Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Identification of skeletal muscle mass depletion across age and BMI groups in health and disease—there is need for a unified definition

Abstract

Although reduced skeletal muscle mass is a major predictor of impaired physical function and survival, it remains inconsistently diagnosed to a lack of standardized diagnostic approaches that is reflected by the variable combination of body composition indices and cutoffs. In this review, we summarized basic determinants of a normal lean mass (age, gender, fat mass, body region) and demonstrate limitations of different lean mass parameters as indices for skeletal muscle mass. A unique definition of lean mass depletion should be based on an indirect or direct measure of skeletal muscle mass normalized for height (fat-free mass index (FFMI), appendicular or lumbal skeletal muscle index (SMI)) in combination with fat mass. Age-specific reference values for FFMI or SMI are more advantageous because defining lean mass depletion on the basis of total FFMI or appendicular SMI could be misleading in the case of advanced age due to an increased contribution of connective tissue to lean mass. Mathematical modeling of a normal lean mass based on age, gender, fat mass, ethnicity and height can be used in the absence of risk-defined cutoffs to identify skeletal muscle mass depletion. This definition can be applied to identify different clinical phenotypes like sarcopenia, sarcopenic obesity or cachexia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F et al. Sarcopenia: European consensus on definition and diagnosis. Age Ageing 2010; 39: 412–423.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fearon K, Arends J, Baracos V . Understanding the mechanisms and treatment options in cancer cachexia. Nat Rev Clin Oncol 2013; 10: 90–99.

    Article  CAS  PubMed  Google Scholar 

  3. Houston DK, Nicklas BJ, Zizza CA . Weighty concerns: the growing prevalence of obesity among older adults. J Am Diet Assoc 2009; 109: 1886–1895.

    Article  CAS  PubMed  Google Scholar 

  4. Visser M, Schaap LA . Consequences of sarcopenia. Clin Geriatr Med 2011; 27: 387–399.

    Article  PubMed  Google Scholar 

  5. Rizzoli R, Reginster JY, Arnal JF, Bautmans I, Beaudart C, Bischoff-Ferrari H et al. Quality of life in sarcopenia and frailty. Calcif Tissue Int 2013; 93: 101–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Parr EB, Coffey VG, Hawley JA . 'Sarcobesity': a metabolic conundrum. Maturitas 2013; 74: 109–113.

    Article  PubMed  Google Scholar 

  7. Prado CMM, Wells JCK, Smith SR, Stephan BCM, Siervo M . Sarcopenic obesity: A critical appraisal of the current evidence. Clin Nutr 2012; 31: 583–601.

    Article  CAS  PubMed  Google Scholar 

  8. Hansen RD, Raja C, Aslani A, Smith RC, Allen BJ . Determination of skeletal muscle and fat-free mass by nuclear and dual-energy X-ray absorptiometry methods in men and women aged 51–84 y. Am J Clin Nutr 1999; 70: 228–233.

    Article  CAS  PubMed  Google Scholar 

  9. Heymsfield SB, Moonseong H, Thomas D, Pietrobelli A . Scaling of body composition to height: relevance to height-normalized indexes. Am J Clin Nutr 2011; 93: 736–740.

    Article  CAS  PubMed  Google Scholar 

  10. Schutz Y, Kyle UUG,, Pichard C . Fat-free mass index and fat mass index percentiles in Caucasians aged 18-98 y. Int J Obes 2002; 26: 953–960.

    Article  CAS  Google Scholar 

  11. Baumgartner R, Koehler K, Gallagher D, Romero L, Heymsfield SB, Ross RR et al. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 1998; 147: 755–763.

    Article  CAS  PubMed  Google Scholar 

  12. Schautz B, Later W, Heller M, Müller MJ, Bosy-Westphal A . Total and regional relationship between lean and fat mass with increasing adiposity—impact for the diagnosis of sarcopenic obesity. Eur J Clin Nutr 2012; 66: 1356–1361.

    Article  CAS  PubMed  Google Scholar 

  13. Elia M, Stubbs RJ, Henry CJ . Differences in fat, carbohydrate, and protein metabolism between lean and obese subjects undergoing total starvation. Obes Res 1999; 7: 597–604.

    Article  CAS  PubMed  Google Scholar 

  14. Das SK, Roberts SB, Kehayias JJ, Wang J, Hsu LK, Shikora SA et al. Body composition assessment in extreme obesity and after massive weight loss induced by gastric bypass surgery. Am J Physiol Endocrinol Metab 2003; 284: E1080–E1088.

    Article  CAS  PubMed  Google Scholar 

  15. Müller MJ, Bosy-Westphal A, Lagerpusch M, Heymsfield SB . Use of balance methods for assessment of short-term changes in body composition. Obesity (Silver Spring) 2012; 20: 701–707.

    Article  Google Scholar 

  16. Summers GD, Deighton CM, Rennie MJ, Booth AH . Rheumatoid cachexia: a clinical perspective. Rheumatology (Oxford) 2008; 47: 1124–1131.

    Article  CAS  Google Scholar 

  17. Heymsfield SB, Cristina Gonzalez MC, Shen W, Leanne Redman L, Thomas D . Weight loss composition is one-fourth fat-free mass: a critique of this widely cited rule. in press Obes Rev 2014; 15: 310–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Forbes GB . Lean body mass-body fat interrelationships in humans. Nutr Rev 1987; 45: 225–231.

    Article  CAS  PubMed  Google Scholar 

  19. Hall KD . Body fat and fat-free mass interrelationships. Forbes’s theory revisited. Br J Nutr 2007; 97: 1059–1063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Broyles ST, Bouchard C, Bray GA, Greenway FL, Johnson WD, Newton RL et al. Consistency of fat mass—fat-free mass relationship across ethnicity and sex groups. Br J Nutr 2011; 105: 1272–1276.

    Article  CAS  PubMed  Google Scholar 

  21. Thomas D, Das SK, Levine JA, Martin CK, Mayer L, McDougall A et al. New fat free mass - fat mass model for use in physiological energy balance equations. Nutr Metab (Lond) 2010; 7: 39.

    Article  Google Scholar 

  22. Barbat-Artigas S, Filion ME, Plouffe S, Aubertin-Leheudre M . Muscle quality as a potential explanation of the metabolically healthy but obese and sarcopenic obese paradoxes. Metab Syndr Relat Disord 2012; 10: 117–122.

    Article  PubMed  Google Scholar 

  23. Stenholm S, Harris TB, Rantanen T, Visser M, Kritchevsky SB, Ferrucci L . Sarcopenic obesity: definition, cause and consequences. Curr Opin Clin Nutr Metab Care 2008; 11: 693–700.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gallagher D, Kuznia P, Heshka S, Albu J, Heymsfield SB, Goodpaster B, Visser M, Harris TB . Adipose tissue in muscle: a novel depot similar in size to visceral adipose tissue. Am J Clin Nutr 2005; 81: 903–910.

    Article  CAS  PubMed  Google Scholar 

  25. Visser M, Kritchevsky SB, Goodpaster BH, Newman AB, Nevitt M, Stamm E et al. Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79: The Health, Ageing and Body Composition Study. J Am Geriatr Soc 2002; 50: 897–904.

    Article  PubMed  Google Scholar 

  26. Peterson MD, Liu D, Gordish-Dressman H, Hubal MJ, Pistilli E, Angelopoulos TJ et al. Adiposity attenuates muscle quality and the adaptive response to resistance exercise in non-obese, healthy adults. Int J Obes (Lond) 2011; 35: 1095–1103.

    Article  CAS  Google Scholar 

  27. Hulens M, Vasnsant G, Claessens AL, Lysens R, Muls E . Predictors of 6-minute walk test results in lean, obese and morbidly obese women. Scand J Med Sci Sports 2003; 13: 98–105.

    Article  CAS  PubMed  Google Scholar 

  28. Ilich JZ, Kelly OJ, Inglis JE, Panton LB, Duque G, Ormsbee MJ . Interrelationship among muscle, fat, and bone: connecting the dots on the cellular, hormonal and whole body levels. Ageing Res Rev 2014; 15: 51–60.

    Article  CAS  PubMed  Google Scholar 

  29. Newman AB, Kupelian V, Visser M, Simonsick E, Goodpaster B, Nevitt M, Kritchevsky SB, Tylavsky FA, Rubin SM, Harris TB . Health ABC Study Investigators Sarcopenia: alternative definitions and associations with lower extremity function. J Am Geriatr Soc 2003; 51: 1602–1609.

    Article  PubMed  Google Scholar 

  30. Domiciano D, Figueiredo C, Lopes J, Caparbo V, Takayama L, Menezes P, Bonfak E, Pereirak R . Discriminating sarcopenia in community-dwelling older women with high frequency of overweight/obesity: the Sao Paulo Ageing & Health Study (SPAH). Osteoporos Int 2012; 24: 595–603.

    Article  PubMed  Google Scholar 

  31. Mourtzakis M, Prado CM, Lieffers JR, Reiman T, McCargar LJ, Reiman T et al. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl Physiol Nutr Metab 2008; 33: 997–1006.

    Article  PubMed  Google Scholar 

  32. Baumgartner RN, Stauber PM, McHugh D, Koehler KM, Garry PJ . Cross-sectional age differences in body composition in persons 60+ years of age. J Gerontol A Biol Sci Med Sci 1995; 50: M307–M316.

    Article  CAS  PubMed  Google Scholar 

  33. Gallagher D, Heymsfield SB, Heo M, Jebb SA, Murgatroyd PR, Sakamoto Y . Healthy percentage body fat ranges: an approach for developing guidelines based on body mass index. Am J Clin Nutr 2000; 72: 694–701.

    Article  CAS  PubMed  Google Scholar 

  34. Flynn MA, Nolph GB, Baker AS, Martin WM, Krause G . Total body potassium in aging humans: a longitudinal study. Am J Clin Nutr 1989; 50: 713–717.

    Article  CAS  PubMed  Google Scholar 

  35. Muller DC, Elahi D, Tobin JD, Andres R . The effect of age on insulin resistance and secretion: a review. Semin Nephrol 1996; 16: 289–298.

    CAS  PubMed  Google Scholar 

  36. Beaufrere B, Morio B . Fat and protein redistribution with aging: metabolic considerations. Eur J Clin Nutr 2000; 54 (suppl): S48–S53.

    Article  PubMed  Google Scholar 

  37. Bosy-Westphal A, Booke CA, Blöcker T, Kossel E, Goele K, Later W et al. Measurement site for waist circumference affects its accuracy as an index of visceral and abdominal subcutaneous fat in a Caucasian population. J Nutr 2010; 140: 954–961.

    Article  CAS  PubMed  Google Scholar 

  38. Song MY, Ruts E, Kim J, Janumala I, Heymsfield S, Gallagher D . Sarcopenia and increased adipose tissue infiltration of muscle in elderly African American women. Am J Clin Nutr 2004; 79: 874–880.

    Article  CAS  PubMed  Google Scholar 

  39. Albu JB, Kovera AJ, Allen L, Wainwright M, Berk E, Raja-Khan N et al. Independent association of insulin resistance with larger amounts of intermuscular adipose tissue and a greater acute insulin response to glucose in African American than in white nondiabetic women. Am J Clin Nutr 2005; 82: 1210–1217.

    Article  CAS  PubMed  Google Scholar 

  40. Cree MG, Newcomer BR, Katsanos CS, Sheffield-Moore M, Chinkes D, Aarsland A et al. Intramuscular and liver triglycerides are increased in the elderly. J Clin Endocrinol Metab 2004; 89: 3864–3871.

    Article  CAS  PubMed  Google Scholar 

  41. Newman AB, Kupelian V, Visser M, Simonsick E, Goodpaster B, Nevitt M et al. Sarcopenia: alternative definitions and associations with lower extremity function. J Am Geriatr Soc 2003; 51: 1602–1609.

    Article  PubMed  Google Scholar 

  42. Dufour AB, Hannan MT, Murabito JM, Kiel DP, McLean RR . Sarcopenia definitions considering body size and fat mass are associated with mobility limitations: the Framingham Study. J Gerontol A Biol Sci Med Sci 2013; 68: 168–174.

    Article  PubMed  Google Scholar 

  43. Kelly TL, Wilson KE, Heymsfield SB . Dual energy X-Ray absorptiometry body composition reference values from NHANES. PLoS One 2009; 4: e7038.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Eveleth PB, Tanner JM . Worldwide Variation in Human Growth2nd ednCambridge University Press: Cambridge, 1990; 397.

    Google Scholar 

  45. Deurenberg P, Deurenberg Yap M, Wang J, Lin FP, Schmidt G . The impact of body build on the relationship between body mass index and percent body fat. Int J Obes Relat Metab Disord 1999; 23: 537–542.

    Article  CAS  PubMed  Google Scholar 

  46. Hull H, He Q, Thornton J, Javed F, Allen L, Wang J, Pierson RN Jr, Gallagher D . iDXA, Prodigy, and DPXL dual-energy X-ray absorptiometry whole-body scans: a cross-calibration study. J Clin Densitom 2009; 12: 95–102.

    Article  PubMed  Google Scholar 

  47. Bosy-Westphal A, Danielzik S, Dörhöfer RP, Piccoli A, Müller MJ . Patterns of bioelectrical impedance vector distribution by body mass index and age: implications for body-composition analysis. Am J Clin Nutr 2005; 82: 60–68.

    Article  CAS  PubMed  Google Scholar 

  48. World Health Organisation. Obesity: preventing and managing the global epidemic. Report of a WHO consultation Geneva, 3–5 June 1997 WHO: Geneva, 1998.

  49. Lean MEJ, Han TS, Morrison CE . Waist circumference indicates the need for weight management. BMJ 1995; 311: 158–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dulloo AG, Jacquet J, Montani JP . Pathways from weight fluctuations to metabolic diseases: focus on maladaptive thermogenesis during catch-up fat. Int J Obes Relat Metab Disord 2002; 26 (Suppl 2): S46–S57.

    Article  CAS  PubMed  Google Scholar 

  51. Bosy-Westphal A, Schautz B, Lagerpusch M, Pourhassan M, Braun W, Goele K et al. Effect of weight loss and regain on adipose tissue distribution, composition of lean mass and resting energy expenditure in young overweight and obese adults. Int J Obes (Lond) 2013; 37: 1371–1377.

    Article  CAS  Google Scholar 

  52. Byrne NM, Weinsier RL, Hunter GR, Desmond R, Patterson MA, Darnell BE et al. Influence of distribution of lean body mass on resting metabolic rate after weight loss and weight regain: comparison of responses in white and black women. Am J Clin Nutr 2003; 77: 1368–1373.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The studies by the authors were funded by a grant of the Germany Ministry of Education and Research (BMBF 0315681), the German Research Foundation (DFG Bo 3296/1-1) and the BMBF Kompetenznetz Adipositas, Core domain ‘Body composition’ (Körperzusammensetzung; FKZ 01GI1125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Bosy-Westphal.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bosy-Westphal, A., Müller, M. Identification of skeletal muscle mass depletion across age and BMI groups in health and disease—there is need for a unified definition. Int J Obes 39, 379–386 (2015). https://doi.org/10.1038/ijo.2014.161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2014.161

This article is cited by

Search

Quick links