Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

Leptin administration activates irisin-induced myogenesis via nitric oxide-dependent mechanisms, but reduces its effect on subcutaneous fat browning in mice

Abstract

Background/objetives:

Obese leptin-deficient ob/ob mice exhibit high adiposity and reduced muscle mass with leptin replacement promoting weight loss and inducing muscle accretion through PGC-1α-dependent mechanisms. Our aim was to analyze in vivo and in vitro the effect of leptin on FNDC5, a novel PGC-1α-dependent myokine that is synthesized and cleaved to form irisin that induces white adipose browning.

Methods/results:

Twelve-week-old male wild-type and ob/ob mice were divided in three groups as follows: control, leptin-treated (1 mg kg−1 day−1) and pair-fed. Leptin administration was associated with increased gastrocnemius weight and cell surface area, higher Pgc1a and Fndc5 transcript levels and a slight increase in circulating irisin. Leptin upregulated Fndc5 expression through nitric oxide (NO)-dependent mechanisms in murine C2C12 myocytes and stimulated both basal and irisin-stimulated myogenesis, as evidenced by increased myocyte cell proliferation, higher myogenin and myonectin transcript levels together with lower mRNA expression of myostatin and dystrophin and the muscle atrophy-related factors MuRF1 and MAFbx. Interestingly, leptin downregulated Fndc5 expression in a NO-independent manner in murine differentiated subcutaneous adipocytes. Furthermore, leptin prevented the irisin-induced upregulation of both brown (Ucp1 and Cidec) and beige (Tmem26) adipocyte-specific genes and the increase in uncoupling protein-1-positive cells.

Conclusions:

Taken together, our results provide evidence for a regulatory role of leptin on FNDC5/irisin, favoring muscle accretion but reducing fat browning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Braun T, Gautel M . Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat Rev Mol Cell Biol 2011; 12: 349–361.

    Article  CAS  PubMed  Google Scholar 

  2. Pedersen BK, Febbraio MA . Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 2012; 8: 457–465.

    Article  CAS  PubMed  Google Scholar 

  3. Seldin MM, Wong GW . Regulation of tissue crosstalk by skeletal muscle-derived myonectin and other myokines. Adipocyte 2012; 1: 200–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sharma N, Castorena CM, Cartee GD . Greater insulin sensitivity in calorie restricted rats occurs with unaltered circulating levels of several important myokines and cytokines. Nutr Metab (Lond) 2012; 9: 90.

    Article  CAS  Google Scholar 

  5. Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC et al. A PGC1-a-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012; 481: 463–468.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Erickson HP . Irisin and FNDC5 in retrospect: An exercise hormone or a transmembrane receptor? Adipocyte 2013; 2: 289–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang Y, Li R, Meng Y, Li S, Donelan W, Zhao Y et al. Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes 2014; 63: 514–525.

    Article  CAS  PubMed  Google Scholar 

  8. Roberts MD, Bayless DS, Company JM, Jenkins NT, Padilla J, Childs TE et al. Elevated skeletal muscle irisin precursor FNDC5 mRNA in obese OLETF rats. Metabolism 2013; 62: 1052–1056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shan T, Liang X, Bi P, Kuang S . Myostatin knockout drives browning of white adipose tissue through activating the AMPK-PGC1a-Fndc5 pathway in muscle. FASEB J 2013; 27: 1981–1989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huh JY, Panagiotou G, Mougios V, Brinkoetter M, Vamvini MT, Schneider BE et al. FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism 2012; 61: 1725–1738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Moreno-Navarrete JM, Ortega F, Serrano M, Guerra E, Pardo G, Tinahones F et al. Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. J Clin Endocrinol Metab 2013; 98: E769–E778.

    Article  CAS  PubMed  Google Scholar 

  12. Gouni-Berthold I, Berthold HK, Huh JY, Berman R, Spenrath N, Krone W et al. Effects of lipid-lowering drugs on irisin in human subjects in vivo and in human skeletal muscle cells ex vivo. PLoS One 2013; 8: e72858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wrann CD, White JP, Salogiannnis J, Laznik-Bogoslavski D, Wu J, Ma D et al. Exercise induces hippocampal BDNF through a PGC-1a/FNDC5 pathway. Cell Metab 2013; 18: 649–659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hecksteden A, Wegmann M, Steffen A, Kraushaar J, Morsch A, Ruppenthal S et al. Irisin and exercise training in humans—results from a randomized controlled training trial. BMC Med 2013; 11: 235.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Norheim F, Langleite TM, Hjorth M, Holen T, Kielland A, Stadheim HK et al. The effects of acute and chronic exercise on PGC-1a, irisin and browning of subcutaneous adipose tissue in humans. FEBS J 2014; 281: 739–749.

    Article  CAS  PubMed  Google Scholar 

  16. Kurdiova T, Balaz M, Vician M, Maderova D, Vlcek M, Valkovic L et al. Are skeletal muscle & adipose tissue Fndc5 gene expression and irisin release affected by obesity, diabetes and exercise? In vivo & in vitro studies. J Physiol 2014; 592: 1091–1107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Handschin C, Spiegelman BM . The role of exercise and PGC1a in inflammation and chronic disease. Nature 2008; 454: 463–469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu J, Böstrom P, Sparks LM, Ye L, Choi JH, Giang AH et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 2012; 150: 366–376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Choi HY, Kim S, Park JW, Lee NS, Hwang SY, Huh JY et al. Implication of circulating irisin levels with brown adipose tissue and sarcopenia in humans. J Clin Endocrinol Metab 2014; 99: 2778–2785.

    Article  CAS  PubMed  Google Scholar 

  20. Roca-Rivada A, Castelao C, Senin LL, Landrove MO, Baltar J, Crujeiras AB et al. FNDC5/irisin is not only a myokine but also an adipokine. PLoS One 2013; 8: e60563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sáinz N, Rodríguez A, Catalán V, Becerril S, Ramírez B, Gómez-Ambrosi J et al. Leptin administration favors muscle mass accretion by decreasing FoxO3a and increasing PGC-1a in ob/ob mice. PLoS One 2009; 4: e6808.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Frühbeck G . Intracellular signalling pathways activated by leptin. Biochem J 2006; 393: 7–20.

    Article  PubMed  Google Scholar 

  23. Sáinz N, Rodríguez A, Catalán V, Becerril S, Ramírez B, Gómez-Ambrosi J et al. Leptin administration downregulates the increased expression levels of genes related to oxidative stress and inflammation in the skeletal muscle of ob/ob mice. Mediators Inflamm 2010; 2010: 784343.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Becerril S, Rodríguez A, Catalán V, Sáinz N, Ramírez B, Collantes M et al. Deletion of inducible nitric-oxide synthase in leptin-deficient mice improves brown adipose tissue function. PLoS One 2010; 5: e10962.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Becerril S, Rodríguez A, Catalán V, Sáinz N, Ramírez B, Gómez-Ambrosi J et al. Transcriptional analysis of brown adipose tissue in leptin-deficient mice lacking inducible nitric oxide synthase: evidence of the role of Med1 in energy balance. Physiol Genomics 2012; 44: 678–688.

    Article  CAS  PubMed  Google Scholar 

  26. Rodríguez A, Gómez-Ambrosi J, Catalán V, Gil MJ, Becerril S, Sáinz N et al. Acylated and desacyl ghrelin stimulate lipid accumulation in human visceral adipocytes. Int J Obes 2009; 33: 541–552.

    Article  Google Scholar 

  27. Liu YL, Emilsson V, Cawthorne MA . Leptin inhibits glycogen synthesis in the isolated soleus muscle of obese (ob/ob) mice. FEBS Lett 1997; 411: 351–355.

    Article  CAS  PubMed  Google Scholar 

  28. Kellerer M, Koch M, Metzinger E, Mushack J, Capp E, Haring HU . Leptin activates PI-3 kinase in C2C12 myotubes via janus kinase-2 (JAK-2) and insulin receptor substrate-2 (IRS-2) dependent pathways. Diabetologia 1997; 40: 1358–1362.

    Article  CAS  PubMed  Google Scholar 

  29. Gómez-Ambrosi J, Frühbeck G, Martínez JA . Leptin, but not a b3-adrenergic agonist, upregulates muscle uncoupling protein-3 messenger RNA expression: short-term thermogenic interactions. Cell Mol Life Sci 1999; 55: 992–997.

    PubMed  Google Scholar 

  30. Guerra B, Fuentes T, Delgado-Guerra S, Guadalupe-Grau A, Olmedillas H, Santana A et al. Gender dimorphism in skeletal muscle leptin receptors, serum leptin and insulin sensitivity. PLoS One 2008; 3: e3466.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rodríguez A . Novel molecular aspects of ghrelin and leptin in the control of adipobiology and the cardiovascular system. Obes Facts 2014; 7: 82–95.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Frühbeck G . Pivotal role of nitric oxide in the control of blood pressure after leptin administration. Diabetes 1999; 48: 903–908.

    Article  PubMed  Google Scholar 

  33. Rodríguez A, Fortuño A, Gómez-Ambrosi J, Zalba G, Díez J, Frühbeck G . The inhibitory effect of leptin on angiotensin II-induced vasoconstriction in vascular smooth muscle cells is mediated via a nitric oxide-dependent mechanism. Endocrinology 2007; 148: 324–331.

    Article  PubMed  Google Scholar 

  34. Rodríguez A, Gómez-Ambrosi J, Catalán V, Fortuño A, Frühbeck G . Leptin inhibits the proliferation of vascular smooth muscle cells induced by angiotensin II through nitric oxide-dependent mechanisms. Mediators Inflamm 2010; 2010: 105489.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jimenez-Feltstrom J, Salehi A, Meidute Abaraviciene S, Henningsson R, Lundquist I . Abnormally decreased NO and augmented CO production in islets of the leptin-deficient ob/ob mouse might contribute to explain hyperinsulinemia and islet survival in leptin-resistant type 2 obese diabetes. Regul Pept 2011; 170: 43–51.

    Article  CAS  PubMed  Google Scholar 

  36. Chatterjee S, Ganini D, Tokar EJ, Kumar A, Das S, Corbett J et al. Leptin is key to peroxynitrite-mediated oxidative stress and Kupffer cell activation in experimental non-alcoholic steatohepatitis. J Hepatol 2013; 58: 778–784.

    Article  CAS  PubMed  Google Scholar 

  37. Gómez-Ambrosi J, Becerril S, Oroz P, Zabalza S, Rodríguez A, Muruzabal FJ et al. Reduced adipose tissue mass and hypoleptinemia in iNOS deficient mice: effect of LPS on plasma leptin and adiponectin concentrations. FEBS Lett 2004; 577: 351–356.

    Article  PubMed  Google Scholar 

  38. Nguyen MH, Cheng M, Koh TJ . Impaired muscle regeneration in ob/ob and db/db mice. ScientificWorldJournal 2011; 11: 1525–1535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Arounleut P, Bowser M, Upadhyay S, Shi XM, Fulzele S, Johnson MH et al. Absence of functional leptin receptor isoforms in the POUND (Lepr(db/lb)) mouse is associated with muscle atrophy and altered myoblast proliferation and differentiation. PLoS One 2013; 8: e72330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Teufel A, Malik N, Mukhopadhyay M, Westphal H . Frcp1 and Frcp2, two novel fibronectin type III repeat containing genes. Gene 2002; 297: 79–83.

    Article  CAS  PubMed  Google Scholar 

  41. Hashemi MS, Ghaedi K, Salamian A, Karbalaie K, Emadi-Baygi M, Tanhaei S et al. Fndc5 knockdown significantly decreased neural differentiation rate of mouse embryonic stem cells. Neuroscience 2013; 231: 296–304.

    Article  CAS  PubMed  Google Scholar 

  42. Huh JY, Dincer F, Mesfum E, Mantzoros CS . Irisin stimulates muscle growth-related genes and regulates adipocyte differentiation and metabolism in humans. Int J Obes 2014. doi:10.1038/ijo.2014.42.

    Article  CAS  PubMed  Google Scholar 

  43. Stengel A, Hofmann T, Goebel-Stengel M, Elbelt U, Kobelt P, Klapp BF . Circulating levels of irisin in patients with anorexia nervosa and different stages of obesity-correlation with body mass index. Peptides 2013; 39: 125–130.

    Article  CAS  PubMed  Google Scholar 

  44. Vaughan RA, Gannon NP, Barberena MA, Garcia-Smith R, Bisoffi M, Mermier CM et al. Characterization of the metabolic effects of irisin on skeletal muscle in vitro. Diabetes Obes Metab 2014; 16: 711–718.

    Article  CAS  PubMed  Google Scholar 

  45. Moresi V, Williams AH, Meadows E, Flynn JM, Potthoff MJ, McAnally J et al. Myogenin and class II HDACs control neurogenic muscle atrophy by inducing E3 ubiquitin ligases. Cell 2010; 143: 35–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Seldin MM, Peterson JM, Byerly MS, Wei Z, Wong GW . Myonectin (CTRP15), a novel myokine that links skeletal muscle to systemic lipid homeostasis. J Biol Chem 2012; 287: 11968–11980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vamvini MT, Aronis KN, Panagiotou G, Huh JY, Chamberland JP, Brinkoetter MT et al. Irisin mRNA and circulating levels in relation to other myokines in healthy and morbidly obese humans. Eur J Endocrinol 2013; 169: 829–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Boström PA, Fernández-Real JM . Metabolism: Irisin, the metabolic syndrome and follistatin in humans. Nat Rev Endocrinol 2014; 10: 11–12.

    Article  PubMed  Google Scholar 

  49. Frühbeck G, Sesma P, Burrell MA . PRDM16: the interconvertible adipo-myocyte switch. Trends Cell Biol 2009; 19: 141–146.

    Article  PubMed  Google Scholar 

  50. Becerril S, Gómez-Ambrosi J, Martín M, Moncada R, Sesma P, Burrell MA et al. Role of PRDM16 in the activation of brown fat programming. Relevance to the development of obesity. Histol Histopathol 2013; 28: 1411–1425.

    CAS  PubMed  Google Scholar 

  51. Cohen P, Levy JD, Zhang Y, Frontini A, Kolodin DP, Svensson KJ et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 2014; 156: 304–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bartelt A, Heeren J . Adipose tissue browning and metabolic health. Nat Rev Endocrinol 2014; 10: 24–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the valuable collaboration of all the staff of the breeding house of the University of Navarra, in particular, Elena Ciordia, Alberto Espinal and Juan Percaz. This work was funded by the Instituto de Salud Carlos III and fondos FEDER (FIS PI10/01677, PI12/00515 and PI13/1430) and by Plan de Investigación de la Universidad de Navarra (PIUNA) (2011–2014). CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN) is an initiative of the Instituto de Salud Carlos III, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Frühbeck.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez, A., Becerril, S., Méndez-Giménez, L. et al. Leptin administration activates irisin-induced myogenesis via nitric oxide-dependent mechanisms, but reduces its effect on subcutaneous fat browning in mice. Int J Obes 39, 397–407 (2015). https://doi.org/10.1038/ijo.2014.166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2014.166

This article is cited by

Search

Quick links