the increase in BMI observed later in adolescence.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4


  1. Morrow EM . Genomic copy number variation in disorders of cognitive development. J Am Acad Child Adolesc Psychiatry 2010; 49: 1091–1104.

    PubMed  PubMed Central  Google Scholar 

  2. Malhotra D, Sebat J . CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell 2012; 148: 1223–1241.

    Article  CAS  Google Scholar 

  3. Mannik K, Magi R, Mace A, Cole B, Guyatt AL, Shihab HA et al. Copy number variations and cognitive phenotypes in unselected populations. JAMA 2015; 313: 2044–2054.

    Article  Google Scholar 

  4. Stefansson H, Meyer-Lindenberg A, Steinberg S, Magnusdottir B, Morgen K, Arnarsdottir S et al. CNVs conferring risk of autism or schizophrenia affect cognition in controls. Nature 2014; 505: 361–366.

    Article  CAS  Google Scholar 

  5. McCarthy SE, Makarov V, Kirov G, Addington AM, McClellan J, Yoon S et al. Microduplications of 16p11.2 are associated with schizophrenia. Nat Genet 2009; 41: 1223–1227.

    Article  CAS  Google Scholar 

  6. Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT, Fossdal R et al. Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med 2008; 358: 667–675.

    Article  CAS  Google Scholar 

  7. Hanson E, Bernier R, Porche K, Jackson FI, Goin-Kochel RP, Snyder LG et al. The cognitive and behavioral phenotype of the 16p11.2 deletion in a clinically ascertained population. Biol Psychiatry 2015; 77: 785–793.

    Article  CAS  Google Scholar 

  8. Hanson E, Nasir RH, Fong A, Lian A, Hundley R, Shen Y et al. Cognitive and behavioral characterization of 16p11.2 deletion syndrome. J Dev Behav Pediatr 2010; 31: 649–657.

    Article  Google Scholar 

  9. Maillard AM, Ruef A, Pizzagalli F, Migliavacca E, Hippolyte L, Adaszewski S et al. The 16p11.2 locus modulates brain structures common to autism, schizophrenia and obesity. Mol Psychiatry 2014; 20: 140–147.

    Article  Google Scholar 

  10. Qureshi AY, Mueller S, Snyder AZ, Mukherjee P, Berman JI, Roberts TP et al. Opposing brain differences in 16p11.2 deletion and duplication carriers. J Neurosci 2014; 34: 11199–11211.

    Article  CAS  Google Scholar 

  11. Bochukova EG, Huang N, Keogh J, Henning E, Purmann C, Blaszczyk K et al. Large, rare chromosomal deletions associated with severe early-onset obesity. Nature 2010; 463: 666–670.

    Article  CAS  Google Scholar 

  12. Jacquemont S, Reymond A, Zufferey F, Harewood L, Walters RG, Kutalik Z et al. Mirror extreme BMI phenotypes associated with gene dosage at the chromosome 16p11.2 locus. Nature 2011; 478: 97–102.

    Article  CAS  Google Scholar 

  13. Walters RG, Jacquemont S, Valsesia A, de Smith AJ, Martinet D, Andersson J et al. A new highly penetrant form of obesity due to deletions on chromosome 16p11.2. Nature 2010; 463: 671–675.

    Article  CAS  Google Scholar 

  14. Zufferey F, Sherr EH, Beckmann ND, Hanson E, Maillard AM, Hippolyte L et al. A 600 kb deletion syndrome at 16p11.2 leads to energy imbalance and neuropsychiatric disorders. J Med Genet 2012; 49: 660–668.

    Article  CAS  Google Scholar 

  15. Horev G, Ellegood J, Lerch JP, Son YE, Muthuswamy L, Vogel H et al. Dosage-dependent phenotypes in models of 16p11.2 lesions found in autism. Proc Natl Acad Sci USA 2011; 108: 17076–17081.

    Article  Google Scholar 

  16. Portmann T, Yang M, Mao R, Panagiotakos G, Ellegood J, Dolen G et al. Behavioral abnormalities and circuit defects in the basal ganglia of a mouse model of 16p11.2 deletion syndrome. Cell Rep 2014; 7: 1077–1092.

    Article  CAS  Google Scholar 

  17. Frank GK, Reynolds JR, Shott ME, Jappe L, Yang TT, Tregellas JR et al. Anorexia nervosa and obesity are associated with opposite brain reward response. Neuropsychopharmacology 2012; 37: 2031–2046.

    Article  CAS  Google Scholar 

  18. Vainik U, Dagher A, Dube L, Fellows LK . Neurobehavioural correlates of body mass index and eating behaviours in adults: a systematic review. Neurosci Biobehav Rev 2013; 37: 279–299.

    Article  Google Scholar 

  19. Lokken KL, Boeka AG, Austin HM, Gunstad J, Harmon CM . Evidence of executive dysfunction in extremely obese adolescents: a pilot study. Surg Obes Relat Dis 2009; 5: 547–552.

    Article  Google Scholar 

  20. Fagundo AB, de la Torre R, Jimenez-Murcia S, Aguera Z, Granero R, Tarrega S et al. Executive functions profile in extreme eating/weight conditions: from anorexia nervosa to obesity. PLoS One 2012; 7: e43382.

    Article  CAS  Google Scholar 

  21. Liang J, Matheson BE, Kaye WH, Boutelle KN . Neurocognitive correlates of obesity and obesity-related behaviors in children and adolescents. Int J Obes (Lond) 2014; 38: 494–506.

    Article  CAS  Google Scholar 

  22. Gunstad J, Paul RH, Cohen RA, Tate DF, Spitznagel MB, Gordon E . Elevated body mass index is associated with executive dysfunction in otherwise healthy adults. Compr Psychiatry 2007; 48: 57–61.

    Article  Google Scholar 

  23. van der Klaauw AA, Farooqi IS . The Hunger Genes: pathways to obesity. Cell 2015; 161: 119–132.

    Article  CAS  Google Scholar 

  24. Ho-Urriola J, Guzman-Guzman IP, Smalley SV, Gonzalez A, Weisstaub G, Dominguez-Vasquez P et al. Melanocortin-4 receptor polymorphism rs17782313: association with obesity and eating in the absence of hunger in Chilean children. Nutrition 2014; 30: 145–149.

    Article  CAS  Google Scholar 

  25. Llewellyn CH, Trzaskowski M, van Jaarsveld CH, Plomin R, Wardle J . Satiety mechanisms in genetic risk of obesity. JAMA Pediatr 2014; 168: 338–344.

    Article  Google Scholar 

  26. Wardle J, Carnell S, Haworth CM, Farooqi IS, O'Rahilly S, Plomin R . Obesity associated genetic variation in FTO is associated with diminished satiety. J Clin Endocrinol Metab 2008; 93: 3640–3643.

    Article  CAS  Google Scholar 

  27. Gill R, Chen Q, D'Angelo D, Chung WK . Eating in the absence of hunger but not loss of control behaviors are associated with 16p11.2 deletions. Obesity (Silver Spring, MD) 2014; 22: 2625–2631.

    Article  Google Scholar 

  28. Tanofsky-Kraff M, Marcus MD, Yanovski SZ, Yanovski JA . Loss of control eating disorder in children age 12 years and younger: proposed research criteria. Eating Behav 2008; 9: 360–365.

    Article  Google Scholar 

  29. Kurz S, van Dyck Z, Dremmel D, Munsch S, Hilbert A . Early-onset restrictive eating disturbances in primary school boys and girls. Eur Child Adolesc Psychiatry 2014; 24: 779–785.

    Article  Google Scholar 

  30. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (5th ed.). American Psychiatric Publishing: Arlington, VA, USA, 2013.

  31. Wechsler D . WISC-IV Echelle d'intelligence de Wechsler pour enfants et adolescents: Quatrième édition. Les Editions du Centre de Psychologie Appliquée: Paris, France, 2005.

    Google Scholar 

  32. Wechsler D . WAIS-III Echelle d'intelligence de Wechsler pour adultes. les Éditions du Centre de Psychologie Appliquée: Paris, France, 2008.

    Google Scholar 

  33. Wechsler D . Wechsler Abbreviated Scale of Intelligence. The Psychological Corporation: San Antonio, TX, USA, 1999.

    Google Scholar 

  34. Stroop JR . Studies of interference in serial verbal reactions. J Exp Psychol 1935; 18: 643–662.

    Article  Google Scholar 

  35. Zimmermann P, Fimm B . Tests d’évaluation de l’attention version 2.2. Vera Fimm, Psychologische Testsysteme: Herzogenrath, Germany, 2010.

    Google Scholar 

  36. Carnell S, Wardle J . Measuring behavioural susceptibility to obesity: validation of the child eating behaviour questionnaire. Appetite 2007; 48: 104–113.

    Article  Google Scholar 

  37. Garner DM . Eating Disorder Inventory-2: Professional Manual. Psychological Assessment Resources: Odessa, FL, USA, 1991.

    Google Scholar 

  38. Van Strien T, Fritjters JER, Bergers GPA, Defares PB . The Dutch Eating Behavior Questionnaire (DEBQ) for assessment of emotional, external and restrained eating behavior. Int J Eating Disord 1986; 5: 295–313.

    Article  Google Scholar 

  39. Parkinson KN, Drewett RF, Le Couteur AS, Adamson AJ, Gateshead Milennium Study Core T. Do maternal ratings of appetite in infants predict later Child Eating Behaviour Questionnaire scores and body mass index? Appetite 2010; 54: 186–190.

    Article  Google Scholar 

  40. van Jaarsveld CH, Llewellyn CH, Johnson L, Wardle J . Prospective associations between appetitive traits and weight gain in infancy. Am J Clin Nutr 2011; 94: 1562–1567.

    Article  CAS  Google Scholar 

  41. Acosta A, Camilleri M, Shin A, Carlson P, Burton D, O'Neill J et al. Association of melanocortin 4 receptor gene variation with satiation and gastric emptying in overweight and obese adults. Genes Nutr 2014; 9: 384.

    Article  Google Scholar 

  42. Kenny PJ . Reward mechanisms in obesity: new insights and future directions. Neuron 2011; 69: 664–679.

    Article  CAS  Google Scholar 

  43. Van den Bree MB, Przybeck TR, Robert Cloninger C . Diet and personality: associations in a population-based sample. Appetite 2006; 46: 177–188.

    Article  Google Scholar 

  44. Niarchou M, Zammit S, van Goozen SH, Thapar A, Tierling HM, Owen MJ et al. Psychopathology and cognition in children with 22q11.2 deletion syndrome. Br J Psychiatry 2014; 204: 46–54.

    Article  Google Scholar 

Download references


We thank all participants and their families for their contribution. The ECHO study group members are very grateful to NHS (National Health Service) medical genetics clinics, Unique—The Rare Chromosome Disorder Support Group, a UK registered charity, and to UK-based 16p11.2 online support groups for advertising the study and referring participants. We acknowledge Hayley Moss, Maria Niarchou and Aimée Davies for their contribution in the recruitment and assessment of the participants. SJRAC is supported by a MRC doctoral training grant at the MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. KM was awarded a fellowship from the Swiss Scientific Exchange NMS Program, SJ is recipient of an SNSF Professorship fund. This work is supported by grants from the Simons Foundation (SFARI274424 to AR), the Swiss National Science Foundation 31003A_160203 (AR) and SNSF Sinergia grants CRSII33-133044 (AR and SJ). The Swiss University Study of Nutrition (SUN) project is funded by the Swiss National Science Foundation (SNSF) (grant number 100014132045/1) and by the German Federal Ministry of Education and Research (BMBF) (grant number 01EO1001). The CIBERobn is an initiative of ISCIII. Partial funding was obtained by Fondo Investigación Sanitaria (FIS; PI11/210/; PI14/290).


Addor, M-C, Service de Génétique Médicale, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Switzerland; Andrieux, J, Institut de Génétique Médicale, Hôpital Jeanne de Flandre, CHRU de Lille, France; Baujat, G, Centre de Référence Département de Génétique, Hôpital Necker-Enfants malades, Paris, France; Belfiore, M, Laboratoire de cytogénétique, Service de Génétique Médicale, CHUV, Lausanne, Switzerland; Bonneau, D, Service de génétique médicale, CHU-Angers, France; Bouquillon, S, Institut de Génétique Médicale, Hôpital Jeanne de Flandre, Lille, France; Boute, O, Hôpital Jeanne de Flandre, CHRU de Lille, France; Brusco, A, University of Torino, Department of Medical Sciences, Turin, Italy; Bussat, J, Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois, Lausanne University, Switzerland; Campion, D, Service de psychiatrie, Centre hospitalier de Rouvray, Sotteville lès Rouen, France; Delrue, M-A, Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme, Service de Génétique Médicale, CHU-Bordeaux, France; Dervaux, G, Unité de Médecine et Chirurgie de l'obésité, Centre Hospitalier de Béthune, France; Doco-Fenzy, M, Service de Génétique, CHU, EA3801 SFR-CAP Santé Reims, France; Edery, P, Service de Génétique, Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant et Centre de Recherche en Neurosciences de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France; Fagerberg, C, Department of Clinical Genetics, Odense Universitetshospital, Odense, Denmark; Fellmann, F, Service de Génétique Médicale, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Switzerland; Ferrarini, A, Department of Pediatrics, San Giovanni Hospital, Bellinzona, Switzerland; Forzano, F, SSD Genetica Medica, E Ospedali Galliera, Genova, Italy; Gérard, M, Département de Génétique, Hôpital Robert Debré, AP-HP, Paris, France; Giachino, D, Genetica Medica, Azienda Ospedaliera Universitaria San Luigi Gonzaga Orbassano, Torino, Italy; Gilbert-Dussardier, B, Service de Génétique Médicale, Centre de Référence Anomalies du Développement-Ouest, CHU de Poitiers; EA 3808, Université de Poitiers, France; Héron, D, Département de Génétique, Hôpital Pitié-Salpêtrière, Université Pierre et Marie Curie, Paris, France; Holder, M, Hôpital Jeanne de Flandre, CHRU de Lille, France; Jacquette, A, Département de Génétique, groupe hospitalier Pitié-Salpétrière, Paris, France; Journel, H, Génétique médicale, Centre Hospitalier Bretagne Atlantique, Vannes, France; Kutalik, Z, IUMSP, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Lacombe, D, Department of Medical Genetics, CHU of Bordeaux, Université de Bordeaux, France; Lazaro, L, CH Côte-Basque, Service de pédiatrie, Bayonne, France; Lemaître, M-P, Service de Neuropédiatrie, Centre Hospitalier Régional Universitaire, Lille, France; Lespinasse, J, Service génétique médicale, CH Chambéry, France; Macé, A, Department of Medical Genetics, University of Lausanne, Switzerland; Mandrile, G, Genetica Medica, Azienda Ospedaliera Universitaria San Luigi Gonzaga Orbassano, Torino, Italy; Martinet, D, Laboratoire de cytogénétique, Service de Génétique Médicale, CHUV, Lausanne, Switzerland; Minet, J-C, Department of Pediatrics, Hôpital du Jura, Délémont, Switzerland; Moerman, A, Institut de Génétique Médicale, Hôpital Jeanne de Flandre, Lille, France; Morice-Picard, F, Department of Medical Genetics, Centre Hospitalier Universitaire de Bordeaux, GH Pellegrin, Bordeaux, France; Motte, J, Neurologie Pédiatrique, Pôle Femme-Mère-Enfant, American Memorial Hospital, Reims, France; Olivier-Faivre, L, Centre de référence Anomalies du développement et Syndromes Malformatifs de l’Interrégion Est, Hôpital d’Enfants, CHU de Dijon et Université de Bourgogne, Dijon, France; Pasquier, L, Service de Génétique Clinique, Hôpital sud, CHU de Rennes, Université Rennes 1, UMR 6290 CNRS, Groupe GPLD, Rennes, France; Petit, F, Hôpital Jeanne de Flandre, CHRU de Lille, France; Plessis, G, Service de Génétique clinique, CHU Caen, France; Ragona, F, Department of Pediatric Neuroscience, IRCCS Foundation Neurological Institute C Besta, Milan, Italy; Ramelli, G-P, Department of Pediatrics, San Giovanni Hospital, Bellinzona, Switzerland; Van Haelst, MM, Department of Medical Genetics, University Medical Center, Utrecht, Netherlands; Van Maldergem, L, Centre de Génétique humaine, CHU-Besançon, France.

Author information

Authors and Affiliations



Corresponding author

Correspondence to S Jacquemont.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maillard, A., Hippolyte, L., Rodriguez-Herreros, B. et al. 16p11.2 Locus modulates response to satiety before the onset of obesity. Int J Obes 40, 870–876 (2016).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links