Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Intestinal GLP-1 and satiation: from man to rodents and back

Abstract

In response to luminal food stimuli during meals, enteroendocrine cells release gastrointestinal (GI) peptides that have long been known to control secretory and motor functions of the gut, pancreas and liver. Glucagon-like peptide-1 (GLP-1) has emerged as one of the most important GI peptides because of a combination of functions not previously ascribed to any other molecule. GLP-1 potentiates glucose-induced insulin secretion, suppresses glucagon release, slows gastric emptying and may serve as a satiation signal, although the physiological status of the latter function has not been fully established yet. Here we review the available evidence for intestinal GLP-1 to fulfill a number of established empirical criteria for assessing whether a hormone inhibits eating by eliciting physiological satiation in man and rodents.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2

References

  1. WHO Obesity and overweight Fact sheet no 311. WHO Media Centre, 2012.

  2. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser 2000; 894: i-xii, 1-253.

  3. Stefater MA, Wilson-Perez HE, Chambers AP, Sandoval DA, Seeley RJ . All bariatric surgeries are not created equal: insights from mechanistic comparisons. Endocr Rev 2012; 33: 595–622.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Peterli R, Steinert RE, Woelnerhanssen B, Peters T, Christoffel-Courtin C, Gass M et al. Metabolic and hormonal changes after laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy: a randomized, prospective trial. Obes Surg 2012; 22: 740–748.

    PubMed  PubMed Central  Article  Google Scholar 

  5. Harvey EJ, Arroyo K, Korner J, Inabnet WB . Hormone changes affecting energy homeostasis after metabolic surgery. Mt Sinai J Med 2010; 77: 446–465.

    PubMed  Article  Google Scholar 

  6. Gibbs J, Young RC, Smith GP . Cholecystokinin decreases food intake in rats. J. Comp Physiol Psychol 1973; 84: 488–495.

    CAS  Article  Google Scholar 

  7. Smith GP, Gibbs J . Gut peptides and postprandial satiety. Fed Proc 1984; 43: 2889–2892.

    CAS  PubMed  Google Scholar 

  8. Geary N . Endocrine controls of eating: CCK, leptin, and ghrelin. Physiol Behav 2004; 81: 719–733.

    CAS  PubMed  Article  Google Scholar 

  9. Geary N, Moran TH . Basic science of appetite. In: Sadock BJ, Sadock VA, Ruiz P (eds). Comprehensive Textbook of Psychiatry, 9th edn. Wolters Kluwer/Lippincott Williams & Wilkens, 2009, pp 375–387.

    Google Scholar 

  10. Beglinger C, Degen L . Gastrointestinal satiety signals in humans–physiologic roles for GLP-1 and PYY? Physiol Behav 2006; 89: 460–464.

    CAS  PubMed  Article  Google Scholar 

  11. Read NW, McFarlane A, Kinsman RI, Bates TE, Blackhall NW, Farrar GB et al. Effect of infusion of nutrient solutions into the ileum on gastrointestinal transit and plasma levels of neurotensin and enteroglucagon. Gastroenterology 1984; 86: 274–280.

    CAS  PubMed  Article  Google Scholar 

  12. Spiller RC, Trotman IF, Higgins BE, Ghatei MA, Grimble GK, Lee YC et al. The ileal brake—inhibition of jejunal motility after ileal fat perfusion in man. Gut 1984; 25: 365–374.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Elliott RM, Morgan LM, Tredger JA, Deacon S, Wright J, Marks V . Glucagon-like peptide-1 (7-36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns. J Endocrinol 1993; 138: 159–166.

    CAS  PubMed  Article  Google Scholar 

  14. Orskov C, Wettergren A, Holst JJ . Secretion of the incretin hormones glucagon-like peptide-1 and gastric inhibitory polypeptide correlates with insulin secretion in normal man throughout the day. Scand J Gastroenterol 1996; 31: 665–670.

    CAS  PubMed  Article  Google Scholar 

  15. Holst JJ . The physiology of glucagon-like peptide 1. Physiol Rev 2007; 87: 1409–1439.

    CAS  PubMed  Article  Google Scholar 

  16. Herrmann C, Goke R, Richter G, Fehmann HC, Arnold R, Goke B . Glucagon-like peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients. Digestion 1995; 56: 117–126.

    CAS  PubMed  Article  Google Scholar 

  17. Bowen J, Noakes M, Clifton PM . Appetite hormones and energy intake in obese men after consumption of fructose, glucose and whey protein beverages. Int J Obes (Lond) 2007; 31: 1696–1703.

    CAS  Article  Google Scholar 

  18. Meyer-Gerspach AC, Wolnerhanssen B, Beglinger B, Nessenius F, Napitupulu M, Schulte FH et al. Gastric and intestinal satiation in obese and normal weight healthy people. Physiol Behav 2014; 22: 265–271.

    Article  CAS  Google Scholar 

  19. Beglinger S, Drewe J, Schirra J, Göke B, D'Amato M, Beglinger C . Role of fat hydrolysis in regulating glucagon-like Peptide-1 secretion. J Clin Endocrinol Metab 2010; 95: 879–886.

    CAS  PubMed  Article  Google Scholar 

  20. Feltrin KL, Little TJ, Meyer JH, Horowitz M, AJPM Smout, Wishart J et al. Effects of intraduodenal fatty acids on appetite, antropyloroduodenal motility, and plasma CCK and GLP-1 in humans vary with their chain length. Am J Physiol Regul Integr Comp Physiol 2004; 287: R524–R533.

    CAS  PubMed  Article  Google Scholar 

  21. Hansen KB, Rosenkilde MM, Knop FK, Wellner N, Diep TA, Rehfeld JF et al. 2-Oleoyl glycerol is a GPR119 agonist and signals GLP-1 release in humans. J Clin Endocrinol Metab 2011; 96: E1409–E1417.

    CAS  PubMed  Article  Google Scholar 

  22. Steinert RE, Luscombe-Marsh ND, Little TJ, Standfield S, Otto B, Horowitz M et al. Effects of intraduodenal infusion of L-tryptophan on ad libitum eating, antropyloroduodenal motility, glycemia, insulinemia and gut peptide secretion in healthy men. J Clin Endocrinol Metab 2014; 99: 3275–3284.

    CAS  PubMed  Article  Google Scholar 

  23. Chang J, Wu T, Greenfield JR, Samocha-Bonet D, Horowitz M, Rayner CK . Effects of intraduodenal glutamine on incretin hormone and insulin release, the glycemic response to an intraduodenal glucose infusion, and antropyloroduodenal motility in health and type 2 diabetes. Diabetes Care 2013; 36: 2262–2265.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Carr RD, Larsen MO, Jelic K, Lindgren O, Vikman J, Holst JJ et al. Secretion and dipeptidyl peptidase-4-mediated metabolism of incretin hormones after a mixed meal or glucose ingestion in obese compared to lean, nondiabetic men. J Clin Endocrinol Metab 2010; 95: 872–878.

    CAS  PubMed  Article  Google Scholar 

  25. Adam TC, Westerterp-Plantenga MS . Glucagon-like peptide-1 release and satiety after a nutrient challenge in normal-weight and obese subjects. Br J Nutr 2005; 93: 845–851.

    CAS  PubMed  Article  Google Scholar 

  26. Verdich C, Toubro S, Buemann B, Lysgard Madsen J, Juul Holst J, Astrup A . The role of postprandial releases of insulin and incretin hormones in meal-induced satiety—effect of obesity and weight reduction. Int J Obes Relat Metab Disord 2001; 25: 1206–1214.

    CAS  PubMed  Article  Google Scholar 

  27. Borg CM, le Roux CW, Ghatei MA, Bloom SR, Patel AG, Aylwin SJ . Progressive rise in gut hormone levels after Roux-en-Y gastric bypass suggests gut adaptation and explains altered satiety. Br J Surg 2006; 93: 210–215.

    CAS  Article  PubMed  Google Scholar 

  28. le Roux CW, Welbourn R, Werling M, Osborne A, Kokkinos A, Laurenius A et al. Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann Surg 2007; 246: 780–785.

    Article  PubMed  Google Scholar 

  29. Ryan AT, Feinle-Bisset C, Kallas A, Wishart JM, Clifton PM, Horowitz M et al. Intraduodenal protein modulates antropyloroduodenal motility, hormone release, glycemia, appetite, and energy intake in lean men. Am J Clin Nutr 2012; 96: 474–482.

    CAS  PubMed  Article  Google Scholar 

  30. Pilichiewicz AN, Chaikomin R, Brennan IM, Wishart JM, Rayner CK, Jones KL et al. Load-dependent effects of duodenal glucose on glycemia, gastrointestinal hormones, antropyloroduodenal motility, and energy intake in healthy men. Am J Physiol Endocrinol Metab 2007; 293: E743–E753.

    CAS  PubMed  Article  Google Scholar 

  31. Little TJ, Feltrin KL, Horowitz M, Smout AJ, Rades T, Meyer JH et al. Dose-related effects of lauric acid on antropyloroduodenal motility, gastrointestinal hormone release, appetite, and energy intake in healthy men. Am J Physiol Regul Integr Comp Physiol 2005; 289: R1090–R1098.

    CAS  PubMed  Article  Google Scholar 

  32. Seimon RV, Lange K, Little TJ, Brennan IM, Pilichiewicz AN, Feltrin KL et al. Pooled-data analysis identifies pyloric pressures and plasma cholecystokinin concentrations as major determinants of acute energy intake in healthy, lean men. Am J Clin Nutr 2010; 92: 61–68.

    CAS  PubMed  Article  Google Scholar 

  33. Steinert RE, Frey F, Toepfer A, Drewe J, Beglinger C . Effects of carbohydrate sugars and artificial sweeteners on appetite and the secretion of gastrointestinal satiety peptides. Br J Nutr 2011; 105: 1320–1328.

    CAS  PubMed  Article  Google Scholar 

  34. Lemmens SG, Martens EA, Kester AD, Westerterp-Plantenga MS . Changes in gut hormone and glucose concentrations in relation to hunger and fullness. Am J Clin Nutr 2011; 94: 717–725.

    CAS  PubMed  Article  Google Scholar 

  35. Gibbons C, Caudwell P, Finlayson G, Webb DL, Hellstrom PM, Naslund E et al. Comparison of postprandial profiles of ghrelin, active GLP-1, and total PYY to meals varying in fat and carbohydrate and their association with hunger and the phases of satiety. J Clin Endocrinol Metab 2013; 98: E847–E855.

    PubMed  Article  Google Scholar 

  36. D'Alessio D, Lu W, Sun W, Zheng S, Yang Q, Seeley R et al. Fasting and postprandial concentrations of GLP-1 in intestinal lymph and portal plasma: evidence for selective release of GLP-1 in the lymph system. Am J Physiol Regul Integr Comp Physiol 2007; 293: R2163–R2169.

    CAS  PubMed  Article  Google Scholar 

  37. Iritani N, Sugimoto T, Fukuda H, Komiya M, Ikeda H . Oral triacylglycerols regulate plasma glucagon-like peptide-1(7-36) and insulin levels in normal and especially in obese rats. J Nutr 1999; 129: 46–50.

    CAS  PubMed  Article  Google Scholar 

  38. Anini Y, Fu-Cheng X, Cuber JC, Kervran A, Chariot J, Roz C . Comparison of the postprandial release of peptide YY and proglucagon-derived peptides in the rat. Pflugers Arch 1999; 438: 299–306.

    CAS  PubMed  Article  Google Scholar 

  39. Yoder SM, Yang Q, Kindel TL, Tso P . Stimulation of incretin secretion by dietary lipid: is it dose dependent? Am J Physiol Gastrointest Liver Physiol 2009; 297: G299–G305.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Hansen HS, Rosenkilde MM, Holst JJ, Schwartz TW . GPR119 as a fat sensor. Trends Pharmacol Sci 2012; 33: 374–381.

    CAS  PubMed  Article  Google Scholar 

  41. Punjabi M, Arnold M, Ruttimann E, Graber M, Geary N, Pacheco-Lopez G et al. Circulating glucagon-like peptide-1 (GLP-1) inhibits eating in male rats by acting in the hindbrain and without inducing avoidance. Endocrinology 2014; 155: 1690–1699.

    PubMed  Article  CAS  Google Scholar 

  42. Arnold M, Dai Y, Tso P, Langhans W . Meal-contingent intestinal lymph sampling from awake, unrestrained rats. Am J Physiol Regul Integr Comp Physiol 2012; 302: R1365–R1371.

    CAS  PubMed  Article  Google Scholar 

  43. Alvarez E, Martinez MD, Roncero I, Chowen JA, Garcia-Cuartero B, Gispert JD et al. The expression of GLP-1 receptor mRNA and protein allows the effect of GLP-1 on glucose metabolism in the human hypothalamus and brainstem. J Neurochem 2005; 92: 798–806.

    CAS  Article  PubMed  Google Scholar 

  44. Hansen L, Deacon CF, Orskov C, Holst JJ . Glucagon-like peptide-1-(7-36)amide is transformed to glucagon-like peptide-1-(9-36)amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of the porcine intestine. Endocrinology 1999; 140: 5356–5363.

    CAS  PubMed  Article  Google Scholar 

  45. Plamboeck A, Veedfald S, Deacon CF, Hartmann B, Wettergren A, Svendsen LB et al. The effect of exogenous GLP-1 on food intake is lost in male truncally vagotomized subjects with pyloroplasty. Am J Physiol Gastrointest Liver Physiol 2013; 304: G1117–G1127.

    CAS  PubMed  Article  Google Scholar 

  46. Orskov C, Poulsen SS, Moller M, Holst JJ . Glucagon-like peptide I receptors in the subfornical organ and the area postrema are accessible to circulating glucagon-like peptide I. Diabetes 1996; 45: 832–835.

    CAS  Article  PubMed  Google Scholar 

  47. Liu Y, Gao JH, Liu HL, Fox PT . The temporal response of the brain after eating revealed by functional MRI. Nature 2000; 405: 1058–1062.

    CAS  PubMed  Article  Google Scholar 

  48. LaBar KS, Gitelman DR, Parrish TB, Kim YH, Nobre AC, Mesulam MM . Hunger selectively modulates corticolimbic activation to food stimuli in humans. Behav Neurosci 2001; 115: 493–500.

    CAS  PubMed  Article  Google Scholar 

  49. Fuhrer D, Zysset S, Stumvoll M . Brain activity in hunger and satiety: an exploratory visually stimulated FMRI study. Obesity 2008; 16: 945–950.

    PubMed  Article  Google Scholar 

  50. van Bloemendaal L, RG IJ, Ten Kulve JS, Barkhof F, Konrad RJ, Drent ML et al. GLP-1 receptor activation modulates appetite- and reward-related brain areas in humans. Diabetes 2014; 63: 4186–4196.

    CAS  PubMed  Article  Google Scholar 

  51. Pannacciulli N, Le DS, Salbe AD, Chen K, Reiman EM, Tataranni PA et al. Postprandial glucagon-like peptide-1 (GLP-1) response is positively associated with changes in neuronal activity of brain areas implicated in satiety and food intake regulation in humans. Neuroimage 2007; 35: 511–517.

    PubMed  Article  Google Scholar 

  52. Li J, An R, Zhang Y, Li X, Wang S . Correlations of macronutrient-induced functional magnetic resonance imaging signal changes in human brain and gut hormone responses. Am J Clin Nutr 2012; 96: 275–282.

    CAS  PubMed  Article  Google Scholar 

  53. De Silva A, Salem V, Long CJ, Makwana A, Newbould RD, Rabiner EA et al. The gut hormones PYY 3-36 and GLP-1 7-36 amide reduce food intake and modulate brain activity in appetite centers in humans. Cell Metab 2011; 14: 700–706.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. MacLusky NJ, Cook S, Scrocchi L, Shin J, Kim J, Vaccarino F et al. Neuroendocrine function and response to stress in mice with complete disruption of glucagon-like peptide-1 receptor signaling. Endocrinology 2000; 141: 752–762.

    CAS  PubMed  Article  Google Scholar 

  55. Sisley S, Gutierrez-Aguilar R, Scott M, D'Alessio DA, Sandoval DA, Seeley RJ . Neuronal GLP1R mediates liraglutide's anorectic but not glucose-lowering effect. J Clin Invest 2014; 124: 2456–2463.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Secher A, Jelsing J, Baquero AF, Hecksher-Sorensen J, Cowley MA, Dalboge LS et al. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss. J Clin Invest 2014; 124: 4473–4488.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. Seeley RJ, Woods SC, D'Alessio D . Targeted gene disruption in endocrine research—the case of glucagon-like peptide-1 and neuroendocrine function. Endocrinology 2000; 141: 473–475.

    CAS  PubMed  Article  Google Scholar 

  58. Ruttimann EB, Arnold M, Hillebrand JJ, Geary N, Langhans W . Intrameal hepatic portal and intraperitoneal infusions of glucagon-like peptide-1 reduce spontaneous meal size in the rat via different mechanisms. Endocrinology 2009; 150: 1174–1181.

    CAS  PubMed  Article  Google Scholar 

  59. Williams DL, Baskin DG, Schwartz MW . Evidence that intestinal glucagon-like peptide-1 plays a physiological role in satiety. Endocrinology 2009; 150: 1680–1687.

    CAS  PubMed  Article  Google Scholar 

  60. Labouesse MA, Stadlbauer U, Weber E, Arnold M, Langhans W, Pacheco-Lopez G . Vagal afferents mediate early satiation and prevent flavour avoidance learning in response to intraperitoneally infused exendin-4. J Neuroendocrinol 2012; 24: 1505–1516.

    CAS  PubMed  Article  Google Scholar 

  61. Gutzwiller JP, Drewe J, Göke B, Schmidt H, Rohrer B, Lareida J et al. Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am J Physiol 1999; 276: R1541–R1544.

    CAS  PubMed  Google Scholar 

  62. Flint A, Raben A, Astrup A, Holst JJ . Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest 1998; 101: 515–520.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. Gutzwiller JP, Göke B, Drewe J, Hildebrand P, Ketterer S, Handschin D et al. Glucagon-like peptide-1: a potent regulator of food intake in humans. Gut 1999; 44: 81–86.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. Flint A, Raben A, Ersboll AK, Holst JJ, Astrup A . The effect of physiological levels of glucagon-like peptide-1 on appetite, gastric emptying, energy and substrate metabolism in obesity. Int J Obes Relat Metab Disord 2001; 25: 781–792.

    CAS  PubMed  Article  Google Scholar 

  65. Degen L, Oesch S, Matzinger D, Drewe J, Knupp M, Zimmerli F et al. Effects of a preload on reduction of food intake by GLP-1 in healthy subjects. Digestion 2006; 74: 78–84.

    CAS  PubMed  Article  Google Scholar 

  66. Naslund E, Barkeling B, King N, Gutniak M, Blundell JE, Holst JJ et al. Energy intake and appetite are suppressed by glucagon-like peptide-1 (GLP-1) in obese men. Int J Obes Relat Metab Disord 1999; 23: 304–311.

    CAS  PubMed  Article  Google Scholar 

  67. Long SJ, Ja Sutton, Amaee WB, Giouvanoudi A, Spyrou NM, Rogers PJ et al. No effect of glucagon-like peptide-1 on short-term satiety and energy intake in man. Br J Nutr 1999; 81: 273–279.

    CAS  PubMed  Article  Google Scholar 

  68. Näslund E, Gutniak M, Skogar S, Rössner S, Hellström PM . Glucagon-like peptide 1 increases the period of postprandial satiety and slows gastric emptying in obese men. Am J Clin Nutr 1998; 68: 525–530.

    PubMed  Article  Google Scholar 

  69. Brennan IM, Feltrin KL, Horowitz M, Smout AJ, Meyer JH, Wishart J et al. Evaluation of interactions between CCK and GLP-1 in their effects on appetite, energy intake, and antropyloroduodenal motility in healthy men. Am J Physiol Regul Integr Comp Physiol 2005; 288: R1477–R1485.

    CAS  PubMed  Article  Google Scholar 

  70. Verdich C, Flint A, Gutzwiller JP, Naslund E, Beglinger C, Hellstrom PM et al. A meta-analysis of the effect of glucagon-like peptide-1 (7-36) amide on ad libitum energy intake in humans. J Clin Endocrinol Metab 2001; 86: 4382–4389.

    CAS  PubMed  Google Scholar 

  71. Holst JJ . Incretin hormones and the satiation signal. Int J Obes (Lond) 2013; 37: 1161–1168.

    CAS  Article  Google Scholar 

  72. Camilleri M . Integrated upper gastrointestinal response to food intake. Gastroenterology 2006; 131: 640–658.

    CAS  PubMed  Article  Google Scholar 

  73. Steinert RE, Meyer-Gerspach AC, Beglinger C . The role of the stomach in the control of appetite and the secretion of satiation peptides. Am J Physiol Endocrinol Metab 2012; 302: E666–E673.

    CAS  PubMed  Article  Google Scholar 

  74. Neary NM, Small CJ, Druce MR, Park AJ, Ellis SM, Semjonous NM et al. Peptide YY3-36 and glucagon-like peptide-17-36 inhibit food intake additively. Endocrinology 2005; 146: 5120–5127.

    CAS  PubMed  Article  Google Scholar 

  75. Steinert RE, Poller B, Castelli M, Drewe J, Beglinger C . Oral administration of glucagon-like peptide 1 or peptide YY 3-36 affects food intake in healthy male subjects. Am J Clin Nutr 2010; 92: 810–817.

    CAS  PubMed  Article  Google Scholar 

  76. Schmidt JB, Gregersen NT, Pedersen SD, Arentoft JL, Ritz C, Schwartz TW et al. Effects of PYY3-36 and GLP-1 on energy intake, energy expenditure, and appetite in overweight men. Am J Physiol Endocrinol Metab 2014; 306: E1248–E1256.

    CAS  PubMed  Article  Google Scholar 

  77. Geary N . Understanding synergy. Am J Physiol Endocrinol Metab 2013; 304: E237–E253.

    CAS  PubMed  Article  Google Scholar 

  78. Gutzwiller JP, Degen L, Matzinger D, Prestin S, Beglinger C . Interaction between GLP-1 and CCK-33 in inhibiting food intake and appetite in men. Am J Physiol Regul Integr Comp Physiol 2004; 287: R562–R567.

    CAS  PubMed  Article  Google Scholar 

  79. Miller MJ, McDole JR, Newberry RD . Microanatomy of the intestinal lymphatic system. Ann NY Acad Sci 2010; 1207: E21–E28.

    PubMed  Article  Google Scholar 

  80. Kohan A, Yoder S, Tso P . Lymphatics in intestinal transport of nutrients and gastrointestinal hormones. Ann NY Acad Sci 2010; 1207: E44–E51.

    PubMed  Article  Google Scholar 

  81. Arnold MT, Dai A, Graber Y, Pachecoi-Lopez M, Langhans G . Intraperitoneal (IP) glucagon-like pptide-1 (GLP-1) injections and meals in rats increase intestinal lymphatic GLP-1 similarly. 20th Annual Meeting of the Society for the Study of Ingestive Behavior: Zurich, Switzerland, 2012.

  82. Krieger JP, Arnold M, Lossel P, Pettersen KG, Langhans W, Lee SJ . Glucagon-like peptide-1 receptors in vagal afferent neurons are required for normal satiation, gastric emptying, and glucose homeostasis. 22nd Annual Meeting of the Society for the Study of Ingestive Behavior: Seattle, WA, USA, 2014.

  83. Steinert RE, Schirra J, Meyer-Gerspach AC, Kienle P, Fischer H, Schulte F et al. Effect of glucagon-like peptide-1 receptor antagonism on appetite and food intake in healthy men. Am J Clin Nutr 2014; 100: 514–523.

    CAS  PubMed  Article  Google Scholar 

  84. Melhorn SJ, Tyagi V, Smeraglio A, Roth CL, Schur EA . Initial evidence that GLP-1 receptor blockade fails to suppress postprandial satiety or promote food intake in humans. Appetite 2014; 82C: 85–90.

    Article  Google Scholar 

  85. Edwards CM, Todd JF, Mahmoudi M, Wang Z, Wang RM, Ghatei MA et al. Glucagon-like peptide 1 has a physiological role in the control of postprandial glucose in humans: studies with the antagonist exendin 9-39. Diabetes 1999; 48: 86–93.

    CAS  PubMed  Article  Google Scholar 

  86. Degen L, Oesch S, Casanova M, Graf S, Ketterer S, Drewe J et al. Effect of peptide YY3-36 on food intake in humans. Gastroenterology 2005; 129: 1430–1436.

    CAS  PubMed  Article  Google Scholar 

  87. Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL et al. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature 2002; 418: 650–654.

    CAS  PubMed  Article  Google Scholar 

  88. Geary N, Kissileff HR, Pi-Sunyer FX, Hinton V . Individual, but not simultaneous, glucagon and cholecystokinin infusions inhibit feeding in men. Am J Physiol 1992; 262: R975–R980.

    CAS  PubMed  Article  Google Scholar 

  89. Kim DH, D'Alessio DA, Woods SC, Seeley RJ . The effects of GLP-1 infusion in the hepatic portal region on food intake. Regul Pept 2009; 155: 110–114.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. Ruttimann EB, Arnold M, Geary N, Langhans W . GLP-1 antagonism with exendin (9-39) fails to increase spontaneous meal size in rats. Physiol Behav 2010; 100: 291–296.

    CAS  PubMed  Article  Google Scholar 

  91. Patterson JT, Ottaway N, Gelfanov VM, Smiley DL, Perez-Tilve D, Pfluger PT et al. A novel human-based receptor antagonist of sustained action reveals body weight control by endogenous GLP-1. ACS Chem Biol 2011; 6: 135–145.

    CAS  PubMed  Article  Google Scholar 

  92. Thorens B . Physiology of GLP-1—lessons from glucoincretin receptor knockout mice. Horm Metab Res 2004; 36: 766–770.

    CAS  PubMed  Article  Google Scholar 

  93. West DB, Fey D, Woods SC . Cholecystokinin persistently suppresses meal size but not food intake in free-feeding rats. Am J Physiol 1984; 246: R776–R787.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

ETH Zurich Research Grant 47 12-2 (WL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R E Steinert.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Steinert, R., Beglinger, C. & Langhans, W. Intestinal GLP-1 and satiation: from man to rodents and back. Int J Obes 40, 198–205 (2016). https://doi.org/10.1038/ijo.2015.172

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2015.172

Further reading

Search

Quick links