Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The early origins of obesity and insulin resistance: timing, programming and mechanisms

Abstract

Maternal obesity is associated with an increased risk of developing gestational diabetes mellitus and it also results in an increased risk of giving birth to a large baby with increased fat mass. Furthermore, it is also contributes to an increased risk of obesity and insulin resistance in the offspring in childhood, adolescence and adult life. It has been proposed that exposure to maternal obesity may therefore result in an ‘intergenerational cycle’ of obesity and insulin resistance. There is significant interest in whether exposure to maternal obesity around the time of conception alone contributes directly to poor metabolic outcomes in the offspring and whether dieting in the obese mother before pregnancy or around the time of conception has metabolic benefits for the offspring. This review focusses on experimental and clinical studies that have investigated the specific impact of exposure to maternal obesity during the periconceptional period alone or extending beyond conception on adipogenesis, lipogenesis and on insulin signalling pathways in the fat, liver and muscle of the offspring. Findings from these studies highlight the need for a better evidence base for the development of dietary interventions in obese women before pregnancy and around the time of conception to maximize the metabolic benefits and minimize the metabolic costs for the next generation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Kumanyika SK, Obarzanek E, Stettler N, Bell R, Field AE, Fortmann SP et al. Population-based prevention of obesity: the need for comprehensive promotion of healthful eating, physical activity, and energy balance: a scientific statement from American Heart Association Council on Epidemiology and Prevention, Interdisciplinary Committee for prevention (formerly the expert panel on population and prevention science). Circulation 2008; 118: 428–464.

    PubMed  Google Scholar 

  2. Ogden CL, Yanovski SZ, Carroll MD, Flegal KM . The epidemiology of obesity. Gastroenterology 2007; 132: 2087–2102.

    PubMed  Google Scholar 

  3. Catalano PM, Ehrenberg HM . The short- and long-term implications of maternal obesity on the mother and her offspring. BJOG 2006; 113: 1126–1133.

    CAS  PubMed  Google Scholar 

  4. Zhang S, Rattanatray L, Morrison JL, Nicholas LM, Lie S, McMillen IC . Maternal obesity and the early origins of childhood obesity: weighing up the benefits and costs of maternal weight loss in the periconceptional period for the offspring. Exp Diabetes Res 2011; 2011: 585749.

    PubMed  PubMed Central  Google Scholar 

  5. Oteng-Ntim E, Varma R, Croker H, Poston L, Doyle P . Lifestyle interventions for overweight and obese pregnant women to improve pregnancy outcome: systematic review and meta-analysis. BMC Med 2012; 10: 47.

    PubMed  PubMed Central  Google Scholar 

  6. Rooney K, Ozanne SE . Maternal over-nutrition and offspring obesity predisposition: targets for preventative interventions. Int J Obes (Lond) 2011; 35: 883–890.

    CAS  Google Scholar 

  7. Ryan D . Obesity in women: a life cycle of medical risk. Int J Obes (Lond) 2007; 31 (Suppl 2): S3–S7.

    Google Scholar 

  8. Freinkel N . Of pregnancy and progeny. Diabetes 1980; 29: 1023–1035.

    CAS  PubMed  Google Scholar 

  9. Lawlor DA, Relton C, Sattar N, Nelson SM . Maternal adiposity—a determinant of perinatal and offspring outcomes? Nat Rev Endocrinol 2012; 8: 679–688.

    PubMed  Google Scholar 

  10. Smith GD, Leary S, Ness A, Lawlor DA . Challenges and novel approaches in the epidemiological study of early life influences on later disease. Adv Exp Med Biol 2009; 646: 1–14.

    Google Scholar 

  11. Whitaker RC, Wright JA, Pepe MS, Seidel KD, Dietz WH . Predicting obesity in young adulthood from childhood and parental obesity. N Engl J Med 1997; 337: 869–873.

    CAS  PubMed  Google Scholar 

  12. Yu Z, Han S, Zhu J, Sun X, Ji C, Guo X . Pre-pregnancy body mass index in relation to infant birth weight and offspring overweight/obesity: a systematic review and meta-analysis. PLoS One 2013; 8: e61627.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Isganaitis E, Rifas-Shiman SL, Oken E, Dreyfuss JM, Gall W, Gillman MW et al. Associations of cord blood metabolites with early childhood obesity risk. Int J Obes (Lond) 2015; 39: 1041–1048.

    CAS  Google Scholar 

  14. Petitt DJ, Baird HB, Aleck KA . Excessive obesity in offspring of Pima Indian women with diabetes during pregnancy. N Engl J Med 1983; 308: 242–245.

    Google Scholar 

  15. Pettitt DJ, Bennett PH, Knowler WC . Gestational diabetes mellitus and impaired glucose tolerance during pregnancy. Long-term effects on obesity and glucose tolerance in the offspring. Diabetes 1985; 34: 119–122.

    Google Scholar 

  16. Boney CM, Verma A, Tucker R, Vohr BR . Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 2005; 115: e290–e296.

    PubMed  Google Scholar 

  17. Parsons TJ, Power C, Manor O . Fetal and early life growth and body mass index from birth to early adulthood in 1958 British cohort: Longitudinal. BMJ 2001; 323: 1331–1335.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kubo A, Ferrara A, Windham GC, Greenspan LC, Deardorff J, Hiatt RA et al. Maternal hyperglycemia during pregnancy predicts adiposity of the offspring. Diabetes Care 2014; 37: 2996–3002.

    PubMed  PubMed Central  Google Scholar 

  19. Buckley AJ, Keserü B, Briody J, Thompson M, Ozanne SE, Thompson CH . Altered body composition and metabolism in the male offspring of high fat-fed rats. Metabolism 2005; 54: 500–507.

    CAS  PubMed  Google Scholar 

  20. Cerf ME, Williams K, Nkomo XI, Muller CJ, Du Toit DF, Louw J et al. Islet cell response in the neonatal rat after exposure to a high-fat diet during pregnancy. Am J Physiol Regul Integr Comp Physiol 2005; 288: R1122–R1128.

    CAS  PubMed  Google Scholar 

  21. Nivoit P, Morens C, Van Assche FA, Jansen E, Poston L, Remacle C et al. Established diet-induced obesity in female rats leads to offspring hyperphagia, adiposity and insulin resistance. Diabetologia 2009; 52: 1133–1142.

    CAS  PubMed  Google Scholar 

  22. Samuelsson AM, Matthews PA, Argenton M, Christie MR, McConnell JM, Jansen EH et al. Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: a novel murine model of developmental programming. Hypertension 2008; 51: 383–392.

    CAS  PubMed  Google Scholar 

  23. Shankar K, Harrell A, Liu X, Gilchrist JM, Ronis MJJ, Badger TM . Maternal obesity at conception programs obesity in the offspring. Am J Physiol Regul Integr Comp Physiol 2008; 294: R528–R538.

    CAS  PubMed  Google Scholar 

  24. Taylor PD, McConnell J, Khan IY, Holemans K, Lawrence KM, Asare-Anane H et al. Impaired glucose homeostasis and mitochondrial abnormalities in offspring of rats fed a fat-rich diet in pregnancy. Am J Physiol Regul Integr Comp Physiol 2005; 288: R134–R139.

    CAS  PubMed  Google Scholar 

  25. Volpato AM, Schultz A, Magalhães-da-Costa E, MLdG Correia, Águila MB, Mandarim-de-Lacerda CA . Maternal high-fat diet programs for metabolic disturbances in offspring despite leptin sensitivity. Neuroendocrinology 2012; 96: 272–284.

    CAS  PubMed  Google Scholar 

  26. Frayn KN . Visceral fat and insulin resistance—causative or correlative? Br J Nutr 2000; 83 (Suppl 1): S71–S77.

    CAS  PubMed  Google Scholar 

  27. Murabayashi N, Sugiyama T, Zhang L, Kamimoto Y, Umekawa T, Ma N et al. Maternal high-fat diets cause insulin resistance through inflammatory changes in fetal adipose tissue. Eur J Obstetr Gynecol Reprod Biol 2013; 169: 39–44.

    CAS  Google Scholar 

  28. Balagopal PB, de Ferranti SD, Cook S, Daniels SR, Gidding SS, Hayman LL et al. Nontraditional risk factors and biomarkers for cardiovascular disease: mechanistic, research, and clinical considerations for youth: a scientific statement from the American Heart Association. Circulation 2011; 123: 2749–2769.

    PubMed  Google Scholar 

  29. Antuna-Puente B, Feve B, Fellahi S, Bastard JP . Adipokines: the missing link between insulin resistance and obesity. Diabetes Metab 2008; 34: 2–11.

    CAS  PubMed  Google Scholar 

  30. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002; 8: 1288–1295.

    CAS  PubMed  Google Scholar 

  31. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM . Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372: 425–432.

    CAS  PubMed  Google Scholar 

  32. Ahima RS, Flier JS . Leptin. Annu Rev Physiol 2000; 62: 413–437.

    CAS  PubMed  Google Scholar 

  33. Matsuda J, Yokota I, Iida M, Murakami T, Naito E, Ito M et al. Serum leptin concentration in cord blood: Relationship to birth weight and gender. J Clin Endocrinol Metab 1997; 82: 1642–1644.

    CAS  PubMed  Google Scholar 

  34. Tapanainen P, Leinonen E, Ruokonen A, Knip M . Leptin concentrations are elevated in newborn infants of diabetic mothers. Horm Res 2001; 55: 185–190.

    CAS  PubMed  Google Scholar 

  35. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM et al. The hormone resistin links obesity to diabetes. Nature 2001; 409: 307–312.

    CAS  PubMed  Google Scholar 

  36. Reilly MP, Lehrke M, Wolfe ML, Rohatgi A, Lazar MA, Rader DJ . Resistin is an inflammatory marker of atherosclerosis in humans. Circulation 2005; 111: 932–939.

    CAS  PubMed  Google Scholar 

  37. Sun Q, Kiernan UA, Shi L, Phillips DA, Kahn BB, Hu FB et al. Plasma retinol-binding protein 4 (RBP4) levels and risk of coronary heart disease: a prospective analysis among women in the nurses' health study. Circulation 2013; 127: 1938–1947.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Deng Y, Scherer PE . Adipokines as novel biomarkers and regulators of the metabolic syndrome. Ann N Y Acad Sci 2010; 1212: E1–E19.

    PubMed  PubMed Central  Google Scholar 

  39. Bringhenti I, Moraes-Teixeira JA, Cunha MR, Ornellas F, Mandarim-de-Lacerda CA, Aguila MB . Maternal obesity during the preconception and early life periods alters pancreatic development in early and adult life in male mouse offspring. PLoS One 2013; 8: 1.

    Google Scholar 

  40. Shelley P, Martin-Gronert MS, Rowlerson A, Poston L, Heales SJR, Hargreaves IP et al. Altered skeletal muscle insulin signaling and mitochondrial complex II-III linked activity in adult offspring of obese mice. Am J Physiol Regul Integr Comp Physiol 2009; 297: R675–R681.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ainge H, Thompson C, Ozanne SE, Rooney KB . A systematic review on animal models of maternal high fat feeding and offspring glycaemic control. Int J Obes 2011; 35: 325–335.

    CAS  Google Scholar 

  42. Du M, Yan X, Tong JF, Zhao J, Zhu MJ . Maternal obesity, inflammation, and fetal skeletal muscle development. Biol Reprod 2010; 82: 4–12.

    CAS  PubMed  Google Scholar 

  43. Sen S, Simmons RA . Maternal antioxidant supplementation prevents adiposity in the offspring of Western diet-fed rats. Diabetes 2010; 59: 3058–3065.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Tong JF, Yan X, Zhu MJ, Ford SP, Nathanielsz PW, Du M . Maternal obesity downregulates myogenesis and beta-catenin signaling in fetal skeletal muscle. Am J Physiol Endocrinol Metab 2009; 296: E917–E924.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lewis DS, Bertrand HA, McMahan CA . Preweaning food intake influences the adiposity of young adult baboons. J Clin Invest 1986; 78: 899–905.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. DiGiacomo JE, Hay WW Jr . Effect of hypoinsulinemia and hyperglycemia on fetal glucose utilization. Am J Physiol Endocrinol Metab 1990; 259: E506–E512.

    CAS  Google Scholar 

  47. Ford SP, Tuersunjiang N . Maternal obesity: How big an impact does it have on offspring prenatally and during postnatal life? Expert Rev Endocrinol Metab 2013; 8: 261–273.

    CAS  PubMed  Google Scholar 

  48. Hay Jr WW, DiGiacomo JE, Meznarich HK, Hirst K, Zerbe G . Effects of glucose and insulin on fetal glucose oxidation and oxygen consumption. Am J Physiol Endocrinol Metab 1989; 256: E704–E713.

    CAS  Google Scholar 

  49. Anthony RV, Scheaffer AN, Wright CD, Regnault TR . Ruminant models of prenatal growth restriction. Reprod Suppl 2003; 61: 183–194.

    CAS  PubMed  Google Scholar 

  50. Long NM, Rule DC, Zhu MJ, Nathanielsz PW, Ford SP . Maternal obesity upregulates fatty acid and glucose transporters and increases expression of enzymes mediating fatty acid biosynthesis in fetal adipose tissue depots. J Anim Sci 2012; 90: 2201–2210.

    CAS  PubMed  Google Scholar 

  51. Ford SP, Zhang L, Zhu M, Miller MM, Smith DT, Hess BW et al. Maternal obesity accelerates fetal pancreatic β-cell but not α-cell development in sheep: Prenatal consequences. Am J Physiol Regul Integr Comp Physiol 2009; 297: R835–R843.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang L, Long NM, Hein SM, Ma Y, Nathanielsz PW, Ford SP . Maternal obesity in ewes results in reduced fetal pancreatic β-cell numbers in late gestation and decreased circulating insulin concentration at term. Domest Anim Endocrinol 2011; 40: 30–39.

    PubMed  Google Scholar 

  53. Long NM, George LA, Uthlaut AB, Smith DT, Nijland MJ, Nathanielsz PW et al. Maternal obesity and increased nutrient intake before and during gestation in the ewe results in altered growth, adiposity, and glucose tolerance in adult offspring. J Anim Sci 2010; 88: 3546–3553.

    CAS  PubMed  Google Scholar 

  54. Li J, Huang J, Li JS, Chen H, Huang K, Zheng L . Accumulation of endoplasmic reticulum stress and lipogenesis in the liver through generational effects of high fat diets. J Hepatol 2012; 56: 900–907.

    CAS  PubMed  Google Scholar 

  55. Masuyama H, Hiramatsu Y . Effects of a high-fat diet exposure in utero on the metabolic syndrome-like phenomenon in mouse offspring through epigenetic changes in adipocytokine gene expression. Endocrinology 2012; 153: 2823–2830.

    CAS  PubMed  Google Scholar 

  56. Strakovsky RS, Zhang X, Zhou D, Pan YX . Gestational high fat diet programs hepatic phosphoenolpyruvate carboxykinase gene expression and histone modification in neonatal offspring rats. J Physiol 2011; 589: 2707–2717.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Graus-Nunes F, Dalla Corte Frantz E, Lannes WR, da Silva Menezes MC, Mandarim-de-Lacerda CA, Souza-Mello V . Pregestational maternal obesity impairs endocrine pancreas in male F1 and F2 progeny. Nutrition 2015; 31: 380–387.

    CAS  PubMed  Google Scholar 

  58. Adamo KB, Ferraro ZM, Goldfield G, Keely E, Stacey D, Hadjiyannakis S et al. The Maternal Obesity Management (MOM) Trial Protocol: a lifestyle intervention during pregnancy to minimize downstream obesity. Contemp Clin Trials 2013; 35: 87–96.

    PubMed  Google Scholar 

  59. Nohr EA, Vaeth M, Baker JL, Sørensen TIA, Olsen J, Rasmussen KM . Combined associations of prepregnancy body mass index and gestational weight gain with the outcome of pregnancy. Am J Clin Nutr 2008; 87: 1750–1759.

    CAS  PubMed  Google Scholar 

  60. Smith J, Cianflone K, Biron S, Hould FS, Lebel S, Marceau S et al. Effects of maternal surgical weight loss in mothers on intergenerational transmission of obesity. J Clin Endocrinol Metab 2009; 94: 4275–4283.

    CAS  PubMed  Google Scholar 

  61. Jensen DM, Damm P, Sørensen B, Mølsted-Pedersen L, Westergaard JG, Ovesen P et al. Pregnancy outcome and prepregnancy body mass index in 2459 glucose-tolerant Danish women. Am J Obstet Gynecol 2003; 189: 239–244.

    PubMed  Google Scholar 

  62. Van Der Steeg JW, Steures P, Eijkemans MJC, Habbema JDF, Hompes PGA, Burggraaff JM et al. Obesity affects spontaneous pregnancy chances in subfertile, ovulatory women. Hum Reprod 2008; 23: 324–328.

    PubMed  Google Scholar 

  63. Hochner H, Friedlander Y, Calderon-Margalit R, Meiner V, Sagy Y, Avgil-Tsadok M et al. Associations of maternal prepregnancy body mass index and gestational weight gain with adult offspring cardiometabolic risk factors: the Jerusalem Perinatal Family Follow-up Study. Circulation 2012; 125: 1381–1389.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Oostvogels AJ, Stronks K, Roseboom TJ, van der Post JA, van Eijsden M, Vrijkotte TG . Maternal prepregnancy BMI, offspring's early postnatal growth, and metabolic profile at age 5–6 years: the ABCD Study. J Clin Endocrinol Metab 2014; 99: 3845–3854.

    CAS  PubMed  Google Scholar 

  65. Maftei O, Whitrow MJ, Davies MJ, Giles LC, Owens JA, Moore VM . Maternal body size prior to pregnancy, gestational diabetes and weight gain: associations with insulin resistance in children at 9-10 years. Diabet Med 2015; 32: 174–180.

    CAS  PubMed  Google Scholar 

  66. Minge CE, Bennett BD, Norman RJ, Robker RL . Peroxisome proliferator-activated receptor-α agonist rosiglitazone reverses the adverse effects of diet-induced obesity on oocyte quality. Endocrinology 2008; 149: 2646–2656.

    CAS  PubMed  Google Scholar 

  67. Wu LL, Russell DL, Wong SL, Chen M, Tsai TS, St John JC et al. Mitochondrial dysfunction in oocytes of obese mothers: transmission to offspring and reversal by pharmacological endoplasmic reticulum stress inhibitors. Development 2015; 142: 681–691.

    CAS  PubMed  Google Scholar 

  68. Nicholas LM, Morrison JL, Rattanatray L, Ozanne SE, Kleemann DO, Walker SK et al. Differential effects of exposure to maternal obesity or maternal weight loss during the periconceptional period in the sheep on insulin signalling molecules in skeletal muscle of the offspring at 4 months of age. PLoS One 2013; 8: e84594.

    PubMed  PubMed Central  Google Scholar 

  69. Nicholas LM, Rattanatray L, Maclaughlin SM, Ozanne SE, Kleemann DO, Walker SK et al. Differential effects of maternal obesity and weight loss in the periconceptional period on the epigenetic regulation of hepatic insulin-signaling pathways in the offspring. FASEB J 2013; 27: 3786–3796.

    CAS  PubMed  Google Scholar 

  70. Nicholas LM, Rattanatray L, Morrison JL, Kleemann DO, Walker SK, Zhang S et al. Maternal obesity or weight loss around conception impacts hepatic fatty acid metabolism in the offspring. Obesity (Silver Spring) 2014; 22: 1685–1693.

    CAS  Google Scholar 

  71. Rattanatray L, MacLaughlin SM, Kleemann DO, Walker SK, Muhlhausler BS, McMillen IC . Impact of maternal periconceptional overnutrition on fat mass and expression of adipogenic and lipogenic genes in visceral and subcutaneous fat depots in the postnatal lamb. Endocrinology 2010; 151: 5195–5205.

    CAS  PubMed  Google Scholar 

  72. Zhang S, Rattanatray L, MacLaughlin SM, Cropley JE, Suter CM, Molloy L et al. Periconceptional undernutrition in normal and overweight ewes leads to increased adrenal growth and epigenetic changes in adrenal IGF2/H19 gene in offspring. FASEB J 2010; 24: 2772–2782.

    CAS  PubMed  Google Scholar 

  73. Catalano PM, Nizielski SE, Shao J, Preston L, Qiao L, Friedman JE . Downregulated IRS-1 and PPARγ in obese women with gestational diabetes: relationship to FFA during pregnancy. Am J Physiol Endocrinol Metab 2002; 282: E522–E533.

    CAS  PubMed  Google Scholar 

  74. Greenfield JR, Campbell LV . Insulin resistance and obesity. Clin Dermatol 2004; 22: 289–295.

    PubMed  Google Scholar 

  75. Savage DB, Petersen KF, Shulman GI . Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol Rev 2007; 87: 507–520.

    CAS  PubMed  Google Scholar 

  76. Li X, Monks B, Ge Q, Birnbaum MJ . Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1α transcription coactivator. Nature 2007; 447: 1012–1016.

    CAS  PubMed  Google Scholar 

  77. Ozanne SE, Jensen CB, Tingey KJ, Storgaard H, Madsbad S, Vaag AA . Low birthweight is associated with specific changes in muscle insulin-signalling protein expression. Diabetologia 2005; 48: 547–552.

    CAS  PubMed  Google Scholar 

  78. Ozanne SE, Olsen GS, Hansen LL, Tingey KJ, Nave BT, Wang CL et al. Early growth restriction leads to down regulation of protein kinase C zeta and insulin resistance in skeletal muscle. J Endocrinol 2003; 177: 235–241.

    CAS  PubMed  Google Scholar 

  79. Postic C, Dentin R, Girard J . Role of the liver in the control of carbohydrate and lipid homeostasis. Diabetes Metab 2004; 30: 398–408.

    CAS  PubMed  Google Scholar 

  80. Angulo P . Medical progress: Nonalcoholic fatty liver disease. N Engl J Med 2002; 346: 1221–1231.

    CAS  PubMed  Google Scholar 

  81. Marchesini G, Brizi M, Blanchi G, Tomassetti S, Bugianesi E, Lenzi M et al. Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes 2001; 50: 1844–1850.

    CAS  PubMed  Google Scholar 

  82. McCurdy CE, Bishop JM, Williams SM, Grayson BE, Smith MS, Friedman JE et al. Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates. J Clin Invest 2009; 119: 323–335.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Oben JA, Mouralidarane A, Samuelsson AM, Matthews PJ, Morgan ML, McKee C et al. Maternal obesity during pregnancy and lactation programs the development of offspring non-alcoholic fatty liver disease in mice. J Hepatol 2010; 52: 913–920.

    CAS  PubMed  Google Scholar 

  84. Isagawa T, Nagae G, Shiraki N, Fujita T, Sato N, Ishikawa S et al. DNA methylation profiling of embryonic stem cell differentiation into the three germ layers. PLoS One 2011; 6 6: e26052.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Duque-Guimarães DE, Ozanne SE . Nutritional programming of insulin resistance: Causes and consequences. Trends Endocrinol Metab 2013; 24: 525–535.

    PubMed  Google Scholar 

  86. Morgan HD, Santos F, Green K, Dean W, Reik W . Epigenetic reprogramming in mammals. Hum Mol Genet 2005; 14: R47–R58.

    CAS  PubMed  Google Scholar 

  87. Jiménez-Chillarón JC, Díaz R, Martínez D, Pentinat T, Ramón-Krauel M, Ribó S et al. The role of nutrition on epigenetic modifications and their implications on health. Biochimie 2012; 94: 2242–2263.

    PubMed  Google Scholar 

  88. Margueron R, Reinberg D . Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet 2010; 11: 285–296.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Semple RK, Chatterjee VK, O'Rahilly S . PPAR gamma and human metabolic disease. J Clin Invest 2006; 116: 581–589.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Waterland RA, Travisano M, Tahiliani KG, Rached MT, Mirza S . Methyl donor supplementation prevents transgenerational amplification of obesity. Int J Obes 2008; 32: 1373–1379.

    CAS  Google Scholar 

  91. He A, Zhu L, Gupta N, Chang Y, Fang F . Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. Mol Endocrinol 2007; 21: 2785–2794.

    CAS  PubMed  Google Scholar 

  92. Trajkovski M, Hausser J, Soutschek J, Bhat B, Akin A, Zavolan M et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 2011; 474: 649–653.

    CAS  PubMed  Google Scholar 

  93. Jordan SD, Krüger M, Willmes DM, Redemann N, Wunderlich FT, Brönneke HS et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol 2011; 13: 434–448.

    CAS  PubMed  Google Scholar 

  94. Taniguchi CM, Emanuelli B, Kahn CR . Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 2006; 7: 85–96.

    CAS  PubMed  Google Scholar 

  95. Hulsmans M, Holvoet P . MicroRNAs as early biomarkers in obesity and related metabolic and cardiovascular diseases. Curr Pharm Des 2013; 19: 5704–5717.

    CAS  PubMed  Google Scholar 

  96. Mühlhäusler BS, Adam CL, Findlay PA, Duffield JA, McMillen IC . Increased maternal nutrition alters development of the appetite-regulating network in the brain. FASEB J 2006; 20: 1257–1259.

    PubMed  Google Scholar 

  97. Mühlhäusler BS, Duffield JA, McMillen IC . Increased maternal nutrition stimulates peroxisome proliferator activated receptor-γ, adiponectin, and leptin messenger ribonucleic acid expression in adipose tissue before birth. Endocrinology 2007; 148: 878–885.

    PubMed  Google Scholar 

  98. Mühlhäusler BS, Roberts CT, Yuen BSJ, Marrocco E, Budge H, Symonds ME et al. Determinants of fetal leptin synthesis, fat mass, and circulating leptin concentrations in well-nourished ewes in late pregnancy. Endocrinology 2003; 144: 4947–4954.

    PubMed  Google Scholar 

  99. Mühlhäusler BS, Duffield JA, McMillen IC . Increased maternal nutrition increases leptin expression in perirenal and subcutaneous adipose tissue in the postnatal lamb. Endocrinology 2007; 148: 6157–6163.

    PubMed  Google Scholar 

  100. Rattanatray L, Muhlhausler BS, Nicholas LM, Morrison JL, McMillen IC . Impact of maternal overnutrition on gluconeogenic factors and methylation of the phosphoenolpyruvate carboxykinase promoter in the fetal and postnatal liver. Pediatr Res 2014; 75: 14–21.

    CAS  PubMed  Google Scholar 

  101. Kral JG . Preventing and treating obesity in girls and young women to curb the epidemic. Obes Res 2004; 12: 1539–1546.

    PubMed  Google Scholar 

  102. Birdsall KM, Vyas S, Khazaezadeh N, Oteng-Ntim E . Maternal obesity: a review of interventions. Int J Clin Pract 2009; 63: 494–507.

    CAS  PubMed  Google Scholar 

  103. Dodd JM, Crowther CA, Robinson JS . Dietary and lifestyle interventions to limit weight gain during pregnancy for obese or overweight women: a systematic review. Acta Obstet Gynecol Scand 2008; 87: 702–706.

    PubMed  Google Scholar 

  104. Ronnberg AK, Nilsson K . Interventions during pregnancy to reduce excessive gestational weight gain: a systematic review assessing current clinical evidence using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) system. BJOG 2010; 117: 1327–1334.

    CAS  PubMed  Google Scholar 

  105. Sui Z, Dodd JM . Exercise in obese pregnant women: positive impacts and current perceptions. Int J Womens Health 2013; 5: 389–398.

    PubMed  PubMed Central  Google Scholar 

  106. Patti ME . Reducing maternal weight improves offspring metabolism and alters (or modulates) methylation. Proc Natl Acad Sci USA 2013; 110: 12859–12860.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Dalfrà MG, Busetto L, Chilelli NC, Lapolla A . Pregnancy and foetal outcome after bariatric surgery: a review of recent studies. J Matern Fetal Neonatal Med 2012; 25: 1537–1543.

    PubMed  Google Scholar 

  108. Barisione M, Carlini F, Gradaschi R, Camerini G, Adami GF . Body weight at developmental age in siblings born to mothers before and after surgically induced weight loss. Surg Obes Relat Dis 2012; 8: 387–391.

    PubMed  Google Scholar 

  109. Kral JG, Biron S, Simard S, Hould FS, Lebel S, Marceau S et al. Large maternal weight loss from obesity surgery prevents transmission of obesity to children who were followed for 2 to 18 years. Pediatrics 2006; 118: e1644–e1649.

    PubMed  Google Scholar 

  110. Guénard F, Deshaies Y, Cianflone K, Kral JG, Marceau P, Vohl MC . Differential methylation in glucoregulatory genes of offspring born before vs. after maternal gastrointestinal bypass surgery. Proc Natl Acad Sci USA 2013; 110: 11439–11444.

    PubMed  PubMed Central  Google Scholar 

  111. Zambrano E, Martínez-Samayoa PM, Rodríguez-González GL, Nathanielsz PW . Dietary intervention prior to pregnancy reverses metabolic programming in male offspring of obese rats. J Physiol 2010; 588: 1791–1799.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Vega CC, Reyes-Castro LA, Bautista CJ, Larrea F, Nathanielsz PW, Zambrano E . Exercise in obese female rats has beneficial effects on maternal and male and female offspring metabolism. Int J Obes (Lond) 2015; 39: 712–719.

    CAS  Google Scholar 

  113. Raipuria M, Bahari H, Morris MJ . Effects of maternal diet and exercise during pregnancy on glucose metabolism in skeletal muscle and fat of weanling rats. PLoS One 2015; 10: e0120980.

    PubMed  PubMed Central  Google Scholar 

  114. De Rooij SR, Painter RC, Phillips DIW, Osmond C, Michels RPJ, Godsland IF et al. Impaired insulin secretion after prenatal exposure to the Dutch famine. Diabetes Care 2006; 29: 1897–1901.

    PubMed  Google Scholar 

  115. Smith NA, McAuliffe FM, Quinn K, Lonergan P, Evans ACO . The negative effects of a short period of maternal undernutrition at conception on the glucose-insulin system of offspring in sheep Anim Reprod Sci 121: 94–100.

    CAS  PubMed  Google Scholar 

  116. Todd SE, Oliver MH, Jaquiery AL, Bloomfield FH, Harding JE . Periconceptional undernutrition of ewes impairs glucose tolerance in their adult offspring. Pediatr Res 2009; 65: 409–413.

    PubMed  Google Scholar 

  117. Lee RSF, Depree KM, Davey HW . The sheep (Ovis aries) H19 gene: genomic structure and expression patterns, from the preimplantation embryo to adulthood. Gene 2002; 301: 67–77.

    CAS  PubMed  Google Scholar 

  118. Stanford KI, Lee MY, Getchell KM, So K, Hirshman MF, Goodyear LJ . Exercise before and during pregnancy prevents the deleterious effects of maternal high-fat feeding on metabolic health of male offspring. Diabetes 2014; 64: 427–433.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L M Nicholas.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicholas, L., Morrison, J., Rattanatray, L. et al. The early origins of obesity and insulin resistance: timing, programming and mechanisms. Int J Obes 40, 229–238 (2016). https://doi.org/10.1038/ijo.2015.178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2015.178

This article is cited by

Search

Quick links