Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

Pro-inflammatory obesity in aged cannabinoid-2 receptor-deficient mice

Abstract

Background and Objectives:

Cannabinoid-1 receptor signaling increases the rewarding effects of food intake and promotes the growth of adipocytes, whereas cannabinoid-2 receptor (CB2) possibly opposes these pro-obesity effects by silencing the activated immune cells that are key drivers of the metabolic syndrome. Pro- and anti-orexigenic cannabimimetic signaling may become unbalanced with age because of alterations of the immune and endocannabinoid system.

Methods:

To specifically address the role of CB2 for age-associated obesity, we analyzed metabolic, cardiovascular, immune and neuronal functions in 1.2–1.8-year-old CB2−/− and control mice, fed with a standard diet and assessed effects of the CB2 agonist, HU308, during high-fat diet (HFD) in 12–16-week-old mice.

Results:

The CB2−/− mice were obese with hypertrophy of visceral fat, immune cell polarization toward pro-inflammatory subpopulations in fat and liver and hypertension, as well as increased mortality despite normal blood glucose. They also developed stronger paw inflammation and a premature loss of transient receptor potential responsiveness in primary sensory neurons, a phenomenon typical for small fiber disease. The CB2 agonist HU308 prevented HFD-evoked hypertension, reduced HFD-evoked polarization of adipose tissue macrophages toward the M1-like pro-inflammatory type and reduced HFD-evoked nociceptive hypersensitivity, but had no effect on weight gain.

Conclusions:

CB2 agonists may fortify CB2-mediated anti-obesity signaling without the risk of anti-CB1-mediated depression that caused the failure of rimonabant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Williams CM, Kirkham TC . Observational analysis of feeding induced by Delta9-THC and anandamide. Physiol Behav 2002; 76: 241–250.

    Article  CAS  Google Scholar 

  2. Osei-Hyiaman D, Harvey-White J, Batkai S, Kunos G . The role of the endocannabinoid system in the control of energy homeostasis. Int J Obes 2006; 30: S33–S38.

    Article  CAS  Google Scholar 

  3. Jamshidi N, Taylor DA . Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats. Br J Pharmacol 2001; 134: 1151–1154.

    Article  CAS  Google Scholar 

  4. Di Marzo V, Cote M, Matias I, Lemieux I, Arsenault BJ, Cartier A et al. Changes in plasma endocannabinoid levels in viscerally obese men following a 1 year lifestyle modification programme and waist circumference reduction: associations with changes in metabolic risk factors. Diabetologia 2009; 52: 213–217.

    Article  CAS  Google Scholar 

  5. Bluher M, Engeli S, Kloting N, Berndt J, Fasshauer M, Batkai S et al. Dysregulation of the peripheral and adipose tissue endocannabinoid system in human abdominal obesity. Diabetes 2006; 55: 3053–3060.

    Article  Google Scholar 

  6. Gomez R, Navarro M, Ferrer B, Trigo JM, Bilbao A, Del Arco I et al. A peripheral mechanism for CB1 cannabinoid receptor-dependent modulation of feeding. J Neurosci 2002; 22: 9612–9617.

    Article  CAS  Google Scholar 

  7. Burdyga G, Varro A, Dimaline R, Thompson DG, Dockray GJ . Expression of cannabinoid CB1 receptors by vagal afferent neurons: kinetics and role in influencing neurochemical phenotype. Am J Physiol Gastrointest Liver Physiol 2010; 299: G63–G69.

    Article  CAS  Google Scholar 

  8. Bellocchio L, Lafenetre P, Cannich A, Cota D, Puente N, Grandes P et al. Bimodal control of stimulated food intake by the endocannabinoid system. Nat Neurosci 2010; 13: 281–283.

    Article  CAS  Google Scholar 

  9. Cardinal P, Bellocchio L, Clark S, Cannich A, Klugmann M, Lutz B et al. Hypothalamic CB1 cannabinoid receptors regulate energy balance in mice. Endocrinology 2012; 153: 4136–4143.

    Article  CAS  Google Scholar 

  10. Di Marzo V, Goparaju SK, Wang L, Liu J, Batkai S, Jarai Z et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 2001; 410: 822–825.

    Article  CAS  Google Scholar 

  11. Cota D . CB1 receptors: emerging evidence for central and peripheral mechanisms that regulate energy balance, metabolism, and cardiovascular health. Diabetes Metab Res Rev 2007; 23: 507–517.

    Article  CAS  Google Scholar 

  12. Cota D, Sandoval DA, Olivieri M, Prodi E, D'Alessio DA, Woods SC et al. Food intake-independent effects of CB1 antagonism on glucose and lipid metabolism. Obesity (Silver Spring) 2009; 17: 1641–1645.

    Article  CAS  Google Scholar 

  13. Osei-Hyiaman D, DePetrillo M, Pacher P, Liu J, Radaeva S, Batkai S et al. Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J Clin Invest 2005; 115: 1298–1305.

    Article  CAS  Google Scholar 

  14. Osei-Hyiaman D, Liu J, Zhou L, Godlewski G, Harvey-White J, Jeong WI et al. Hepatic CB1 receptor is required for development of diet-induced steatosis, dyslipidemia, and insulin and leptin resistance in mice. J Clin Invest 2008; 118: 3160–3169.

    Article  CAS  Google Scholar 

  15. Di Marzo V, Despres JP . CB1 antagonists for obesity—what lessons have we learned from rimonabant? Nat Rev Endocrinol 2009; 5: 633–638.

    Article  CAS  Google Scholar 

  16. Son MH, Kim HD, Chae YN, Kim MK, Shin CY, Ahn GJ et al. Peripherally acting CB1-receptor antagonist: the relative importance of central and peripheral CB1 receptors in adiposity control. Int J Obes 2010; 34: 547–556.

    Article  CAS  Google Scholar 

  17. Bell-Anderson KS, Aouad L, Williams H, Sanz FR, Phuyal J, Larter CZ et al. Coordinated improvement in glucose tolerance, liver steatosis and obesity-associated inflammation by cannabinoid 1 receptor antagonism in fat Aussie mice. Int J Obes 2011; 35: 1539–1548.

    Article  CAS  Google Scholar 

  18. Bergholm R, Sevastianova K, Santos A, Kotronen A, Urjansson M, Hakkarainen A et al. CB(1) blockade-induced weight loss over 48 weeks decreases liver fat in proportion to weight loss in humans. Int J Obes 2013; 37: 699–703.

    Article  CAS  Google Scholar 

  19. Koolman AH, Bloks VW, Oosterveer MH, Jonas I, Kuipers F, Sauer PJ et al. Metabolic responses to long-term pharmacological inhibition of CB1-receptor activity in mice in relation to dietary fat composition. Int J Obes 2010; 34: 374–384.

    Article  CAS  Google Scholar 

  20. Ravinet Trillou C, Delgorge C, Menet C, Arnone M, Soubrie P . CB1 cannabinoid receptor knockout in mice leads to leanness, resistance to diet-induced obesity and enhanced leptin sensitivity. Int J Obes Relat Metab Disord 2004; 28: 640–648.

    Article  CAS  Google Scholar 

  21. Cota D, Marsicano G, Tschop M, Grubler Y, Flachskamm C, Schubert M et al. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Invest 2003; 112: 423–431.

    Article  CAS  Google Scholar 

  22. Rayman N, Lam KH, Van Leeuwen J, Mulder AH, Budel LM, Lowenberg B et al. The expression of the peripheral cannabinoid receptor on cells of the immune system and non-Hodgkin's lymphomas. Leuk Lymphoma 2007; 48: 1389–1399.

    Article  CAS  Google Scholar 

  23. Romero-Sandoval EA, Horvath R, Landry RP, DeLeo JA . Cannabinoid receptor type 2 activation induces a microglial anti-inflammatory phenotype and reduces migration via MKP induction and ERK dephosphorylation. Mol Pain 2009; 5: 25.

    Article  Google Scholar 

  24. Nunez E, Benito C, Pazos MR, Barbachano A, Fajardo O, Gonzalez S et al. Cannabinoid CB2 receptors are expressed by perivascular microglial cells in the human brain: an immunohistochemical study. Synapse 2004; 53: 208–213.

    Article  CAS  Google Scholar 

  25. Onaivi ES, Ishiguro H, Gong JP, Patel S, Perchuk A, Meozzi PA et al. Discovery of the presence and functional expression of cannabinoid CB2 receptors in brain. Ann NY Acad Sci 2006; 1074: 514–536.

    Article  CAS  Google Scholar 

  26. Correa F, Mestre L, Docagne F, Guaza C . Activation of cannabinoid CB2 receptor negatively regulates IL-12p40 production in murine macrophages: role of IL-10 and ERK1/2 kinase signaling. Br J Pharmacol 2005; 145: 441–448.

    Article  CAS  Google Scholar 

  27. Defer N, Wan J, Souktani R, Escoubet B, Perier M, Caramelle P et al. The cannabinoid receptor type 2 promotes cardiac myocyte and fibroblast survival and protects against ischemia/reperfusion-induced cardiomyopathy. FASEB J 2009; 23: 2120–2130.

    Article  CAS  Google Scholar 

  28. Singh UP, Singh NP, Singh B, Price RL, Nagarkatti M, Nagarkatti PS . Cannabinoid receptor-2 (CB2) agonist ameliorates colitis in IL-10(-/-) mice by attenuating the activation of T cells and promoting their apoptosis. Toxicol Appl Pharmacol 2012; 258: 256–267.

    Article  CAS  Google Scholar 

  29. Oka S, Wakui J, Ikeda S, Yanagimoto S, Kishimoto S, Gokoh M et al. Involvement of the cannabinoid CB2 receptor and its endogenous ligand 2-arachidonoylglycerol in oxazolone-induced contact dermatitis in mice. J Immunol 2006; 177: 8796–8805.

    Article  CAS  Google Scholar 

  30. Akhmetshina A, Dees C, Busch N, Beer J, Sarter K, Zwerina J et al. The cannabinoid receptor CB2 exerts antifibrotic effects in experimental dermal fibrosis. Arthritis Rheum 2009; 60: 1129–1136.

    Article  Google Scholar 

  31. Ibrahim MM, Porreca F, Lai J, Albrecht PJ, Rice FL, Khodorova A et al. CB2 cannabinoid receptor activation produces antinociception by stimulating peripheral release of endogenous opioids. Proc Natl Acad Sci USA 2005; 102: 3093–3098.

    Article  CAS  Google Scholar 

  32. Ibrahim MM, Deng H, Zvonok A, Cockayne DA, Kwan J, Mata HP et al. Activation of CB2 cannabinoid receptors by AM1241 inhibits experimental neuropathic pain: pain inhibition by receptors not present in the CNS. Proc Natl Acad Sci USA 2003; 100: 10529–10533.

    Article  CAS  Google Scholar 

  33. Kratz M, Coats BR, Hisert KB, Hagman D, Mutskov V, Peris E et al. Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metab 2014; 20: 614–625.

    Article  CAS  Google Scholar 

  34. Hill AA, Reid Bolus W, Hasty AH . A decade of progress in adipose tissue macrophage biology. Immunol Rev 2014; 262: 134–152.

    Article  CAS  Google Scholar 

  35. Fujisaka S, Usui I, Bukhari A, Ikutani M, Oya T, Kanatani Y et al. Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice. Diabetes 2009; 58: 2574–2582.

    Article  CAS  Google Scholar 

  36. Lumeng CN, Bodzin JL, Saltiel AR . Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007; 117: 175–184.

    Article  CAS  Google Scholar 

  37. Romero-Zerbo SY, Garcia-Gutierrez MS, Suarez J, Rivera P, Ruz-Maldonado I, Vida M et al. Overexpression of cannabinoid CB2 receptor in the brain induces hyperglycaemia and a lean phenotype in adult mice. J Neuroendocrinol 2012; 24: 1106–1119.

    Article  CAS  Google Scholar 

  38. Agudo J, Martin M, Roca C, Molas M, Bura AS, Zimmer A et al. Deficiency of CB2 cannabinoid receptor in mice improves insulin sensitivity but increases food intake and obesity with age. Diabetologia 2010; 53: 2629–2640.

    Article  CAS  Google Scholar 

  39. Garg SK, Delaney C, Shi H, Yung R . Changes in adipose tissue macrophages and T cells during aging. Crit Rev Immunol 2014; 34: 1–14.

    Article  CAS  Google Scholar 

  40. Bishay P, Haussler A, Lim HY, Oertel B, Galve-Roperh I, Ferreiros N et al. Anandamide deficiency and heightened neuropathic pain in aged mice. Neuropharmacology 2013; 71: 204–215.

    Article  CAS  Google Scholar 

  41. Hanus L, Breuer A, Tchilibon S, Shiloah S, Goldenberg D, Horowitz M et al. HU-308: a specific agonist for CB(2), a peripheral cannabinoid receptor. Proc Natl Acad Sci USA 1999; 96: 14228–14233.

    Article  CAS  Google Scholar 

  42. Sagredo O, Gonzalez S, Aroyo I, Pazos MR, Benito C, Lastres-Becker I et al. Cannabinoid CB2 receptor agonists protect the striatum against malonate toxicity: relevance for Huntington's disease. Glia 2009; 57: 1154–1167.

    Article  Google Scholar 

  43. Bishay P, Schmidt H, Marian C, Haussler A, Wijnvoord N, Ziebell S et al. R-flurbiprofen reduces neuropathic pain in rodents by restoring endogenous cannabinoids. PLoS One 2010; 5: e10628.

    Article  Google Scholar 

  44. Ferreiros N, Labocha S, Walter C, Lotsch J, Geisslinger G . Simultaneous and sensitive LC-MS/MS determination of tetrahydrocannabinol and metabolites in human plasma. Anal Bioanal Chem 2013; 405: 1399–1406.

    Article  CAS  Google Scholar 

  45. Kanngiesser M, Mair N, Lim HY, Zschiebsch K, Blees J, Haussler A et al. Hypoxia-inducible factor 1 regulates heat and cold pain sensitivity and persistence. Antioxid Redox Signal 2014; 20: 2555–2571.

    Article  CAS  Google Scholar 

  46. Overton HA, Babbs AJ, Doel SM, Fyfe MC, Gardner LS, Griffin G et al. Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab 2006; 3: 167–175.

    Article  CAS  Google Scholar 

  47. Schwartz GJ, Fu J, Astarita G, Li X, Gaetani S, Campolongo P et al. The lipid messenger OEA links dietary fat intake to satiety. Cell Metab 2008; 8: 281–288.

    Article  CAS  Google Scholar 

  48. Alen F, Crespo I, Ramirez-Lopez MT, Jagerovic N, Goya P, de Fonseca FR et al. Ghrelin-induced orexigenic effect in rats depends on the metabolic status and is counteracted by peripheral CB1 receptor antagonism. PLoS One 2013; 8: e60918.

    Article  CAS  Google Scholar 

  49. Huang W, Metlakunta A, Dedousis N, Zhang P, Sipula I, Dube JJ et al. Depletion of liver Kupffer cells prevents the development of diet-induced hepatic steatosis and insulin resistance. Diabetes 2010; 59: 347–357.

    Article  CAS  Google Scholar 

  50. Wentworth JM, Naselli G, Brown WA, Doyle L, Phipson B, Smyth GK et al. Pro-inflammatory CD11c+CD206+ adipose tissue macrophages are associated with insulin resistance in human obesity. Diabetes 2010; 59: 1648–1656.

    Article  CAS  Google Scholar 

  51. Wang S, Davis BM, Zwick M, Waxman SG, Albers KM . Reduced thermal sensitivity and Nav1.8 and TRPV1 channel expression in sensory neurons of aged mice. Neurobiol Aging 2006; 27: 895–903.

    Article  CAS  Google Scholar 

  52. Ribas V, Drew BG, Le JA, Soleymani T, Daraei P, Sitz D et al. Myeloid-specific estrogen receptor alpha deficiency impairs metabolic homeostasis and accelerates atherosclerotic lesion development. Proc Natl Acad Sci USA 2011; 108: 16457–16462.

    Article  CAS  Google Scholar 

  53. Chadwick CC, Chippari S, Matelan E, Borges-Marcucci L, Eckert AM, Keith JC Jr. et al. Identification of pathway-selective estrogen receptor ligands that inhibit NF-kappaB transcriptional activity. Proc Natl Acad Sci USA 2005; 102: 2543–2548.

    Article  CAS  Google Scholar 

  54. Finan B, Yang B, Ottaway N, Stemmer K, Muller TD, Yi CX et al. Targeted estrogen delivery reverses the metabolic syndrome. Nat Med 2012; 18: 1847–1856.

    Article  CAS  Google Scholar 

  55. Barros RP, Gustafsson JA . Estrogen receptors and the metabolic network. Cell Metab 2011; 14: 289–299.

    Article  CAS  Google Scholar 

  56. Johnson AM, Olefsky JM . The origins and drivers of insulin resistance. Cell 2013; 152: 673–684.

    Article  CAS  Google Scholar 

  57. Hodes GE, Pfau ML, Leboeuf M, Golden SA, Christoffel DJ, Bregman D et al. Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress. Proc Natl Acad Sci USA 2014; 111: 16136–16141.

    Article  CAS  Google Scholar 

  58. Rohleder N, Aringer M, Boentert M . Role of interleukin-6 in stress, sleep, and fatigue. Ann NY Acad Sci 2012; 1261: 88–96.

    Article  CAS  Google Scholar 

  59. Hong S, Wiley JW . Early painful diabetic neuropathy is associated with differential changes in the expression and function of vanilloid receptor 1. J Biol Chem 2005; 280: 618–627.

    Article  CAS  Google Scholar 

  60. Kramer HH, Rolke R, Bickel A, Birklein F . Thermal thresholds predict painfulness of diabetic neuropathies. Diabetes Care 2004; 27: 2386–2391.

    Article  Google Scholar 

  61. Vlckova-Moravcova E, Bednarik J, Belobradkova J, Sommer C . Small-fibre involvement in diabetic patients with neuropathic foot pain. Diabet Med 2008; 25: 692–699.

    Article  CAS  Google Scholar 

  62. Sorensen L, Molyneaux L, Yue DK . The level of small nerve fiber dysfunction does not predict pain in diabetic Neuropathy: a study using quantitative sensory testing. Clin J Pain 2006; 22: 261–265.

    Article  Google Scholar 

  63. Deveaux V, Cadoudal T, Ichigotani Y, Teixeira-Clerc F, Louvet A, Manin S et al. Cannabinoid CB2 receptor potentiates obesity-associated inflammation, insulin resistance and hepatic steatosis. PLoS One 2009; 4: e5844.

    Article  Google Scholar 

  64. Verty AN, Lockie SH, Stefanidis A, Oldfield BJ . Anti-obesity effects of the combined administration of CB1 receptor antagonist rimonabant and melanin-concentrating hormone antagonist SNAP-94847 in diet-induced obese mice. Int J Obes 2013; 37: 279–287.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of the Deutsche Forschungsgemeinschaft (CRC1039 A03 to IT, and Z1) and the Else Kröner Fresenius Foundation (Translational Research Innovation Pharma (TRIP) graduate school, scholar KS). We thank Sandra Labocha and Yannick Schreiber for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Tegeder.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmitz, K., Mangels, N., Häussler, A. et al. Pro-inflammatory obesity in aged cannabinoid-2 receptor-deficient mice. Int J Obes 40, 366–379 (2016). https://doi.org/10.1038/ijo.2015.169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2015.169

This article is cited by

Search

Quick links